
Concurrent Kleene Algebra

C.A.R. Hoare1, B. Möller2, G. Struth3, and I. Wehrman4

1 Microsoft Research, Cambridge, UK
2 Universität Augsburg, Germany

3 University of Sheffield, UK
4 University of Texas at Austin, USA

Abstract. A concurrent Kleene algebra offers, next to choice and iter-
ation, operators for sequential and concurrent composition, related by
an inequational form of the exchange law. We show applicability of the
algebra to a partially-ordered trace model of program execution seman-
tics and demonstrate its usefulness by validating familiar proof rules
for sequential programs (Hoare triples) and for concurrent ones (Jones’s
rely/guarantee calculus). This involves an algebraic notion of invariants;
for these the exchange inequation strengthens to an equational distribu-
tivity law. Most of our reasoning has been checked by computer.

1 Introduction

Kleene algebra [7] has been recognised and developed [18, 19, 8] as an algebraic
framework (or structural equivalence) that unifies diverse theories for conven-
tional sequential programming by axiomatising the fundamental concepts of
choice, sequential composition and finite iteration. Its many familiar models
include relations under union, relational composition and reflexive transitive
closure, as well as formal languages under union, concatenation and Kleene star.
This paper defines a ‘double’ Kleene algebra, which adds an operator for concur-
rent composition. Sequential and concurrent composition are related by an in-
equational weakening of the equational exchange law (a◦b)•(c◦d) = (a•c)◦(b•d)
of two-category or bicategory theory (e.g. [20]). Under certain conditions, this is
strengthened to an equational law, by which concurrent composition distributes
through sequential. The axioms proposed for a concurrent Kleene algebra are
catalogued in Section 4.

The interest of concurrent Kleene algebra (CKA) is two-fold. Firstly, it ex-
presses only the essential properties of program execution; indeed, it represents
just those properties which are preserved even by architectures with weakly-
ordered memory access, unreliable communications and massively re-ordering
program optimisers. Secondly, the modelled properties, though unusually weak,
are strong enough to validate the main structural laws of assertional reasoning
about program correctness, both in sequential style [12] (as described in Sec-
tion 5) and in concurrent style [17] (as described in Section 8).

The purpose of the paper is to introduce the basic operations and their laws,
both in a concrete representation and in abstract, axiomatic form. We hope in
future research to relate CKA to various familiar process algebras, such as the

π-calculus or CSP, and to clarify the links between their many variants.
Before we turn to the abstract treatment, Section 2 presents our weak se-

mantic model which also is a concrete model of the notion of a CKA. A program
is identified with the set of traces of all the executions it may evoke. Each trace
consists of the set of events that occur during a single execution. When two sub-
programs are combined, say in a sequential or a concurrent combination, each
event that occurs is an event in the trace of exactly one of the subprograms. Each
trace of the combination is therefore the disjoint union of a trace of one of the
sub-programs with a trace of the other. Our formal definitions of the program
combinators identify them as a kind of separating conjunction [25].

We use a primitive dependence relation between the events of a trace. Its tran-
sitive closure represents a direct or indirect chain of dependence. In a sequential
composition, it is obviously not allowed for an event occurring in execution of
the first operand to depend (directly or indirectly) on an event occurring in exe-
cution of the second operand. We take this as our definition of a very weak form
of sequential composition. Concurrent composition places no such restriction,
and allows dependence in either direction. The above-mentioned exchange law
seems to generally capture the interrelation between sequential and concurrent
composition in adequate inequational form.

The dependence primitive is intended to model a wide range of computational
phenomena, including control dependence (arising from program structure) and
data dependence (arising from flow of data). There are many forms of data flow.
Flow of data across time is usually mediated by computer memory, which may
be private or shared, strongly or only weakly consistent. Flow of data across
space is usually mediated by a real or simulated communication channel, which
may be buffered or synchronised, double-ended or multiplexed, reliable or lossy,
and perhaps subject to stuttering or even re-ordering of messages.

Obviously, it is only weak properties of a program that can be proved with-
out knowing more of the properties of the memory and communication channels
involved. The additional properties are conveniently specified by additional ax-
ioms, like those used by hardware architects to describe specific weak memory
models (e.g. [22]). Fortunately, as long as they are consistent with our funda-
mental theory, they do not invalidate our development and hence do not require
fresh proofs of any of our theorems.

In this paper we focus on the basic concrete CKA model and the essential
laws; further technical details are given in the companion paper [15]. The formal
proofs of our results can be found in [14]; there we also show a typical input
file for the automated theorem prover Prover9 [28] with which all the purely
algebraic proofs have been reconstructed automatically.

2 Operators on Traces and Programs

We assume a set EV of events, i.e., occurrences of primitive actions, and a
dependence relation → ⊆ EV × EV between them: p → q indicates occurrence
of a data flow or control flow from event p to event q.

A trace is a set of events. We use sets of events to have greater flexibility, in
particular, to accommodate non-interleaving semantics; the more conventional
sequences can be recovered by adding time stamps or the like to events. A
program is a set of traces. For example, the program skip, which does nothing,
is defined as {∅}, and the program [p], which has the only event p, is {{p}}. The
program false =df ∅ has no traces, and therefore cannot be executed at all. It
serves the rôle of the ‘miracle’ [23] in the development of programs by stepwise
refinement. We have false ⊆ P for all programs P .

Following [16] we will define four operators on programs P and Q:
P ∗Q fine-grain concurrent composition, allowing dependences between

P and Q ;
P ;Q weak sequential composition, forbidding dependence of P on Q ;
P ‖Q disjoint parallel composition, with no dependence in either direc-

tion;
P dcQ alternation – exactly one of P or Q is executed, whenever possible.

For the formal definition let →+ be the transitive closure of the dependence
relation → and let, for trace tp, be dep(tp) =df {q | ∃ p ∈ tp : q →+ p}. Thus,
dep(tp) is the set of events on which some event in tp depends. Therefore, trace
tp is independent of trace tq iff dep(tp)∩ tq = ∅. The use of the transitive closure
→+ seems intuitively reasonable; an algebraic justification is given in Section 7.

Definition 2.1 Consider the schematic combination function

COMB(P,Q,C) =df {tp ∪ tq | tp ∈ P ∧ tq ∈ Q ∧ tp ∩ tq = ∅ ∧ C(tp, tq)}
with programs P,Q and a predicate C in the trace variables tp and tq . Then the
above operators are given by

P ∗ Q =df COMB(P,Q, TRUE) ,
P ; Q =df COMB(P,Q, dep(tp) ∩ tq = ∅) ,
P ‖ Q =df COMB(P,Q, dep(tp) ∩ tq = ∅ ∧ dep(tq) ∩ tp = ∅) ,
P dcQ =df COMB(P,Q, tp = ∅ ∨ tq = ∅) .

Example 2.2 We illustrate the operators with a mini-example. We assume a set
EV of events the actions of which are simple assignments to program variables.
We consider three particular events ax , ay , az associated with the assignments
x :=x+1, y := y+2, z :=x+3, resp. There is a dependence arrow from event p to
event q iff p 6= q and the variable assigned to in p occurs in the assigned expression
in q. This means that for our three events we have exactly ax → az . We form the
corresponding single-event programs Px =df [ax], Py =df [ay], Pz =df [az]. To
describe their compositions we extend the notation for single-event programs
and set [p1, . . . , pn] =df {{p1, . . . , pn}} (for uniformity we sometimes also write
[] for skip). Figure 1 lists the composition tables for our operators on these
programs. They show that the operator ∗ allows forming parallel programs with
race conditions, whereas ; and ‖ respect dependences. ut

It is straightforward from the definitions that ∗, ‖ and be are commutative
and that be ⊆ ‖ ⊆ ; ⊆ ∗ where for ◦, • ∈ {∗, ;, ‖, be} the formula ◦ ⊆ • abbreviates
∀P,Q : P ◦Q ⊆ P •Q. Further useful laws are the following.

∗ Px Py Pz

Px ∅ [ax , ay] [ax , az]
Py [ax , ay] ∅ [ay , az]
Pz [ax , az] [ay , az] ∅

; Px Py Pz

Px ∅ [ax , ay] [ax , az]
Py [ax , ay] ∅ [ay , az]
Pz ∅ [ay , az] ∅

‖ Px Py Pz

Px ∅ [ax , ay] ∅
Py [ax , ay] ∅ [ay , az]
Pz ∅ [ay , az] ∅

be Px Py Pz

Px ∅ ∅ ∅
Py ∅ ∅ ∅
Pz ∅ ∅ ∅

Fig. 1. Composition tables

Lemma 2.3 Let ◦, • ∈ {∗, ;, ‖, be}.
1. ◦ distributes through arbitrary unions; in particular, false is an annihilator

for ◦, i.e., false ◦ P = false = P ◦ false. Moreover, ◦ is isotone w.r.t. ⊆ in
both arguments.

2. skip is a neutral element for ◦, i.e., skip ◦ P = P = P ◦ skip.
3. If • ⊆ ◦ and ◦ is commutative then

(P ◦Q) • (R ◦ S) ⊆ (P •R) ◦ (Q • S).
4. If • ⊆ ◦ then P • (Q ◦R) ⊆ (P •Q) ◦R.
5. If • ⊆ ◦ then (P ◦Q) •R ⊆ P ◦ (Q •R).
6. ◦ is associative.

The proofs either can be done by an easy adaptation of the corresponding ones
in [16] or follow from more general results in [15]. A particularly important
special case of Part 3 is the exchange law

(P ∗Q) ; (R ∗ S) ⊆ (P ;R) ∗ (Q ; S) (1)

In the remainder of this paper we shall mostly concentrate on the more
interesting operators ∗ and ; .

Another essential operator is union which again is ⊆-isotone and distributes
through arbitrary unions. However, it is not false-strict.

By the Tarski-Kleene fixpoint theorems all recursion equations involving only
the operators mentioned have ⊆-least solutions which can be approximated by
the familiar fixpoint iteration starting from false. Use of union in such a recur-
sions enables non-trivial fixpoints, as will be seen in the next section.

3 Quantales, Kleene and Omega Algebras

We now abstract from the concrete case of programs and embed our model into
a more general algebraic setting.

Definition 3.1 A semiring is a structure (S,+, 0, ·, 1) such that (S,+, 0) is a
commutative monoid, (S, ·, 1) is a monoid, multiplication distributes over ad-
dition in both arguments and 0 is a left and right annihilator with respect to
multiplication (a · 0 = 0 = 0 · a). A semiring is idempotent if its addition is.

The operation + denotes an abstract form of nondeterministic choice; in the
concrete case of programs it will denote union (of sets of traces). This explains
why + is required to be associative, commutative and idempotent. Its neutral
element 0 will take the rôle of the miraculous program ∅.

In an idempotent semiring, the relation ≤ defined by a ≤ b ⇔df a+ b = b is
a partial ordering, in fact the only partial ordering on S for which 0 is the least
element and for which addition and multiplication are isotone in both arguments.
It is therefore called the natural ordering on S. This makes S into a semilattice
with addition as join and least element 0.

Definition 3.2 A quantale [24] or standard Kleene algebra [7] is an idempotent
semiring that is a complete lattice under the natural order and in which multi-
plication distributes over arbitrary suprema. The infimum and the supremum of
a subset T are denoted by u T and t T , respectively. Their binary variants are
x u y and x t y (the latter coinciding with x+ y).

In particular, quantale composition is continuous, i.e., distributes through
suprema of arbitrary, not just countable, chains. As an idempotent semiring,
every quantale has 0 as its least element. As a complete lattice, it also has a
greatest element >. Quantales have been used in many contexts other than that
of program semantics, see e.g. the c-semirings of [3] or the general reference [29].

Let now PR(EV) =df P(P(EV)) denote the set of all programs over the
event set EV . From the observations in Section 2 the following is immediate:

Lemma 3.3 (PR(EV),∪, false, ∗, skip) and (PR(EV),∪, false, ; , skip) are quan-
tales. In each of them > = P(EV) is the most general program over EV .

Definition 3.4 In a quantale S, the finite and infinite iterations a∗ and aω of
an element a ∈ S are defined by a∗ = µx . 1 + a · x and aω = νx . a · x, where µ
and ν denote the least and greatest fixpoint operators. The star here should not
be confused with the separation operator ∗ above.

It is well known that (S,+, 0, ·, 1, ∗) forms a Kleene algebra [18]. From this
we obtain many useful laws for free. As examples we mention

1 ≤ a∗ , a ≤ a∗ , a∗ · a∗ = (a∗)∗ = a∗ , (a+ b)∗ = a∗ · (b · a∗)∗ . (KA)

The finite non-empty iteration of a is defined as a+ =df a · a∗ = a∗ · a. Again,
the plus in a+ should not be confused with the plus of semiring addition.

Since in a quantale the function defining star is continuous, Kleene’s fixpoint
theorem shows that a∗ =

⊔
i∈IN a

i. Moreover, we have the star induction rules

b+ a · x ≤ x ⇒ a∗ · b ≤ x , b+ x · a ≤ x ⇒ b · a∗ ≤ x . (2)

Our main reason for using quantales rather than an extension of conven-
tional Kleene algebra (see e.g. the discussion on Priscariu’s synchronous Kleene
algebras [27] in Section 9) is the availability of general fixpoint calculus there. A
number of our proofs need the principle of fixpoint fusion which is a second-order

principle; in the first-order setting of conventional Kleene algebra only special
cases of it, like the above induction rules can be added as axioms.

We now explain the behaviour of iteration in our program quantales. For
a program P , the program P ∗ taken in the quantale (PR(EV), ∪, false, ; , skip)
consists of all sequential compositions of finitely many traces in P ; it is denoted
by P∞ in [16]. The program P ∗ taken in (PR(EV),∪, false, ∗, skip) consists of all
disjoint unions of finitely many traces in P ; it may be considered as describing
all finite parallel spawnings of traces in P . The disjointness requirement that is
built into the definition of ∗ and ; does not mean that an iteration cannot repeat
primitive actions: the iterated program just needs to supply sufficiently many
(e.g., countably many) events having the actions of interest as labels. Then in
each round of iteration a fresh one of these can be used.

Example 3.5 With the notation of Example 2.2 let P =df Px ∪ Py ∪ Pz. We
first look at its powers w.r.t. ∗ composition:

P 2 =P ∗ P = [ax , ay] ∪ [ax , az] ∪ [ay , az] ,
P 3 =P ∗ P ∗ P = [ax , ay, az] .

Hence P 2 and P 3 consist of all programs with exactly two and three events from
{ax , ay , az}, respectively. Since none of the traces in P is disjoint from the one
in P 3, we have P 4 = P 3∗P = ∅, and hence strictness of ∗ w.r.t. ∅ implies Pn = ∅
for all n ≥ 4. Therefore P ∗ consists of all traces with at most three events from
{ax , ay , az} (the empty trace is there, too, since by definition skip is contained
in every program of the form Q∗). It coincides with the set of all possible traces
over the three events; this connection will be taken up again in Section 6.

It turns out that for the powers of P w.r.t. the ; operator we obtain exactly
the same expressions, since for every program Q = [p] ∪ [q] with p 6= q we have

Q ;Q = ([p]∪ [q]) ; ([p]∪ [q]) = [p] ; [p]∪ [p] ; [q]∪ [q] ; [p]∪ [q] ; [q] = [p, q] = Q ∗Q ,

provided p 6→+ q or q 6→+ p, i.e., provided the trace [p, q] is consistent with the
dependence relation. Only in case of a cyclic dependence p→+ q →+ p we have
Q ;Q = ∅, whereas still Q ∗Q = [p, q]. ut

If the complete lattice (S,≤) in a quantale is completely distributive, i.e., if +
distributes over arbitrary infima, then (S,+, 0, ·, 1, ∗, ω) forms an omega algebra
in the sense of [6]. Again this entails many useful laws, e.g.,

1ω = > , (a · b)ω = a · (b · a)ω , (a+ b)ω = aω + a∗ · b · (a+ b)ω .

Since PR(EV) is a power set lattice, it is completely distributive. Hence both
program quantales also admit infinite iteration with all its laws. The infinite it-
eration Pω w.r.t. the composition operator ∗ is similar to the unbounded parallel
spawning !P of traces in P in the π-calculus (e.g. [30]).

4 Concurrent Kleene Algebras

That PR(EV) is a double quantale motivates the following abstract definition.

Definition 4.1 By a concurrent Kleene algebra (CKA) we mean a structure
(S,+, 0,∗, ; , 1) such that (S,+, 0, ∗, 1) and (S,+, 0, ; , 1) are quantales linked by
the exchange axiom (a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d).

This definition implies, in particular, that ∗ and ; are isotone w.r.t. ≤ in
both arguments. Compared to the original exchange law (1) this one has its free
variables in a different order. This does no harm, since the concrete ∗ operator
on programs is commutative and hence satisfies the above law as well.

Corollary 4.2 (PR(EV),∪, false, ∗, ; , skip) is a CKA.

The reason for our formulation of the exchange axiom here is that this form
of the law implies commutativity of ∗ as well as a ; b ≤ a ∗ b and hence saves two
axioms. This is shown by the following result.

Lemma 4.3 In a CKA the following laws hold.
1. a ∗ b = b ∗ a.
2. (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d).
3. a ; b ≤ a ∗ b.
4. (a ∗ b) ; c ≤ a ∗ (b ; c).
5. a ; (b ∗ c) ≤ (a ; b) ∗ c.

The notion of a CKA abstracts completely from traces and events; in the
companion paper [15] we show how to retrieve these notions algebraically using
the lattice-theoretic concept of atoms.

5 Hoare Triples

In [16] Hoare triples relating programs are defined by P {{Q}}R ⇔df P ;Q ⊆ R.
Again, it is beneficial to abstract from the concrete case of programs.

Definition 5.1 An ordered monoid is a structure (S,≤, ·, 1) such that (S, ·, 1)
is a monoid with a partial order ≤ and · is isotone in both arguments. In this
case we define the Hoare triple a {{b}} c by

a {{b}} c ⇔df a · b ≤ c .

Lemma 5.2 Assume an ordered monoid (S,≤, ·, 1).
1. a {{1}} c ⇔ a ≤ c; in particular, a {{1}} a ⇔ TRUE. (skip)
2. (∀ a, c : a {{b}} c ⇒ a {{b′}} c) ⇔ b′ ≤ b. (antitony)
3. (∀ a, c : a {{b}} c ⇔ a {{b′}} c) ⇔ b = b′. (extensionality)
4. a {{b · b′}} c ⇔ ∃ d : a {{b}} d ∧ d {{b′}} c. (composition)
5. a ≤ d ∧ d {{b}} e ∧ e ≤ c ⇒ a {{b}} c. (weakening)

If (S, ·, 1) is the multiplicative reduct of an idempotent semiring (S,+, 0, ·, 1) and
the order used in the definition of Hoare triples is the natural semiring order then
we have in addition
6. a {{0}} c ⇔ TRUE, (failure)

7. a {{b+ b′}} c ⇔ a {{b}} c ∧ a {{b′}} c. (choice)
If that semiring is a quantale then we have in addition
8. a {{b}} a ⇔ a {{b+}} a ⇔ a {{b∗}} a. (iteration)

Lemma 5.2 can be expressed more concisely in relational notation. Define for
b ∈ S the relation {{b}} ⊆ S×S between preconditions a and postconditions c by

∀ a, c : a {{b}} c ⇔df a · b ≤ c .
Then the above properties rewrite into

1. {{1}} = ≤.
2. {{b}} ⊆ {{b′}} ⇔ b′ ≤ b.
3. {{b}} = {{b′}} ⇔ b = b′.
4. {{b · b′}} = {{b}} ◦ {{b′}} where ◦ means relational composition.
5. ≤ ◦{{b}} ◦ ≤ ⊆ {{b}}.
6. {{0}} = TT where TT is the universal relation.
7. {{b+ b′}} = {{b}} ∩ {{b′}}.
8. {{b}}∩ I = {{b+}}∩ I = {{b∗}}∩ I where I is the identity relation.

Properties 4 and 2 allow us to determine the weakest premise ensuring that
two composable Hoare triples establish a third one:

Lemma 5.3 Assume again an ordered monoid (S,≤, ·, 1). Then

(∀ a, d, c : a {{b}} d ∧ d {{b′}} c ⇒ a {{e}} c) ⇔ e ≤ b · b′ .

Next we present two further rules that are valid in CKAs when the above
monoid operation is specialised to sequential composition:

Lemma 5.4 Let S = (S,+, 0,∗, ; , 1) be a CKA and a, a′, b, b′, c, c′, d ∈ S with
a {{b}} c interpreted as a ; b ≤ c.
1. a {{b}} c ∧ a′ {{b′}} c′ ⇒ (a ∗ a′) {{b ∗ b′}} (c ∗ c′). (concurrency)
2. a {{b}} c ⇒ (d ∗ a) {{b}} (d ∗ c). (frame rule)

Let us interpret these results in our concrete CKA of programs. It may seem
surprising that so many of the standard basic laws of Hoare logic should be valid
for such a weak semantic model of programs. E.g., the definition of weak sequen-
tial composition allows all standard optimisations by compilers which shift inde-
pendent commands between the operands of a semicolon. What is worse, weak
composition does not require any data to flow from an assignment command to
an immediately following read of the assigned variable. The data may flow to
a different thread, which assigns a different value to the variable. In fact, weak
sequential composition is required for any model of modern architectures, which
allow arbitrary race conditions between fine-grain concurrent threads.

The validity of Hoare logic in this weak model is entirely due to a cheat:
that we use the same model for our assertions as for our programs. Thus any
weakness of the programming model is immediately reflected in the weakness
of the assertion language and its logic. In fact, conventional assertions mention
the current values of single-valued program variables; and this is not adequate
for reasoning about general fine-grain concurrency. To improve precision here,
assertions about the history of assigned values would seem to be required.

6 Invariants

We now deal with the set of events a program may use.

Definition 6.1 A power invariant is a program R of the form R = P(E) for a
set E ⊆ EV of events.

It consists of all possible traces that can be formed from events in E and
hence is the most general program using only those events. The smallest power
invariant is skip = P(∅) = {∅}. The term “invariant” expresses that often a
program relies on the assumption that its environment only uses events from a
particular subset, i.e., preserves the invariant of staying in that set.

Example 6.2 Consider again the event set EV form Example 2.2. Let V be a
certain subset of the variables involved and let E be the set of all events that
assign to variables in V . Then the environment Q of a given program P can be
constrained to assign at most to the variables in V by requiring Q ⊆ R with the
power invariant R =df P(E). The fact that we want P to be executed only in
such environments is expressed by forming the parallel composition P ∗R. ut

If E is considered to characterise the events that are admissible in a certain
context, a program P can be confined to using only admissible events by requiring
P ⊆ R for R = P(E). In the rely/guarantee calculus of Section 8 invariants will
be used to express properties of the environment on which a program wants to
rely (whence the name R).

Power invariants satisfy a rich number of useful laws (see [15] for details).
The most essential ones for the purposes of the present paper are the following
straightforward ones for arbitrary invariant R:

skip ⊆ R , R ∗R ⊆ R . (3)

We now again abstract from the concrete case of programs. It turns out that
the properties in (3) largely suffice for characterising invariants.

Definition 6.3 An invariant in a CKA S is an element r ∈ S satisfying 1 ≤ r
and r ∗ r ≤ r. These two axioms can equivalently be combined into 1 + r ∗ r ≤ r.
The set of all invariants of S is denoted by I(S).

We now first give a number of algebraic properties of invariants that are
useful in proving the soundness of the rely/guarantee-calculus in Section 8.

Theorem 6.4 Assume a CKA S, an r ∈ I(S) and arbitrary a, b ∈ S.
1. a ≤ r ◦ a and a ≤ a ◦ r.
2. r ; r ≤ r.
3. r ∗ r = r = r ; r.
4. r ; (a ∗ b) ≤ (r ; a) ∗ (r ; b) and (a ∗ b) ; r ≤ (a ; r) ∗ (b ; r).
5. r ; a ; r ≤ r ∗ a.
6. a ∈ I(S) ⇔ a = a∗, where ∗ is taken w.r.t. ∗ composition.

7. The least invariant comprising a is a∗ where ∗ is taken w.r.t. ∗ composition.

Next we discuss the lattice structure of the set I(S) of invariants.

Theorem 6.5 Assume again a CKA S.
1. (I(S),≤) is a complete lattice with least element 1 and greatest element >.
2. For r, r′ ∈ I(S) we have r ≤ r′ ⇔ r ∗ r′ = r′. This means that ≤ co-

incides with the natural order induced by the associative, commutative and
idempotent operation ∗ on I(S).

3. For r, r′ ∈ I(S) the infimum r u r′ in S coincides with the infimum of r and
r′ in I(S).

4. r∗r′ is the supremum of r and r′ in I(S). In particular, r ≤ r′′ ∧ r′ ≤ r′′ ⇔
r ∗ r′ ≤ r′′ and r′ u (r ∗ r′) = r′.

5. Invariants are downward closed: r ∗ r′ ≤ r′′ ⇒ r ≤ r′′.
6. I(S) is even closed under arbitrary infima, i.e., for a subset U ⊆ I(S) the

infimum uU taken in S coincides with the infimum of U in I(S).

We conclude this section with two laws about iteration.

Lemma 6.6 Assume a CKA S and let r ∈ I(S) be an invariant and a ∈ S be
arbitrary. Let the finite iteration ∗ be taken w.r.t. ∗ composition. Then
1. (r ∗ a)∗ ≤ r ∗ a∗.
2. r ∗ a∗ = r ∗ (r ∗ a)∗.

7 Single-Event Programs and Rely/Guarantee-CKAs

We will now show that our definitions of ∗ and ; for concrete programs in terms
of transitive closure of the dependence relation → entail two important further
laws that are essential for the rely/guarantee calculus to be defined below. In the
following theorem they are presented as inclusions; the reverse inclusions already
follow from Theorem 6.4.4 for Part 1 and from Lemma 4.3.5, 4.3.4, 4.3.1 and
Theorem 6.4.3 for Part 2. Informally, Part 1 means that for acyclic → parallel
composition of an invariant with a singleton program can be always sequen-
tialised. Part 2 means that for invariants a kind of converse to the exchange law
of Lemma 4.3.2 holds.

Theorem 7.1 Let R = P(E) be a power invariant in PR(EV).
1. If → is acyclic and p ∈ EV then R ∗ [p] ⊆ R ; [p] ;R.
2. For all P,Q ∈ PR(EV) we have R ∗ (P ;Q) ⊆ (R ∗ P) ; (R ∗Q).

In the companion paper [15] we define the composition operators ; and ‖ in
terms of → rather than →+ and show a converse of Theorem 7.1:
– If Part 1 is valid then → is weakly acyclic, viz.

∀ p, q ∈ EV : p→+ q →+ p ⇒ p = q .

This means that→ allows at most immediate self-loops which cannot be “de-
tected” by our definitions of the operators that require disjointness of the
operands. It is easy to see that → is weakly acyclic iff its reflexive-transitive
closure →∗ is a partial order.

– If Part 2 is valid then → is weakly transitive, i.e.,

p→ q → r ⇒ p = r ∨ p→ r .

This provides the formal justification why in the present paper we right away
defined our composition operators in terms of →+ rather than just → .

As before we abstract the above results into general algebraic terms. The
terminology stems from the applications in the next section.

Definition 7.2 A rely/guarantee-CKA is a pair (S, I) such that S is a CKA
and I ⊆ I(S) is a set of invariants such that 1 ∈ I and for all r, r′ ∈ I also
r u r′ ∈ I and r ∗ r′ ∈ I, in other words, I is a sublattice of I(S). Moreover, all
r ∈ I and a, b ∈ S have to satisfy r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b).

Together with the exchange law in Lemma 4.3.2, ◦-idempotence of r and
commutativity of ∗ this implies

r ∗ (b ◦ c) = (r ∗ b) ◦ (r ∗ c) (∗-distributivity)

for all invariants r ∈ I and operators ◦ ∈ {∗, ;}.
The restriction that I be a sublattice of I(S) is motivated by the rely/guar-

antee-calculus in Section 8 below.
Using Theorem 7.1 we can prove

Lemma 7.3 Let I =df {P(E) |E ⊆ EV } be the set of all power invariants
over EV . Then (PR(EV), I) is a rely-guarantee-CKA.

Proof. We only need to establish closure of P(P(EV)) under ∗ and ∩. But
straightforward calculations show that P(E) ∗ P(F) = P(E ∪ F) and P(E) ∩
P(F) = P(E ∩ F) for E,F ⊆ EV . ut

We now can explain why it was necessary to introduce the subset I of in-
variants in a rely/guarantee-CKA. Our proof of ∗-distributivity used downward
closure of power invariants. Other invariants in PR(EV) need not be downward
closed and hence ∗-distributivity need not hold for them.

Example 7.4 Assume an event set EV with three different events p, q, r ∈ EV
and dependences p→ r → q. Set P =df [p, q]. Then P ∗P = ∅ and hence P i = ∅
for all i > 1. This means that the invariant R =df P ∗ = skip ∪ P = [] ∪ [p, q]
is not downward closed. Indeed, ∗-distributivity does not hold for it: we have
R ∗ [r] = [r] ∪ [p, q, r], but R ; [r] ;R = [r]. ut

The property of ∗-distributivity implies further iteration laws.

Lemma 7.5 Assume a rely/guarantee-CKA (S, I), an invariant r ∈ I and an
arbitrary a ∈ S and let the finite iteration ∗ be taken w.r.t. ◦ ∈ {∗, ;}.
1. r ∗ a∗ = (r ∗ a)∗ ◦ r = r ◦ (r ∗ a)∗.
2. (r ∗ a)+ = r ∗ a+.

8 Jones’s Rely/Guarantee-Calculus

In [17] Jones has presented a calculus that considers properties of the environ-
ment on which a program wants to rely and the ones it, in turn, guarantees
for the environment. We now provide an abstract algebraic treatment of this
calculus.

Definition 8.1 We define, abstracting from [16], the guarantee relation by set-
ting for arbitrary element b and invariant g

b guar g ⇔df b ≤ g .
A slightly more liberal formulation is discussed in [15].

Example 8.2 With the notation Pu =df [au] for u ∈ {x, y, z} of Example 2.2
we have Pu guar Gu where Gu =df Pu ∪ skip = [au] ∪ []. ut

We have the following properties.

Theorem 8.3 Let a, b, b′ be arbitrary elements and g, g′ be invariants of a CKA.
Let ◦ ∈ {∗, ;} and ∗◦ be the associated iteration operator.
1. 1 guar g.
2. b guar g ∧ b′ guar g′ ⇒ (b ◦ b′) guar (g ∗ g′).
3. a guar g ⇒ a∗◦ guar g.
4. For the concrete case of programs let G = P(E) for some set E ⊆ EV and

p ∈ EV . Then [p] guar G ⇔ p ∈ E.

Using the guarantee relation, Jones quintuples can be defined, as in [16], by

a r {{b}} g s ⇔df a {{r ∗ b}} s ∧ b guar g ,

where r and g are invariants and Hoare triples are again interpreted in terms of
sequential composition ; .

The first rule of the rely/guarantee calculus concerns parallel composition.

Theorem 8.4 Consider a CKA S. For invariants r, r′, g, g′ ∈ I(S) and arbi-
trary a, a′, b, b′, c, c′ ∈ S,

a r {{b}} g c ∧ a′ r′ {{b′}} g′ c′ ∧ g′ guar r ∧ g guar r′ ⇒
(a u a′) (r u r′) {{b ∗ b′}} (g ∗ g′) (c u c′) .

Note that r u r′ and g ∗ g′ are again invariants by Lemma 6.5.3 and 6.5.4.
For sequential composition one has

Theorem 8.5 Assume a rely/guarantee-CKA (S, I). Then for invariants r, r′,
g, g′ ∈ I and arbitrary a, b, b′, c, c′,

a r {{b}} g c ∧ c r′ {{b′}} g′ c′ ⇒ a (r u r′) {{b ; b′}} (g ∗ g′) c′

Next we give rules for 1, union and singleton event programs.

Theorem 8.6 Assume a rely/guarantee-CKA (S, I). Then for invariants r, g ∈
I and arbitrary s ∈ S,
1. a r {{1}} g s ⇔ a {{r}} s.
2. a r {{b+ b′}} g s ⇔ a r {{b}} g s ∧ a r {{b′}} g s.
3. Assume power invariants R = P(E), G = P(F) for E,F ⊆ EV , event p 6∈ E

and let → be acyclic. Then P R {{[p]}}GS ⇔ P {{R ; [p] ;R}}S ∧ [p] guar G.

Finally we give rely/guarantee rules for iteration.

Theorem 8.7 Assume a rely/guarantee-CKA (S, I) and let ∗ be finite iteration
w.r.t. ◦ ∈ {∗, ;}. Then for invariants r, g ∈ I and arbitrary elements a, b ∈ S,

a r {{b}} g a ⇒ a r {{b+}} g a ,
a {{r}} a ∧ a r {{b}} g a ⇒ a r {{b∗}} g a .

We conclude this section with a small example of the use of our rules.

Example 8.8 We consider again the programs Pu = [au] and invariants Gu =
Pu ∪ skip (u ∈ {x, y}) from Example 8.2. Moreover, we assume an event av with
v 6= x, y, ax 6→ av and ay 6→ av and set Pv =df [av]. We will show

Pv skip {{Px ∗ Py}} (Gx ∗Gy) [av , ax , ay]

holds. In particular, the parallel execution of the assignments x :=x + 1 and
y := y+ 2 guarantees that at most x and y are changed. We set Rx =df Gy and
Ry =df Gx. Then

(a) Px guar Gx guar Ry , (b) Py guar Gy guar Rx .

Define the postconditions

Sx =df [av , ax] ∪ [av , ax , ay] and Sy =df [av , ay] ∪ [av , ax , ay] .

Then

(c) Sx ∩ Sy = [av , ax , ay] , (d) Rx ∩Ry = skip .

From the definition of Hoare triples we calculate

Pv {{Rx}} ([av] ∪ [av , ay]) ([av] ∪ [av , ay]) {{Px}}Sx Sx {{Rx}}Sx ,

since [av , ax , ay] ∗ [ay] = ∅. Combining the three clauses by Lemma 5.2.4 we
obtain

Pv {{Rx ; Px ;Rx}}Sx .

By Theorem 8.6.3 we obtain Pv Ry {{Px}}Gx Sx and, similarly, Pv Rx {{Py}}Gy Sy.
Now the claim follows from the clauses (a),(b),(c),(d) and Theorem 8.4. ut

In a practical application of the theory of Kleene algebras to program cor-
rectness, the model of a program trace will be much richer than ours. It will
certainly include labels on each event, indicating which atomic command of the
program is responsible for execution of the event. It will include labels on each
data flow arrow, indicating the value which is ‘passed along’ the arrow, and the
identity of the variable or communication channel which mediated the flow.

9 Related Work

Although our basic model and its algebraic abstraction reflect a non-interleaving
view of concurrency, we try to set up a connection with familiar process algebras
such as ACP [1], CCS[21], CSP[13], mCRL2 [11] and the π-calculus [30].

It is not easy to relate their operators to those of CKA. The closest analogies
seem to be the following ones.

CKA operator corresponding operator
+ non-deterministic choice in CSP
∗ parallel composition | in ACP, π-calculus and CCS
‖ interleaving |‖ in CSP
; sequential composition ; in CSP and · in ACP
be choice + in CCS and internal choice 2 in CSP
1 SKIP in CSP
0 this is the miracle and cannot be represented

in any implementable calculus

However, there are a number of laws which show the inaccuracy of this table.
For instance, in CSP we have SKIP 2 P 6= P , whereas CKA satisfies 1beP = P . A
similarly different behaviour arises in CCS, ACP and the π-calculus concerning
distributivity of composition over choice.

As the discussion after Theorem 7.1 shows, our basic model falls into the
class of partial-order models for true concurrency. Of the numerous works in
that area we discuss some approaches that have explicit operators for composi-
tion related to our ∗ and ; . Whereas we assume that our dependence relation is
fixed a priori, in the pomset approach [10, 9, 26] is is constructed by the compo-
sition operators. The operators there are sequential and concurrent composition;
there are no choice and iteration, though. Moreover, no laws are given for the
operators. In Winskel’s event structures [31] there are choice (sum) and concur-
rent composition, but no sequential composition and iteration. Again, there are
no interrelating laws. Another difference to our approach is that the “traces” are
required to observe certain closure conditions.

Among the axiomatic approaches to partial order semantics we mention the
following ones. Boudol and Castellani [4] present the notion of trioids, which
are algebras offering the operations of choice, sequential and concurrent compo-
sition. However, there are no interrelating laws and no iteration. Chothia and
Kleijn07 [5] use a double semiring with choice, sequential and concurrent com-
position, but again no interrelating laws and no iteration. The application is to
model quality of service, not program semantics.

The approach closest in spirit to ours are Prisacariu’s synchronous Kleene
algebras (SKA) [27]. The main differences are the following. SKAs are not
quantale-based, but rather an enrichment of conventional Kleene algebras. They
are restricted to a finite alphabet of actions and hence have a complete and even
decidable equational theory. There is only a restricted form of concurrent com-
position, and the exchange law is equational rather than equational. Iteration
is present but not used in an essential way. Nevertheless, Prisacariu’s paper is

the only of the mentioned ones that explicitly deals with Hoare logic. It does so
using the approach of Kleene algebras with tests [19]. This is not feasible in our
basic model, since tests are required to be below the element 1, and 0 and 1 are
the only such elements. Note, however, that Mace4 [28] quickly shows that this
is not a consequence of the CKA axioms but holds only for the particular model.

10 Conclusion and Outlook

The study in this paper has shown that even with the extremely weak assump-
tions of our trace model many of the important programming laws can be shown,
mostly by very concise and simple algebraic calculations. Indeed, the rôle of the
axiomatisation was precisely to facilitate these calculations: rather than verify-
ing the laws laboriously in the concrete trace model, we can do so much more
easily in the algebraic setting of Concurrent Kleene Algebras. This way many
new properties of the trace model have been shown in the present paper. Hence,
although currently we know of no other interesting model of CKA than the trace
model, the introduction of that structure has already been very useful.

The discussion in the previous section indicates that CKA is not a direct
abstraction of the familiar concurrency calculi. Rather, we envisage that the
trace model and its abstraction CKA can serve as a basic setting into which
many of the existing other calculi can be mapped so that then their essential
laws can be proved using the CKA laws. A first experiment along these lines is
a trace model of a core subset of the π-calculus in [16]. An elaboration of these
ideas will be the subject of further studies.

Acknowledgement We are grateful for valuable comments by J. Desharnais,
H.-H. Dang, R. Glück, W. Guttmann, P. Höfner, P. O’Hearn, H. Yang and by
the anonymous referees of CONCUR09.

References

1. J.A. Bergstra, I. Bethke, A. Ponse: Process algebra with iteration and nesting. The
Computer Journal 37(4), 243–258 (1994)

2. Birkhoff, G. Lattice Theory, 3rd ed. Amer. Math. Soc. 1967
3. S. Bistarelli, U. Montanari, F. Rossi: Semiring-based constraint satisfaction and

optimization. J. ACM, 44(2):201-236 (1997)
4. G. Boudol, I. Castellani: On the semantics of concurrency: partial orders and tran-

sition systems. In: Ehrig, H., Levi, G., Montanari, U. (eds.) CAAP 1987 and TAP-
SOFT 1987. LNCS 249. Springer 1987, 123–137

5. T. Chothia, J. Kleijn: Q-Automata: modelling the resource usage of concurrent
components. Electr. Notes Theor. Comput. Sci. 175(2): 153–167 (2007)

6. E. Cohen: Separation and reduction. In: R. Backhouse, J. Oliveira (eds.): Mathe-
matics of Program Construction (MPC’00). LNCS 1837. Springer 2000, 45–59

7. J. Conway: Regular Algebra and Finite Machines. Chapman&Hall 1971
8. J. Desharnais, B. Möller, G. Struth: Kleene Algebra with domain. Trans. Compu-

tational Logic 7, 798–833 (2006)

9. J. Gischer: Partial orders and the axiomatic theory of shuffle. PhD thesis, Stanford
University (1984)

10. Grabowski, J.: On partial languages. Fundamenta Informaticae 4(1), 427–498
(1981)

11. J. Groote, A. Mathijssen, M. van Weerdenburg, Y. Usenko. From µCRL to mCRL2:
motivation and outline. In: Proc. Workshop Essays on Algebraic Process Calculi
(APC 25). ENTCS 162, 191–196 (2006)

12. C.A.R. Hoare: An axiomatic basis for computer programming. Commun. ACM.
12, 576–585 (1969)

13. C.A.R. Hoare: Communicating sequential processes. Prentice Hall
1985

14. C.A.R. Hoare, B. Möller, G. Struth, I. Wehrman: Concurrent Kleene Algebra.
Institut für Informatik, Universität Augsburg, Technical Report 2009-04, April
2009

15. C.A.R. Hoare, B. Möller, G. Struth, I. Wehrman: Foundations of Concurrent
Kleene Algebra. Institut für Informatik, Universität Augsburg, Technical Report
2009-05, April 2009

16. C.A.R. Hoare, I. Wehrman, P. O’Hearn: Graphical models of separation logic. Proc.
Marktoberdorf Summer School 2008 (forthcoming)

17. C. Jones: Development methods for computer programs including a notion of inter-
ference. PhD Thesis, University of Oxford. Programming Research Group, Tech-
nical Monograph 25, 1981

18. D. Kozen: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110, 366–390 (1994)

19. D. Kozen: Kleene algebra with tests. Trans. Programming Languages and Systems
19, 427–443 (1997)

20. S. Mac Lane: Categories for the working mathematician (2nd ed.). Springer 1998
21. R. Milner: A Calculus of Communicating Systems. LNCS 92. Springer 1980
22. J. Misra: Axioms for memory access in asynchronous hardware systems. ACM

Trans. Program. Lang. Syst. 8, 142–153 (1986)
23. C. Morgan: Programming from Specifications. Prentice Hall 1990
24. C. Mulvey: &. Rendiconti del Circolo Matematico di Palermo 12, 99–104 (1986)
25. P. O’Hearn: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375,

271–307 (2007)
26. Pratt, V.R.: Modelling concurrency with partial orders. Journal of Parallel Pro-

gramming 15(1) (1986)
27. C. Prisacariu: Extending Kleene lgebra with synchrony — technicalities. University

of Oslo, Department of Informatics, Research Report No. 376, October 2008
28. W. McCune: Prover9 and Mace4. http://www.prover9.org/ (accessed March 1,

2009)
29. K. Rosenthal: Quantales and their applications. Pitman Research Notes in Math.

No. 234 Longman Scientific and Technical 1990
30. D. Sangiorgi, D. Walker: The π-calculus — A theory of mobile processes. Cam-

bridge University Press 2001
31. G. Winskel: Event structures. In: W. Brauer, W. Reisig, G. Rozenberg (eds.) Ad-

vances in Petri Nets 1986. LNCS 255. Springer 1987, 325–392

