
Linear Locally Decodable Codes Fall 2016

Lecture 5: Matching Vector Codes
Lecturer: Zeev Dvir Scribe: Kalina Petrova

In this lecture we discuss Locally Decodable Codes that arise from families of Matching
Vectors, to be defined below. We start with some examples that can help the reader better
appreciate the useful properties of Matching Vector families.

Example 5.1. Let ωm = e
2πi
m , the primitive root of unity of order m in C. Then we have

that ωk
m = 1 iff k is a multiple ofm (since e2πi = 1). Consider, for some u ∈ {0, 1, . . . ,m−1},

the ”wave function with frequency u”:

φu : Zm → C
φu(x) = ωux

m

Take any c ∈ Zm and ”direction” v ∈ Zm and sum φu along the ”line in direction v”
{c+ yv|y ∈ Zm}:

∑
y∈Zm

φu(c+ yv) =
∑
y∈Zm

ωuc+uyv
m =

{∑
y∈Zm

ωuc
m = ωuc

mm if uv = 0 mod m

ωuc
m

(ωuv
m )m−1
ωuv
m −1

= 0 otherwise

Example 5.2. Suppose we have two bits of data A0, A1 ∈ {0, 1}. We will show here one
way to encode these bits as a linear combination of wave functions. Suppose u0, u1, v0, v1 ∈
Zm and uivj = 0 mod m if and only if i = j. Then we can encode A0 and A1 with the
function f : Zm → C, defined in the following way: f(x) = A0φu0(x) + A1φu1(x). Now if
can query the function f for different values, we can find A0 by summing f over any line
of the form {c+ yv0|y ∈ Z} for any fixed c ∈ Zm:

∑
y∈Zm

f(c+ yv0) =∑
y∈Zm

A0φu0(c+ yv0) + A1φu1(c+ yv0) =

A0ω
u0c
m m,

where the last equality follows from what we derived in Example 5.1.
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Example 5.3. We are going to extend Example 5.1 to a higher dimension to see a property
analogical to the one discussed above. Take u ∈ Zℓ

m (the frequency of the wave function),
and let the wave function φu : Zℓ

m → C be defined as φu(x) = ω<x,u>
m . Then if we sum φu

over a line {c+ yv|y ∈ Zm}, we get

∑
y∈Zm

φu(c+ yv) =
∑
y∈Zm

ω<c+yv,u>
m =

ω<c,u>
m

∑
y∈Zm

(
ω<v,u>
m

)y
=

{
ω<c,u>
m m if < v,u >= 0 mod m

ω<c,u>
m

(ω<v,u>
m )m−1

ω<v,u>
m −1

= 0 otherwise

Definition 5.1. A Matching-Vector (MV) family in Zℓ
m of size k is given by two lists

of vectors (u1, . . . ,uk,v1, . . . ,vk) ∈ Zℓ
m such that ∀i ∈ [k], < ui,vi >= 0 mod m and

∀i ̸= j, < ui,vj ≯= 0 mod m.

Theorem 5.1 ( [Yek12], [Efr09]). If there is an MV-family in Zℓ
m of size k, then there

exists an (m, δ, ϵ)-LDC E : Fk
q → Fmℓ

q , where δ = 1
4m

, ϵ = 1
4
, and Fq is any field such that

q − 1 is divisible by m.

Proof. In this proof, we are going to use the following fact from Number Theory.

Claim 5.1 ( [Maz03]). If q − 1 is divisible by m, then Fq contains an m-th root of unity
ω (that is, ωm = 1 and ∀m′ ∈ [m− 1], ωm′ ̸= 1).

Let (u1, . . . ,uk,v1, . . . ,vk) be a Matching Vector family in Zℓ
m. To construct the Locally

Decodable Code, for any message a ∈ Fk
q , define the function Fa(x) =

∑k
i=1 aiω

<x,ui>.

Then define E(a) =
(
Fa(x)

)
x∈Zℓ

m
. Notice that E is a linear map with a mℓ × k generating

matrix G of the following form: if the rows of the matrix are indexed by the elements of
Zℓ

m, and the columns are indexed from 1 to k, then Gx,i = ω<ui,x>, where x ∈ Zℓ
m and

i ∈ [k].

We are going to use the m-th root of unity to construct a local decoder for E. Given E(a),
to recover aj, we pick a uniform c ∈ Zℓ

m. Next, we query the following m positions in
E(a):

(
Fa(c+ yvj)

)
)y=0,1,...,m−1. We sum over the results of these queries and we get
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m−1∑
y=0

Fa(c+ yvj) =

m−1∑
y=0

k∑
i=1

aiω
<c+yvj ,ui> =

k∑
i=1

aiω
c,ui

m−1∑
y=0

(
ω<vj ,ui>

)y
=

ajω
<c,uj>m,

where the last equation follows from what we showed in Example 5.3. Now ω<c,uj>m
is a non-zero number that we can calculate (provided we take m ̸= 0 in Fq), so having
computed

∑m−1
y=0 Fa(c+yvj), we can divide it by ω<c,uj>m to get an estimate for aj (which

will be correct if there were no errors in the m coordinates of E(a) that we queried). Since
each query is uniformly chosen over all coordinates of the codeword, and each of them has
δ = 1

4m
probability of error, by the Union Bound the probability that there’s at least one

error is no more than 1
4
.

Question 5.1. How big can a Matching Vector family in Zℓ
m be?

Theorem 5.2. If p is prime, then any Matching Vector family in Zℓ
p has size at most

ℓp−1 + 1.

Proof. We will work with matrices over Fp. We are going to use the following claim.

Claim 5.2. Suppose A is a k × k matrix over Fp with entries A = (ai,j)
k
i,j=1. Let B =

(bi,j = ati,j)
k
i,j=1 be the matrix obtained from A by raising each entry to the t-th power.

Then rank(B) ≤ rank(A)t.

Proof. For any X, Y such that X is a m×n matrix and Y is a p×q matrix, let X⊗Y be the
Kronecker product of X and Y , a mp× nq matrix with entries (X ⊗ Y )p(r−1)+v,q(s−1)+w =
xr,syv,w. Let T = A⊗t = A ⊗ A ⊗ · · · ⊗ A, where in the last expression A occurs t
times. Now T is a kt × kt matrix. It can be shown that for any two matrices X and
Y , rank(X ⊗ Y ) = rank(X)rank(Y ) [Lau05]. Thus, rank(T ) = rank(A)t. Since B is a
submatrix of T , rank(B) ≤ rank(T ), so we conclude that rank(B) ≤ rank(A)t.

Consider a Matching Vector family (u1, . . . ,uk,v1, . . . ,vk) in Zℓ
p. Let A be the k×k matrix

with entries ai,j =< ui,vj >. Then rank(A) ≤ ℓ since A = DG, where Di,j = ui,j and
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Gi,j = vj,i (D is a k × ℓ matrix and so rank(D) ≤ ℓ, therefore rank(DG) ≤ ℓ). Let
B = (bi,j = api,j), then by Claim 5.2, rank(B) ≤ rank(A)p−1 ≤ ℓp−1. Notice that A has
zero diagonal entries and non-zero entries off the diagonal, and so ∀i ∈ [k], bi,i = 0 and
∀i, j ∈ [k], i ̸= j, bi,j = ap−1

i,j = 1 by Fermat’s Little Theorem since ai,j ̸= 0 mod p. Let C
be the k × k matrix with ∀i, j ∈ [k], ci,j = 1, and let Ik be the identity k × k matrix. We
have that C − B = Ik. Therefore, rank(C) + rank(B) ≥ rank(Ik). This is because the
columns of Ik are in the span of the set of vectors that consists of all columns of C and all
columns of B. Next, notice that rank(C) = 1, rank(Ik) = k, so rank(B) ≥ k − 1. Using
the fact that rank(B) ≤ ℓp−1, which we established above, we get that k − 1 ≤ ℓp−1.

Corollary 5.1. A Matching Vector code in Zℓ
p with p prime yields a Locally Decodable

Code that is no better than the Low-Degree Extension code (E : Fk
q → Fpℓ

q , with k = ℓp

and p queries).

Theorem 5.3 ( [Gro00]). There exists a Matching Vector family over Zℓ
6 of size ℓ

C log ℓ

log2 log ℓ ,
where C = 1

81
.

The proof of this theorem is in the next lecture.

Corollary 5.2. There is a 6-query Locally Decodable Code E : Fk
q → F6ℓ

q with k = ℓ
log ℓ

log log ℓ .
Notice that since ∀ϵ > 0, n = 6ℓ < 2k

ϵ
, this is a sub-exponential Locally Decodable Code.
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