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Abstract

We investigate the complexity of the following computational problem:

Polynomial Entropy Approximation (PEA): Given a low-degree polynomial
mapping p : Fn → Fm, where F is a finite field, approximate the the output entropy
H(p(Un)), where Un is the uniform distribution on Fn and H may be any of several
entropy measures.

We show:

• Approximating the Shannon entropy of degree 3 polynomials p : Fn
2 → Fm

2 over F2 to
within an additive constant (or even n.9) is complete for SZKPL, the class of problems
having statistical zero-knowledge proofs where the honest verifier and its simulator are
computable in logarithmic space. (SZKPL contains most of the natural problems known
to be in the full class SZKP.) Thus, this problem can serve as a starting point for
finding combinatorial or number-theoretic complete problems for SZKPL, giving worst-
case/average-case reductions for SZKPL, and/or finding (possibly quantum) algorithms
for SZKPL.

• For prime fields F 6= F2 and homogeneous quadratic polynomials p : Fn → Fm, there is a
probabilistic polynomial-time algorithm that distinguishes the case that p(Un) has entropy
smaller than k from the case that p(Un) has min-entropy (or even Renyi entropy) greater
than (2+o(1))k. This algorithm is based on a new formula for the Renyi entropy of p(Un)
in terms of the rank of directional derivatives of p.

• For degree d polynomials p : Fn
2 → Fm

2 , there is a polynomial-time algorithm that dis-
tinguishes the case that p(Un) has max-entropy smaller than k (where the max-entropy
of a random variable is the logarithm of its support size) from the case that p(Un) has
max-entropy at least (1 + o(1)) · kd (for fixed d and large k). This algorithm is based
on relating the max-entropy to the dimension of the F2-span of the p’s components
p1, . . . , pm ∈ F2[x1, . . . , xn].
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1 Introduction

We consider the following computational problem:

Polynomial Entropy Approximation (PEA): Given a low-degree polynomial map-
ping p : Fn → Fm, where F is a finite field, approximate the output entropy H(p(Un)),
where Un is the uniform distribution on Fn.

In this paper, we present some basic results on the complexity of PEA, and suggest that a better
understanding might have significant impact in computational complexity and the foundations of
cryptography.

Note that PEA has a number of parameters that can be varied: the degree d of the polynomial
mapping, the size of the finite field F, the quality of approximation (eg multiplicative or additive),
and the measure of entropy (eg Shannon entropy or min-entropy). Here we are primarily interested
in the case where the degree d is bounded by a fixed constant (such as 2 or 3), and the main
growing parameters are n and m. Note that in this case, the polynomial can be specified explicitly
by m · poly(n) coefficients, and thus “polynomial time” means poly(m,n, log |F|).

Previous results yield polynomial-time algorithms for PEA in two special cases:

Exact Computation for Degree 1: For polynomials p : Fn → Fm of degree at most 1, we can
write p(x) = Ax + b for A ∈ Fm×n and b ∈ Fn. Then p(Un) is uniformly distributed on the
affine subspace Image(A)+ b, and thus has entropy exactly log | Image(A)| = rank(A) · log |F|.

Multiplicative Approximation over Large Fields: In their work on randomness extractors
for polynomial sources, Dvir, Gabizon, and Wigderson [DGW] related the entropy of p(Un)
to the rank of the Jacobian matrix J(p), whose (i, j)’th entry is the partial derivative ∂pi/∂xj ,
where pi is the i’th component of p. Specifically, they showed that the min-entropy of (p(Un))
is essentially within a (1 + o(1))-multiplicative factor of rank(J(p)) · log |F|, where the rank
is computed over the polynomial ring F[x1, . . . , xn]. This tight approximation holds over
prime fields of size exponential in n. Over fields that are only mildly large (say, polynomial
in n) the rank of the jacobian still gives a one-sided approximation to the entropy.

In this paper, we study PEA for polynomials of low degree (namely 2 and 3) over small fields
(especially the field F2 of two elements). Our first result characterizes the complexity of achieving
good additive approximation:

Theorem 1.1 (informal). The problem PEA+
F2,3 of approximating the Shannon entropy of degree 3

polynomials p : Fn
2 → Fm

2 to within an additive constant (or even n.9) is complete for SZKPL, the
class of problems having statistical zero-knowledge proofs where the honest verifier and its simulator
are computable in logarithmic space (with two-way access to the input, coin tosses, and transcript).1

In particular, the output entropy approximation problem is at least as hard as Graph Iso-
morphism, Quadratic Residuosity, the Discrete Logarithm, and the approximate Clos-
est Vector Problem, as the known statistical zero-knowledge proofs for these problems [GMR,
GMW, GK, GG] have verifiers and simulators that can be computed in logarithmic space.

Theorem 1.1 is proven by combining the reductions for known SZKP-complete problems [SV,
GV2] with the randomized encodings developed by Applebaum, Ishai, and Kushilevitz in their work

1 See Sections 3 and 4 for the formal definitions of the notions involved and the formal statement of the theorem.
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on cryptography in NC0 [IK, AIK]. Moreover, the techniques in the proof can also be applied to
the specific natural complete problems mentioned above, and most of these each reduce to special
cases of PEA+

F2,3 that may be easier to solve (e.g. ones where the output distribution is uniform
on its support, and hence all entropy measures coincide).

The completeness of PEA+
F2,3 raises several intriguing possibilities:

Combinatorial or Number-Theoretic Complete Problems for SZKPL: Ever since the first
identification of complete problems for SZKP (standard statistical zero knowledge, with ver-
ifiers and simulators that run in polynomial time rather than logarithmic space) [SV], it
has been an open problem to find combinatorial or number-theoretic complete problems.
Previously, all of the complete problems for SZKP and other zero-knowledge classes (e.g.
[SV, DDPY, GV2, GSV2, BG, Vad, Mal, CCKV]) refer to estimating statistical properties
of arbitrary efficiently samplable distributions (namely, distributions sampled by boolean cir-
cuits). Moving from a general model of computation (boolean circuits) to a simpler, more
structured model (degree 3 polynomials) is a natural first step to finding other complete prob-
lems, similarly to how the reduction from CircuitSAT to 3-SAT is the first step towards
obtaining the wide array of known NP-completeness results. (In fact we can also obtain a
complete problem for SZKPL where each output bit of p : Fn

2 → Fm
2 depends on at most 4

input bits, making the analogy to 3-SAT even stronger.)

Cryptography Based on the Worst-case Hardness of SZKPL: It is a long-standing open
problem whether cryptography can be based on the worst-case hardness of NP. That is, can
we show that NP 6⊂ BPP2 implies the existence of one-way functions? A positive answer
would yield cryptographic protocols for which we can have much greater confidence in their
security than any schemes in use today, as efficient algorithms for all of NP seems much more
unlikely than an efficient algorithm for any of the specific problems underlying present-day
cryptographic protocols (such as Factoring). Some hope was given in the breakthrough
work of Ajtai [Ajt], who showed that the worst-case hardness of an approximate version of
the Shortest Vector Problem implies the existence of one-way functions (and in fact,
collision-resistant hash functions). Unfortunately, it was shown that this problem is unlikely
to be NP-hard [GG, AR, MX]. In fact, there are more general results, showing that there
cannot be (nonadaptive, black-box) reductions from breaking a one-way function to solving
any NP-complete problem (assuming NP 6⊆ coAM) [FF, BT, AGGM].

We observe that these obstacles for NP do not apply to SZKP or SZKPL, as these classes
are already contained in AM∩coAM [For, AH]. Moreover, being able to base cryptography
on the hardness of SZKP or SZKPL would also provide cryptographic protocols with a
much stronger basis for security than we have at present — these protocols would be secure
if any of the variety of natural problems in SZKPL are worst-case hard (e.g. Quadratic
Residuosity, Graph Isomorphism, Discrete Logarithm, the approximate Shortest
Vector Problem).

Our new complete problem for SZKPL provides natural approaches to basing cryptography
on SZKP-hardness. First, we can try to reduce PEA+

F2,3 to the approximate Shortest Vec-
tor Problem, which would suffice by the aforementioned result of Ajtai [Ajt]. Alternatively,

2Or NP 6⊂ i.o.−BPP, where i.o.−BPP is the class of problems that can be solved in probabilistic polynomial
time for infinitely many input lengths.
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we can try to exploit the algebraic structure in PEA+
F2,3 to give a worst-case/average-case

reduction for it (i.e. reduce arbitrary instances to random ones). This would show that if
SZKPL is worst-case hard, then it is also average-case hard. Unlike NP, the average-case
hardness of SZKP is known to imply the existence of one-way functions by a result of Ostro-
vsky [Ost], and in fact yields even stronger cryptographic primitives such as constant-round
statistically hiding commitment schemes [OV, RV].

New Algorithms for SZKPL Problems: On the flip side, the new complete problem may be
used to show that problems in SZKPL are easier than previously believed, by designing new
algorithms for PEA. As mentioned above, nontrivial polynomial-time algorithms have been
given in some cases via algebraic characterizations of the entropy of low-degree polynomials
(namely, the Jacobian rank) [DGW]. This motivates the search for tighter and more general
algebraic characterizations of the output entropy, which could be exploited for algorithms
or for worst-case/average-case connections. In particular, this would be a very different way
of trying to solve problems like Graph Isomorphism and Quadratic Residuosity than
previous attempts. One may also try to exploit the complete problem to give a quantum
algorithm for SZKPL. Aharonov and Ta-Shma [AT] showed that all of SZKP would have
polynomial-time quantum algorithms if we could solve the Quantum State Generation
(QSG) problem: given a boolean circuit C : {0, 1}m → {0, 1}n, construct the quantum state∑

x |C(x)〉. Using our new complete problem, if we can solve QSG even in the special case
that C is a degree 3 polynomial over F2, we would get quantum algorithms for all of SZKPL

(including Graph Isomorphism and the approximate Shortest Vector Problem, which
are well-known challenges for quantum computing).

Motivated by the above, we initiate a search for algorithms and algebraic characterizations of
the entropy of low-degree polynomials over small finite fields (such as F2), and give the following
partial results:

• For degree d (multilinear) polynomials p : Fn
2 → Fm

2 , the rank of the Jacobian J(p) (over
F2[x1, . . . , xn]) does not provide better than a 2d−1−o(1) multiplicative approximation to the
entropy H(p(Un)). Indeed, the polynomial mapping

p(x1, . . . , xn, y1, . . . , yd−1) = (x1y1y2 · · · yd−1, x2y1y2 · · · yd−1, . . . , xny1y2 · · · yd−1)

has Jacobian rank n but output entropy smaller than n/2d−1 + 1.

• For prime fields F 6= F2 and homogeneous quadratic polynomials p : Fn → Fm, there is a
probabilistic polynomial-time algorithm that distinguishes the case that p(Un) has entropy
smaller than k from the case that p(Un) has min-entropy (or even Renyi entropy) greater
than (2 + o(1))k. This algorithm is based on a new formula for the Renyi entropy of p(Un)
in terms of the rank of random directional derivatives of p.

• For degree d polynomials p : Fn
2 → Fm

2 , there is a polynomial-time algorithm that distinguishes
the case that p(Un) has max-entropy smaller than k (where the max-entropy of a random
variable is the logarithm of its support size) from the case that p(Un) has max-entropy at
least (1 + o(1)) · kd (for fixed d and large k). This algorithm is based on relating the max-
entropy to the dimension of the F2-span of the p’s components p1, . . . , pm ∈ F2[x1, . . . , xn].
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While our algorithms involve entropy measures other than Shannon entropy (which is what is used
in the SZKPL-complete problem PEA+

F2,3), recall that many of the natural problems in SZKPL

reduce to special cases where we can bound other entropy measures such as max-entropy or Renyi
entropy. See Section 4.4.

2 Preliminaries and Notations

For two discrete random variables X, Y taking values in S, their statistical difference is defined to
be ∆(X, Y ) def= maxT⊆S |Pr[X ∈ S]−Pr[Y ∈ S]|. We say that X and Y are ε-close if ∆(X, Y ) ≤ ε.

The collision probability of X is defined to be cp(X) def=
∑

x Pr[X = x]2 = Pr[X = X ′], where X ′

is an iid copy of X. The support of X is Supp(X) def= {x ∈ S : Pr[X = x] > 0}. X is flat if it is
uniform on its support.

For a function f : Sm → Tn, we write fi : Sm → T for the i’th component of T . When S
is clear from context, we write Um to denote the uniform distribution on Sm, and f(Um) for the
output distribution of f when evaluated on a uniformly chosen element of Sm. The support of f is
defined to be Supp(f) def= Supp(f(Um)) = Image(f).

For a prime power q = pt, Fq denotes the (unique) finite field of size q. For a mapping P :
Fm

q 7→ Fn
q , we say that P is a polynomial mapping if each Pi is a polynomial (in m variables). The

degree of P is deg(P ) = maxi deg(Pi).

Notions of Entropy. Throughout this work we consider several different notions of entropy, or
the “amount of randomness” in a random variable. The standard notions of Shannon Entropy,
Renyi Entropy, and Min-Entropy are three such notions. We also consider the (log) support size,
or maximum entropy, as a (relaxed) measure of randomness.

Definition 2.1. For a random variable X taking values in a set S, we consider the following
notions of entropy:

• Min-entropy: Hmin(X) def= minx∈S log 1
Pr[X=x] .

• Renyi entropy: HRenyi(X) def= log 1
E

x
R←X

[Pr[X=x]] = log 1
cp(X) .

• Shannon-entropy: HShannon(X) def= E
x

R←X

[
log 1

Pr[X=x]

]
.

• Max-entropy: Hmax(X) def= log | Supp(X)|.

(All logarithms are base 2 except when otherwise noted.)

These notions of entropy are indeed increasingly relaxed, as shown in the following claim:

Claim 2.2. For every random variable X it holds that

0 ≤ Hmin(X) ≤ HRenyi(X) ≤ HShannon(X) ≤ Hmax(X).

Moreover, if X is flat, all of the entropy measures are equal to log |Supp(X)|.
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3 Entropy Difference and Polynomial Entropy Difference

In this section we define the Entropy Difference and Polynomial Entropy Difference
problems, which are the focus of this work.

Entropy Difference Promise Problems. The promise problem Entropy Difference (ED)
deals with distinguishing an entropy gap between two random variables represented as explicit
mappings, computed by circuits or polynomials, and evaluated on a uniformly random input. In
this work, we consider various limitations on these mappings both in terms of their computational
complexity and their degree (when viewed as polynomials).

In what follows C will be a concrete computational model, namely every c ∈ C computes a
function with finite domain and range. Examples relevant to this paper include:

• The class Circ of all boolean circuits C : {0, 1}n → {0, 1}m (the concrete model corresponding
to polynomial time).

• The class BP of all branching programs C : {0, 1}n → {0, 1}m (the concrete model corre-
sponding to logarithmic space)

• The class polynomialsF,d of all degree d polynomials p : Fn → Fm.

The promise problem ED [GV1] is defined over pairs of random variables represented as map-
pings computed by boolean circuits, where the random variables are the outputs of the circuits
evaluated on uniformly chosen inputs. The problem is to determine which of the two random
variables has more Shannon entropy, with a promise that there is an additive gap between the
two entropies of at least 1. We generalize this promise problem to deal with different notions of
entropies, entropy gaps, and the complexity of the mappings which represent the random variables.

Definition 3.1 (Generalized Entropy Difference). The promise problem EDuEnt,`Ent,gap
C , is defined

by the entropy measures uEnt and `Ent from the set {Min,Renyi,Shannon,Max}, an entropy
gap, which can be +c, ×c or exp(c) for some constant c > 0, refering to additive, multiplicative
or exponential gaps in the problem’s promise, and a concrete computational model C. For a pair of
mappings p, q ∈ C, the random variables P and Q are (respectively) the evaluation of the mappings
p and q on a uniformly random input. The Yes and No instances are, for additive gap = +c

YES = {(p, q) : HuEnt(P ) ≥ HlEnt(Q) + c}, NO = {(p, q) : HlEnt(P ) + c ≤ HuEnt(Q)}
for multiplicative gap = ×c (for c > 1)

YES = {(p, q) : HuEnt(P ) ≥ HlEnt(Q) · c}, NO = {(p, q) : HlEnt(P ) · c ≤ HuEnt(Q)}
and for exponential gap = exp(c)

YES = {(p, q) : HuEnt(P ) ≥ HlEnt(Q)c}, NO = {(p, q) : HlEnt(P )c ≤ HuEnt(Q)}
We always require that uEnt is more stringent than `Ent in that HuEnt(X) ≤ HlEnt(X) for

all random variables X. (This ensures that the YES and NO instances do not intersect.) If we
do not explicitly set the different parameters, then the default entropy type for uEnt and `Ent is
Shannon, the default gap is an additive gap = +1, and the class C is Circ.

Note that, by Claim 2.2, with all other parameters being equal - the more relaxed the entropy
notion uEnt is, the easier the problem becomes. Similarly, the more stringent the entropy notion
`Ent is, the easier the problem becomes.
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Polynomial Entropy Difference (PED). The main problem we focus on in this work is
entropy difference for low-degree polynomial mappings.

Definition 3.2 (Polynomial Entropy Difference). The promise problem PEDuEnt,`Ent,gap
F,d

is the entropy difference problem for degree d polynomials over F, i.e. it is the promise problem
EDuEnt,`Ent,gap

polynomialsF,d (see Definition 3.1). The default values for uEnt, `Ent, and gap (if not specified
exlicitly) are as in Defintion 3.1.

Polynomial Entropy Approximation. While we focus on the promise problem Polynomial
Entropy Difference throughout this work, another natural algorithmic problem is that of ap-
proximating the entropy of a polynomial mapping up to a constant, multiplicative, or exponential
approximation factor. We discuss this problem informally, focusing on additive approximations
and the connection to Polynomial Entropy Difference.

The Polynomial Entropy Approximation problem is, given a polynomial mapping p of
low degree, which induces a random variable X, to output an approximation k to its entropy. For
the approximation problem PEAuEnt,`Ent,+c

F,d , we require that (w.h.p) the approximation k satisfy:

HuEnt(X)− c ≤ k ≤ HlEnt(X) + c.

We note that (as is the case for Entropy Approximation and Entropy Difference in the
statistical zero-knowledge literature [GSV2]), for fixed notions of entropy in the upper bounds and
lower bounds, these two problems are computationally equivalent up to some loss in the approxi-
mation factor.

In one direction, PEDuEnt,`Ent,+c
F,d reduces to PEA

uEnt,`Ent,+c/2
F,d . To see this, approximate the

entropy of the two distributions X and Y , get answers kx and ky (respectively), and accept if
kx > ky. Otherwise reject. For a YES instance, HuEnt(X) ≥ H`Ent(Y ) + c, and so if the PEA
approximation factor is at least c/2 we get that kx must be at least HuEnt(X) − c/2 and ky can
be at most H`Ent(X) + c/2, and so (w.h.p) kx > ky and we accept. For NO instances, the reverse
holds and w.h.p we reject.

In the other direction, we get that PEAuEnt,`Ent,2c
F,d reduces to PEDuEnt,`Ent,c

F,d . To see this, we
consider w.l.o.g the case that c ≥ 1 (see below for smaller values of c). Take the input distribution
X and construct Y0, . . . , Ym, where Yi is a flat distribution with support size 2i. Solve PEA for
each of the pairs (X, Yi), and let k be the smallest value s.t the k-th iteration rejects, but the
(k − 1)-th iteration accepts (or m if all iterations accept). Let ` = H`Ent(X) and u = HuEnt(X).
Then in the iterations 0, 1, . . . bu− cc, the input PED instances are all YES instances and so they
will all be accepted (w.h.p), and we conclude that k ≥ u−c. In iterations d`+ce, . . . , m, the inputs
are all NO instances and so they will all be rejected (w.h.p), and we conclude that k ≤ ` + c + 1.
This implies that if we output k − 1/2 then w.h.p the output is a (c + 1/2)-approximation to the
entropy and we have an algorithm for PEA

uEnt,`Ent,c+1/2
F,d . Note that for values of c smaller than 1

we could now recurse to find a better approximation in the range [bu− cc, d`+ ce] (we focused here
on maintaining a multiplicative loss in the approximation gap, for larger values of c the additive
gap we can obtain in this direction is better).

4 Hardness of Polynomial Entropy Difference

In this section we present evidence that even when we restrict PED to low degree polynomial
mappings, and even when we work with relaxed notions of entropy, the problem remains hard. This
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is done first by using the machinery of randomizing polynomials to reduce ED for rich complexity
classes (such as log space) to PED (section 4.1). We then argue the hardness of ED for log-space
computations, first via the problem’s completeness for a rich complexity class (a large subclass of
SZKP), and then via reductions from specific well-studied hard problems.

4.1 Randomized Encodings

We recall the notion of randomized encodings that was developed in [IK, AIK]. We need the
perfect variant of this notion which we now define (we comment that [IK, AIK] use different, more
cryptographic related, terminology to describe some of the properties in the definition below).

Definition 4.1. [IK, AIK] Let f : {0, 1}n → {0, 1}` be a function. We say that the function
f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a perfect randomized encoding of f with blowup b if it is:

• Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random variables
f̂(x,Um) and f̂(x′, Um) are identically distributed.

• Output disjoint: for every x, x′ ∈ {0, 1}n such that f(x) 6= f(x′), Supp(f̂(x,Um)) ∩
Supp(f̂(x′, Um)) = ∅.

• Uniform: for every x ∈ {0, 1}n the random variable f̂(x,Um) is uniform over Supp(f̂(x,Um)).

• Balanced: for every x, x′ ∈ {0, 1}n | Supp(f̂(x,Um))| = |Supp(f̂(x′, Um))| = b.

We now set up notations and state some simple claims about randomized encodings. Let
f : {0, 1}n → {0, 1}` be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s be a perfect randomized
encoding of f with blowup b. For y ∈ Supp(f), define the set Sy ⊆ {0, 1}s to be:

{z ∈ {0, 1}s : ∃(x, r) ∈ {0, 1}n × {0, 1}m s.t. f(x) = y ∧ f̂(x, r) = z}

By the properties of perfect randomized encodings, the sets Sy form a balanced partition of Supp(f̂),
indeed Sy = Supp(f̂(x,Um)) for every x such that f(x) = y, and hence |Sy| = b. With this notation,
the following claim is immediate.

Claim 4.2. Supp(f̂) = b · Supp(f)

For every z ∈ Supp(f̂), we denote by yz the unique string in Supp(f) such that z ∈ Sy. For
any x ∈ {0, 1}n, f̂(x,Um) is uniformly distributed over Sf(x). It follows that,

Claim 4.3. For every z ∈ Supp(f̂),

Pr[f̂(Un, Um) = z] =
1
b

Pr[f(Un) = yz]

We now state the relation between the entropy of f̂(Un, Um) and the entropy of f(Un) for each
one of the entropy measures.

Claim 4.4. Let Ent ∈ {Min,Renyi,Shannon,Max} then HEnt(f̂(Un, Um)) = HEnt(f(Un)) +
log b
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Proof. For Ent = Max, the claim follows directly from Claim 4.2. For Ent = Min, the claim
follows directly from Claim 4.3. For Ent = Shannon,

HShannon(f̂(Un, Um)) = HShannon(f̂(Un, Um), f(Un))
= HShannon(f(Un)) + HShannon(f̂(Un, Um)|f(Un))
= HShannon(f(Un)) + HShannon(f̂(Un, Um)|Un)
= HShannon(f(Un)) + log b.

The first equality follows from the fact that f̂(x, r) determines f(x) (follows from output disjoint-
ness). The second equality uses the chain rule for conditional entropy. The third equality follows
from input independence, and the last equality follows from the fact that the perfect randomized
encoding is uniform, balanced and has blowup b.

By similar reasoning, for Ent = Renyi, we have

cp(f̂(Un, Um)) = Pr[f̂(Un, Um) = f̂(U ′
n, U ′

m)]
= Pr[f(Un) = f(U ′

n)] · Pr[f̂(Un, Um) = f̂(U ′
n, U ′

m)|f(Un) = f(U ′
n)]

= cp(f(Un)) · (1/b).

4.2 From Branching-Program Entropy Difference to Polynomial Entropy Dif-
ference

Applebaum, Ishai and Kushilevitz [IK, AIK] showed that logspace mappings (represented by the
branching programs that compute the output bits) have randomized encodings which are polyno-
mial mappings of degree three over the field with two elements.

Theorem 4.5. [IK, AIK] Given a branching program f : {0, 1}n → {0, 1}`, we can construct in
polynomial time a degree 3 polynomial f̂ : Fn

2 × Fm
2 → Fs

2 that is a perfect randomized encoding of
f . Moreover the blowup b can also be computed in polynomial time from f .

Based on this theorem we show that the log-space entropy difference problem (for the various
notions of entropy which we defined above) with additive gap reduces to the polynomial entropy
difference problem with the same gap.

Theorem 4.6. The promise problem EDuEnt,`Ent,+c

BP , for uEnt, `Ent ∈ {Min,Renyi,Shannon,Max},
Karp-reduces to the promise problem PEDuEnt,`Ent,+c

F2,3 .

Proof. Given an instance (X,Y ) of EDuEnt,`Ent,+c

BP , apply on each one of the branching programs

X and Y the reduction from Theorem 4.5, to obtain a pair of polynomials X̂ and Ŷ of degree
3 over F2. By padding the outputs of X̂ and Ŷ with independent uniformly distributed bits, we
can obtain a new pair of polynomialsF2,3-mappings (X̂ ′, Ŷ ′) which are still perfect randomized
encodings of (X, Y ) but have the additional property that | Supp(X̂ ′(x1, Um)| = | Supp(Ŷ ′(x2, Um)|
for any inputs x1 and x2 to X and Y respectively. By Claim 4.4, HuEnt(X̂ ′) − HlEnt(Ŷ ′) =
HuEnt(X)−HlEnt(Y ), and HlEnt(X̂ ′)−HuEnt(Ŷ ′) = HlEnt(X)−HuEnt(Y ). It follows that yes (resp.
no) instances of EDuEnt,`Ent,+c

BP are mapped to yes (resp. no) instances of PEDuEnt,`Ent,+c
F2,3 .
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4.3 Polynomial Entropy Difference and Statistical Zero-Knowledge

Goldreich and Vadhan [GV1] showed that the promise problem ED (Entropy Difference prob-
lem for Shannon entropy with additive gap and polynomial-size circuits) is complete for SZKP.3

We show a computationally restricted variant of this result.

Theorem 4.7. The promise problem PEDF2,3 is complete for the class SZKPL.

We start with proving that the problem is hard for the class.

Claim 4.8. The promise problem PEDF2,3 is hard for the class SZKPL under Karp-reductions.

Proof. We show that the promise problem EDBP, is hard (under Karp-reductions) for the class
SZKPL. The proof then follows by Claim 4.6. The hardness of EDBP follows directly from
the reduction of [GV1] which we now recall. Given a promise problem in SZKP with a proof
system (P, V ) and a simulator S, it is assumed w.l.o.g. that on instances of length n, V tosses
exactly ` = `(n) coins, the interaction between P and V consists of exactly 2r = 2r(n) messages
each of length exactly `, the prover sends the odd messages and the last message of the verifier
consists of its random coins. Furthermore, the simulator for this protocol always outputs transcripts
that are consistent with V ’s coins. For problems in SZKPL, using the fact that the verifier is
computable in logspace (with two-way access to its randomness), we can obtain such a simulator
that is computable in logspace (again with two-way access to its randomness). On input x, we
denote by S(x)i (1 ≤ i ≤ 2r) the distribution over the (i · `)-long prefix of the output of the
simulator. That is, the distribution over the simulation of the first i messages in the interaction
between P and V .

The reduction maps an instance x to a pair of distributions (Xx, Yx):

• Xx outputs independent samples from the distributions S(x)2, S(x)4, . . . , S(x)2r.

• Yx outputs independent samples from the distributions S(x)1, S(x)3, . . . , S(x)2r−1 and U`−2.

Since S is computable in logarithmic space, we can efficiently construct branching programs Xx

and Yx that sample from the above distributions.

To complete the proof of Theorem 4.7 we show that PEDF2,3 is in the class SZKPL. This
follows easily from the proof that ED is in SZKP [GV1]. We give here a sketch of the proof.

Claim 4.9. PEDF2,3 has a statistical zero-knowledge proof system where the verifier and the sim-
ulator are computable in logarithmic space.

Proof. [sketch] We use the same proof system and simulator from [GV1]. We need to show that on
instance (X, Y ) where X and Y are polynomialsF2,3-mappings, the verifier and the simulator are
computable in logarithmic space. For simplicity we assume that both X and Y map n input bits to
m output bits. We start with the complexity of the verifier. The protocol is public coins, so we only
need to check that the verifier’s final decision can be computed in logspace. This boils down to two
operations which the verifier performs a multiple of times: evaluting the polynomialsF2,3-mapping
of either X or Y on a given input and evaluating a given function h : {0, 1}n+m → {0, 1}k, chosen

3In [GV1] it was shown that the problem is complete for the class honest verifier SZKP, but it was later shown
that SZKP is equivalent to this class [GSV1].
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from a family of 2-universal hash functions, on a given input (where k = k(n,m, s) < n + m is a
function of n,m and a security parameter s, see [GV1] for the details). The former clearly can be
done in logspace as it involves computing polynomials of degree 3 over F2. As for the latter, if we
take the family of hash functions to be linear functions over the field F2n+m (taking the k MSBs to
be the output), we can use known results about the complexity of operations over finite fields of
characteristic 2 [HV] to conclude that it can be done in logspace.

Turning to the simulator, we see that its output consists of many copies of triplets taking
the following form: (h, r, x) where r ∈R {0, 1}n, x is an output of either X or Y on a uniformly
chosen input which is part of the simulator’s randomness, and h : {0, 1}n+m → {0, 1}k is a func-
tion uniformly chosen from the family of 2-universal hash functions subject to the constraint that
h(r, x) = 0. As in the verifier’s case, it is clear that r, x can be computed by a logspace mapping.
Choosing h from the family of hash functions under the constrint h(r, x) = 0 amounts to solving a
linear equation over the field F2n+m which again can be done in logarithmic space [HV].

4.3.1 Additional Remarks

We remark, without including proofs, that similar statements as in the one from Theorem 4.7 can
be shown for other known complete problems in SZKP and its variants [SV, DDPY, GV2, GSV2,
Vad, Mal, BG, CCKV]). We also mention that all the known closure and equivalence properties of
SZKP (e.g. closure under complement [Oka], equivalence between honest and dishonest verifiers
[GSV1], and equivalence between public and private coins [Oka]) also hold for the class SZKPL.

Finally, we mention that by using the locality reduction of [AIK] we can further reduce PEDF2,3

to EDNC0
3
, where NC0

3 is the class of functions for which every output bit depends on at most
three input bits.

4.4 Hardness Results

Given the results of Section 4.3, we can conclude that Polynomial Entropy Difference (with
small additive Shannon entropy gap) is at least as hard as problems with statistical zero-knowledge
proofs with logarithmic space verifiers and simulators. This includes problems such as Graph
Isomorphism, Quadratic Residuosity, Decisional Diffie Hellman, and the approximate
Closest Vector Problem, and also many other cryptographic problems.

For the reduction from Graph Isomorphism, we note that the operations run by the verifier
and the simulator in the statistical zero-knowledge proof of [GMW], the most complex of which is
permuting a graph, can all be done in logarithmic space. Similarly, for the approximate Closest
Vector Problem, the computationally intensive operations run by the simulator in the zero-
knowledge proof of [GG] (and the alternate versions in [MG]) are sampling from a high-dimentional
Gaussian distribution and reducing modulo the fundamental paralellepiped. These can be done in
logarithmic space.4

For the Quadratic Residuosity and Decisional Diffie Hellman problems, we show that
in fact they reduce to an easier variant of PED, where the yes-instances have high min-entropy
and the no-instances have small support size. See [KL] for more background on these assumptions
and the number theory that comes into play.

4to reduce modulo the fundamental parallelepiped we need to change the noise vector from the standard basis to
the given latice basis. This can be done using the proper pre-computed linear transformation. Applying the linear
transformation reduces to matrix multiplication and can be done in logarithmic space.
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4.4.1 Quadratic Residuosity

Definition 4.10 (Quadratic Residuosity). For a composite N = p · q where p and q are prime
and different, the promise problem Quadratic Residuosity is defined as follows:

QRYES = {(N, x) : N = p · q,∃y ∈ Z∗N s.t. x = y2 (mod N)}
QRNO = {(N, x) : N = p · q, 6 ∃y ∈ Z∗N s.t. x = y2 (mod N)}

Claim 4.11. Quadratic Residuosity reduces to PEDMin,Max,+1
F2,3 .

Proof. Given an input (N,x), where N = p · q for primes p, q, we examine the mapping fN,x. This
mapping gets as input a random c ∈ {0, 1} and coins for generating r ∼R [N ] and outputs5

xc · r2 (mod N)

We examine the distribution of fN,x’s output. We first examine the distribution or mapping R
that just outputs r2. By the chinese remainder theorem, this decomposes into a product distribution
Rp · Rq, where Rp is over Zp and Rq is over Zq, where each item in ZN is equivalent to a pair in
Zp×Zq via the Chinese Remainder Theorem. Examining the two distributions, we see that Rp gives
probability 1/p to 0 and 2/p to each of the quadratic residues in Z∗p. Similarly, Rq gives probability
1/q to 0 and 2/q to each quadratic residue in Z∗q . So the support of R is of size (p + 1) · (q + 1)/4,
and each item in the support gets probability at most 4/pq.

Now examining the output of fN,x, if x is a quadratic residue in Z∗N , then it is a residue in Z∗p
and in Z∗q , and so the distribution of xc · r2 is equal to the distribution of r2, so its support and
min-entropy are as above.

On the other hand, if x is a non-residue in Z∗N then it must be a non-residue in Z∗p or in Z∗q ,
say Z∗p. This implies that xc · r2 mod p is uniformly distributed in Zp and thus has min-entropy
log p. Conditioned on c and r mod p, the value xc · r2 mod q still has min-entropy at least that of
r2 mod q, which is log q − 1 as argued above. By the Chinese Remainder Theorem, xc · r2 mod N
has min-entropy at least log p + log q − 1.

We can now use fN,x to build two mappings or distributions X and Y , s.t. if x is a YES instance
of Quadratic Residuosity, then the min-entopy of X is higher by a small constant (say 1/2)
than the log-support size of Y , and vice-versa if x is a NO instance. This allows us to reduce
Quadratic Residuosity to EDMin,Max,+1.

Finally, the mappings only sample in ZN and compute integer multiplication and division, so
they can be computed in logarithmic space [CDL] and hence by polynomial-sized branching pro-
grams. Using Theorem 4.6, we conclude that Quadratic Residuosity reduces to PEDMin,Max,+1

F2,3 .

4.4.2 Decisional Diffie-Hellman

Definition 4.12 (Decisional Diffie Hellman). The promise problem Decisional Diffie
Hellman is defined w.r.t a “DDH-group” G of prime order q, and a generator g for G. It is
defined as follows:

DDHYES = {(G, g, ga, gb, gab : G DDH group of prime order q, g generator of G, a, b ∈ Zq}
DDHNO = {(G, g, ga, gb, gc : G DDH group of prime order q, g generator of G, a, b, c ∈ Zq, c 6= a · b}

5We note that a more natural map to consider (which is easier to analyze) samples r ∼R Z∗N . We are unaware of
a method for uniform sampling in Z∗N , given only N , in logarithmic space
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Claim 4.13. Decisional Diffie Hellman reduces to the problem PEDMin,Max,+1
F2,3 .

Proof Sketch. We use the random self-reducability of DDH, due to Naor and Reingold [NR]. They
showed how to transform a given DDH instance x = (G, g, ga, gb, gc) into a new one (G, g, ga′ , gb′ , gc′),
such that a′, b′ are uniformly random in Zq and: (i) if x is a YES instance (i.e. c = a · b) then
c′ = a′ · b′, so the output (in its entirety) is uniform over a set of size |G|2. On the other hand, (ii)
if x is a NO instance then c′ (and also gc′) is uniformly random given (G, g, ga′ , gb′) and the output
(in its entirety) is uniform over a set of size |G|3.

The mapping computed by this reduction allows us to transform a Decisional Diffie Hell-
man instance in an instance of ED, where yes instances are transformed into pair of mappings or
distributions (X,Y ), where X is uniform over a set of size |G|2.5 (some fixed dummy distribution)
and on YES instances Y is uniform over a set of size |G|2 and on NO instances Y is uniform over
a set of size |G|3. I.e., it reduces Decisional Diffie Hellman to EDMin,Max,×1.2.

Finally, to reduce Decisional Diffie Hellman to PED we need to activate the randomizing
polynomial machinery of Theorem 4.6. The maps X and Y as described above compute multipli-
cation (which can be done in log-space) and exponentiation, which is not a log-space operation.
However, the elements being exponentiated are all known in advance. We can thus use an idea
due to Kearns and Valiant [KV] and compute in advance for each of these basis, say g, the pow-
ers (g, g2, g4, g8, . . .). Each exponentiation can then be replaced by an iterated product. By the
results of Beame, Cook and Hoover [BCH] the iterated product can be computed in logarithmic
depth (or space). By Theorem 4.6, we conclude that Decisional Diffie Hellman reduces to
PEDMin,Max,+1

F2,3 .

5 Algorithms for Polynomial Entropy Approximation

5.1 Approximating Entropy via Directional Derivatives

In this section we give an approximation algorithm for the entropy of homogenous polynomial
maps of degree two, over prime fields Fq other than F2. The general strategy is to relate the
entropy of a quadratic map with the entropy of a random directional derivative of the map. These
derivatives are of degree one and so their entropy is easily computable.

For a polynomial mapping P : Fn
q → Fm

q and a vector a ∈ Fn
q we define the directional derivative

of P in direction a as the mapping DaP : Fn
q → Fm

q given by

DaP (x) def= P (x + a)− P (x).

It is easy to verify that for every fixed a, DaP (x) is a polynomial mapping of degree at most
deg(P )− 1.

Throughout this section, q is a prime other than 2 and Q : Fn
q 7→ Fm

q denotes a homoge-
nous quadratic mapping given by m quadratic polynomials Q1(x), . . . , Qm(x) in n variables x =
(x1, . . . , xn). For every i ∈ [m] there exists an n × n matrix Mi such that Qi(x) = xt · Mi · x.
If char(Fq) 6= 2 then we can assume w.l.o.g that Mi is always symmetric (by replacing Mi with
(Mi + M t

i )/2 if needed).
For every fixing of a, DaQ(x) is an affine (degree at most one) mapping. We denote by r(a) the

rank of DaQ(x, a) (that is, the dimension of the affine subspace that is the image of the mapping
given by DaQ(x)). We relate the r(a)’s to entropy in the following two lemmas:

12



Lemma 5.1. For every a ∈ Fn
q we have

r(a) ≤ 2 ·HShannon(Q(Un))/ log q.

Lemma 5.2.
E

a
R←Fn

q

[
q−r(a)

]
= 2−HRenyi(Q(Un)).

Before proving these lemmas, we use them to obtain our algorithm:

Theorem 5.3. There exists a probabilistic polynomial-time algorithm A that, when given a prime
q 6= 2, a homogeneous quadratic map Q : Fn

q 7→ Fm
q (as a list of coefficients), and an integer

0 < k ≤ m and outputs TRUE or FALSE such that:

• If HRenyi(Q(Un)) ≥ 2k · log(q) + 1 then A outputs TRUE with probability at least 1/2.

• If HShannon(Q(Un) < k · log(q) then A always outputs FALSE.

Proof. The algorithm simply computes the rank r(a) of the directional derivative DaQ in a random
direction a ∈ Fn

q . If the value of r(a) is at least 2k the algorithm returns TRUE, otherwise
the algorithm returns FALSE. If HShannon(Q(Un)) < k · log(q) then, from Lemma 5.1 we have
that r(a) will always be smaller than 2k and so the algorithm will work with probability one.
If HRenyi(Q(Um)) ≥ 2k · log(q) + 1 then, using Lemma 5.2 and Markov’s inequality, we get that
q−r(a) will be at most 2−2k log q with probability at least 1/2. Therefore, the algorithm works as
promised.

We now prove the two main lemmas.

Proof of Lemma 5.1. Since the output of an affine mapping is uniform on its output, we have

HShannon(DaQ(Un)) = log(qr(a)).

By subadditivity of Shannon entropy, we have

HShannon(DaQ(Un)) ≤ HShannon(Q(Un + a)) + HShannon(Q(Un)) = 2 HShannon(Q(Un))

The proof of Lemma 5.2 works by expressing both sides in terms of the Fourier coefficients of
the distribution Q(Un), which are simply given by the following biases:

Definition 5.4. For a prime q and a random variable X taking values in Fq, we define

bias(X) def=
∣∣E [

ωX
q

]∣∣ ,

where ωq = e2πi/q is the complex primitive q’th root of unity. For a random variable Y taking values
in Fm

q and a vector u ∈ Fm
q , we define we define

biasu(Y ) def= bias(〈u, Y 〉) =
∣∣∣E

[
ω〈u,X〉

q

]∣∣∣ ,

where 〈·, ·〉 is inner product modulo q.

13



Note that if Y is uniform on Fm
q , then biasu(Y ) = 0 for all u 6= 0. A relation between bias and

rank in the case of a single output (i.e. m = 1) is given by the following:

Claim 5.5. Suppose char(Fq) 6= 2. Let R(x1, . . . , xn) = xtMx be a homogeneous quadratic polyno-
mial over Fn

q such that rank(M) = k and M is symmetric. Then,

bias(R(Un)) = q−k/2.

Proof. As shown in [LN], R(x) is equivalent (under a linear change of variables) to a quadratic
polynomial S(x) =

∑k
i=1 ai · x2

i where a1, . . . , ak ∈ F∗q . Then

bias(R(Un)) = bias(S(Un)) =

∣∣∣∣∣∣
1

qm

∑

x∈Fm
q

ω

∑
i∈[k] ai·x2

i
q

∣∣∣∣∣∣

=
∏

i∈[k]

∣∣∣∣∣∣
1
q

∑

y∈Fq

ωai·y2

q

∣∣∣∣∣∣
= (q−1/2)k = q−k/2,

where the last equality follows from the Gauss formula for quadratic exponential sums in one
variable (see [LN]).

Next we relate biases for many output coordinates to Renyi entropy.

Claim 5.6. Let X be a random variable taking values in Fm
q . Then

2−HRenyi(X) = E
u

R←Fm
q

[biasu(X)2].

Proof. We begin by recalling that the Renyi entropy simply measures the `2 distance of a random
variable from uniform:

2−HRenyi(X) = cp(X)

=
∑

x

Pr[X = x]2

=
∑

x

(Pr[X = x]− 1/qm)2 + 1/qm

= ‖X − Um‖2 + 1/qm,

where ‖X − Um‖ denotes the `2 distance between the probability mass functions of X and Um

(viewed as vectors of length qm). By Parseval, the `2 distance does not change if we switch to the
Fourier basis: For u ∈ Fm

q , the u’th Fourier basis function χu : Fm
q → C is the function given by

χu(x) =
1

qm/2
· ω〈u,x〉

q .

These form an orthonormal basis for the vector space of functions from Fm
q to C, under the standard

inner product [f, g] =
∑

x∈Fm
q

f(x)g(x).
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Abusing notation, we can view a random variable X taking values in Fm
q as a function X :

Fm
q → C where X(x) = Pr[X = x]. Then the u’th Fourier coefficient of X is given by

X̂u
def= [X, χu]

=
1

qm/2
·

∑

x∈Fm
q

Pr[X = x] · ω−〈u,x〉
q

=
1

qm/2
· E

[
ω−〈u,X〉

q

]
,

so |X̂u| = (1/qm/2) · biasu(X).
Thus, by Parseval, we have:

‖X − Um‖2 =
∑

u

∣∣∣X̂u − (Ûm)u

∣∣∣
2

=
∑

u 6=0

∣∣∣X̂u

∣∣∣
2

= E
u

R←Fm
q

[biasu(X)2]− 1/qm.

Putting this together with the first sequence of equations completes the proof.

Proof of Lemma 5.2. Taking X = Q(Un) in Claim 5.6, we have

2−HRenyi(Q(Un)) = E
u

R←Fm
q

[biasu(Q(Un))2].

By Claim 5.5, biasu(Q(Un))2 = bias(
∑

i uiQi(Un))2 = q− rank(
∑

i uiMi). Note that for a s× t matrix
M , q− rank(M) = Pr

v
R←Ft

q

[Mv = 0]. Thus, we have

2−HRenyi(Q(Un)) = E
u

R←Fm
q

[
q− rank(

∑
i uiMi)

]

= E
u

R←Fm
q


 Pr

a
R←Fn

q

[∑

i

uiMia = 0

]


= E
a

R←Fn
q


 Pr

u
R←Fm

q

[∑

i

uiMia = 0

]


= E
a

R←Fn
q

[
q−r(a)

]
,

where the last equality is because
∑

i uiMia = 0 iff uMa = 0 where Ma is the matrix whose rows
are M1a, . . . , Mma (and so r(a) = rank(Ma)).
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5.2 Approximating Max-Entropy over F2 via Rank

In this section we deal with degree d polynomials over F2. Since the field is F2 we can assume
w.l.o.g that the polynomials are multilinear (degree at most 1 in each variable). We show that, for
small d, the rank of the set of polynomials (when viewed as vectors of coefficients) is related to the
entropy of the polynomial map. The results of this section can be extended to any field but we
state them only for F2 since this is the case we are most interested in (and is not covered by the
results of Section 5.1).

The main technical result of this section is the following theorem, which we prove in Section 5.3
below. The theorem relates the entropy of a polynomial mapping (in the weak form of support)
with its rank as a set of coefficient vectors.

Theorem 5.7. Let P : Fn
2 7→ Fm

2 be a multilinear polynomial mapping of degree ≤ d such that
| Supp(P )| ≤ 2k, for k, d ∈ N. Then

rank{P1, . . . , Pm} ≤
(

k + 2d

d

)
,

where the rank is understood as the dimension of the F2-span of P1, . . . , Pm (equivalently, the rank
of the m× (

n+d
d

)
matrix over F2 whose rows are the coefficient-vectors of the polynomials Pi).

Using this theorem we get the following approximation algorithm for max-entropy over charac-
teristic two:

Theorem 5.8. There exists a constant c and polynomial-time algorithm A such that when A is
given as input a degree d polynomial map P : Fn

2 7→ Fm
2 and an integer 0 < k ≤ n, we have:

• If Hmax(P (Un)) >
(
k+2d

d

)
, then A outputs TRUE.

• If Hmax(P (Un)) ≤ k, then A outputs FALSE.

Proof. The algorithm computes the rank of the set of polynomials P1, . . . , Pm. If it is greater than(
k+2d

d

)
then it returns TRUE, otherwise it returns FALSE. The correctness follows directly from

Theorem 5.7 and from the simple fact that rank at most k implies support size at most 2k.

5.3 Proof of Theorem 5.7

The idea of the proof is to find an affine-linear subspace V ⊂ Fn
2 of dimension ≈ k such that the

restriction of the polynomials P1, . . . , Pm to this subspace does not reduce their rank. Since the
restricted polynomials are polynomials of degree ≤ d in ≈ k variables we get that their rank is at
most ≈ kd.

It turns out that it suffices to take V to be a subspace that hits a large fraction of the outputs
of P , as given by the image of L in the following lemma:

Lemma 5.9. Let P : Fn
2 7→ Fm

2 be some function such that |Supp(P (Un))| ≤ 2k and let ε > 0.
Then, there exists an affine-linear mapping L : F`

2 7→ Fn
2 with ` = dk + log(1/ε)e such that

Pr
x∈Fn

2

[∃y ∈ F`
2 , P (x) = P (L(y))] > 1− ε.
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Proof. We use the probabilistic method. Let L : F`
2 → Fn

2 be a uniformly random affine-linear
mapping. Fix z ∈ Image(P ), and let µz = |P−1(z)|/2n. By the pairwise independence of the
outputs of L and Chebychev’s Inequality, it follows that

Pr
L

[Image(L) ∩ P−1(z) = ∅] ≤ 1− µz

µz · 2`
.

(For each point y ∈ F`
2, let Xy be the indicator variable for L(y) ∈ P−1(z). Then the Xy’s are

pairwise independent, each with expectation µz and variance µz · (1 − µz). Thus, by Chebychev’s
Inequality, Pr[

∑
y Xy = 0] ≤ (2` · µz · (1− µz))/(2` · µz)2.)

Now, let Iz be an indicator random variable for Image(L) ∩ P−1(z) = ∅. Then,

E
L

[
Pr

x∈Fn
2

[¬∃y ∈ F`
2 , P (x) = P (L(y))]

]
= E

L

[
Pr

x∈Fn
2

[Image(L) ∩ P−1(P (x)) = ∅]
]

= E
L


 ∑

z∈Image(P )

µz · Iz




≤
∑

z∈Image(P )

µz · 1− µz

µz · 2`

=
| Image(P )| − 1

2`

≤ 2k − 1
2`

< ε,

for ` = dk + log(1/ε)e. By averaging, there exists a fixed L such that

Pr
x∈Fn

2

[¬∃y ∈ F`
2 , P (x) = P (L(y))] < ε,

as desired.

To show that the property of L given in Lemma 5.9 implies that P ◦ L has the same rank as
P (when ε is sufficiently small), we employ the following (known) version of the Schwartz-Zippel
Lemma, which bounds the number of zeros of a multilinear polynomial of degree d that is not
identically zero:

Lemma 5.10. Let P ∈ F2[x1, . . . , xn] be a degree d multilinear polynomial that is not identically
zero. Then

Pr[P (x) = 0] ≤ 1− 2−d.

Proof. The proof is by double induction on d = 1, 2, ... and n = d, d + 1, .... If d = 1 then the claim
is trivial. Suppose we proved the claim for degree < d and all n and for degree d and < n variables.

If n = d (it cannot be smaller than d since the degree is d) then the bound is trivial since there
is at least one point at which P is non zero and this point has weight 2−d.

Suppose n > d and assume w.l.o.g that x1 appears in P . Write P as

P (x1, . . . , xn) = x1 ·R(x2, . . . , xn) + S(x2, . . . , xn),
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where R has degree ≤ d − 1 and S has degree ≤ d. We separate into two cases. The first case is
when R(x2, . . . , xn) + S(x2, . . . , xn) is identically zero. In this case we have

P (x) = (x1 + 1) ·R(x2, . . . , xn)

and so, by the inductive hypothesis,

Pr[P (x) = 0] = Pr[x1 = 1]+Pr[x1 = 0]·Pr[R(x2, . . . , xn) = 0] ≤ (1/2)+(1/2)(1+2−(d−1)) = 1−2−d.

In the second case we have that R(x2, . . . , xn) + S(x2, . . . , xn) is not identically zero. Now,

Pr[P (x) = 0] = Pr[x1 = 0] · Pr[S(x2, . . . , xn) = 0]
+ Pr[x1 = 1] · Pr[R(x2, . . . , xn) + S(x2, . . . , xn) = 0]
≤ (1/2) · (1− 2−d) + (1/2)(1− 2−d) = 2−d,

as was required.

We now combine these two lemmas to show that there exists a linear restriction of P to a small
number of variables that preserves independence of the coordinates of P .

Lemma 5.11. Let P : Fn
2 7→ Fm

2 be a multilinear mapping of degree ≤ d such that | Supp(P )| ≤ 2k,
for k, d ∈ N. Denote by P1, . . . , Pm ∈ F2[x1, . . . , xn] the coordinates of P . Suppose that P1, . . . , Pm

are linearly independent (in the vector space F2[x1, . . . , xn]). Then, there exists an affine-linear
mapping L : F`

2 7→ Fn
2 with ` = k + d such that the restricted polynomials Pj(L(y1, . . . , y`)), j ∈ [m]

are also independent.

Proof. Apply Lemma 5.9 with ε < 2−d on the mapping P to find an affine-linear mapping L : F`
2 7→

Fn
2 with ` = k + d and such that

Pr
x∈Fn

2

[∃y ∈ F`
2 , P (x) = P (L(y))] > 1− 2−d.

Call an element x ∈ Fn
2 ‘good’ if the event above happens (so x is good w.p > 1− 2−d).

For j ∈ [m] let Rj(y1, . . . , y`) = Pj(L(y1, . . . , y`)) (notice that since L is linear the polynomials
Rj are also of degree at most d but are not necessarily multilinear). Suppose in contradiction that
the polynomials R1, . . . , Rm are linearly dependent. So there is a non empty set I ⊂ [m] such that
RI(y) =

∑
i∈I Ri(y) = 0 for every y ∈ F`

2. Let PI(x) =
∑

i∈I Pi(x). Then, if x is good we have that
there exists y such that P (x) = P (L(y)) and so we get that

PI(x) = PI(L(y)) = RI(y) = 0.

This means that PI(x), which is a multilinear polynomial of degree at most d, is zero on a fraction
bigger than 1 − 2−d of the inputs. Using Lemma 5.10 we conclude that PI(x) is identically zero
and so the Pi’s are linearly dependent – a contradiction.

Corollary 5.12. Let P : Fn
2 7→ Fm

2 be a multilinear mapping of degree ≤ d such that | Supp(P )| ≤
2k, for k, d ∈ N. Denote by P1, . . . , Pm ∈ F2[x1, . . . , xn] the coordinates of P . Suppose that the set
P1, . . . , Pm has rank ≥ r (in the vector space F2[x1, . . . , xn]). Then, there exists an affine-linear
mapping L : F`

2 7→ Fn
2 with ` = k + d such that that the restricted polynomials Pj(L(y1, . . . , y`)), j ∈

[m] also have rank ≥ r
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Proof. W.l.o.g suppose that P1, . . . , Pr are linearly independent and apply Lemma 5.11 on the
mapping P̃ = (P1, . . . , Pr) : Fn

2 7→ Fr
2. The support of P̃ is also at most 2k and so we L :

F`
2 → Fn

2 such that the restriction P̃ (L(y)) has rank r. Now, adding the m − r coordinates
Pr+1(L(y)), . . . , Pm(L(y)) cannot decrease the rank.

We are now ready to prove the Theorem.

Proof of Theorem 5.7. Let r denote the rank of the set of polynomials {P1, . . . , Pm}. Then, using
Corollary 5.12, there exists a linear mapping L : F`

2 7→ Fn
2 , with ` = k + d, such that the restricted

polynomials P1(L(y)), . . . , Pm(L(y)) also have rank ≥ r. Since these are polynomials of degree ≤ d
in ` variables, their rank is bounded from above by the number of different monomials of degree at
most d in ` = k + d variables, which equals

(
`+d
d

)
.
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