NP-Completeness

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Properties of Algorithms

A given problem can be solved by many different algorithms. Which **ALGORITHMS** will be useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
- Inefficient: "exponential time" for SOME inputs.

Robust definition has led to explosion of useful algorithms for wide spectrum of problems.

• Notable exception: simplex algorithm.

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers.
- And each works for the life of the universe in an effort to solve TSP problem using N! algorithm.

Some Numbers		
Quantity	Number	
Home PC instructions / second	10 ⁹	
Supercomputer instructions / second	10 ¹²	
Seconds per year	10 ⁹	
Age of universe †	10 ¹³	
Electrons in universe †	10 ⁷⁹	

† Estimated

• Will not succeed for 1,000 city TSP!

1000! >> 10¹⁰⁰⁰ >> 10⁷⁹ \times 10¹³ \times 10⁹ \times 10¹²

Properties of Problems

Which **PROBLEMS** will we be able to solve in practice?

- Those with efficient algorithms.
- How can I tell if I am trying to solve such a problem?

Theory of NP-completeness helps.

Yes	Probably No	Unknown
Shortest path	Longest path	Primality
Euler cycle	Hamiltonian cycle	Factoring
Min cut	Max cut	Graph isomorphism
2-SAT	3-SAT	
PLANAR-2-COLOR	PLANAR-3-COLOR	
PLANAR-4-COLOR	PLANAR-3-COLOR	
Matching	3D-Matching	
Baseball elimination	Soccer elimination	
Bipartite vertex cover	Vertex cover	

Ρ

Decision problem X.

- X is a (possibly infinite) set of binary strings.
- Instance: finite binary string s, of length |s|.
- Algorithm A solves X if $A(s) = YES \iff s \in X$.

Polynomial time.

 Algorithm A runs in polynomial-time if for every instance s, A terminates in at most p(s) "steps", where p is some polynomial.

Definition of P.

 Set of all decision problems solvable in polynomial time on a deterministic Turing machine.

Examples:

- MULTIPLE: Is the integer y a multiple of x?
- **RELPRIME**: Are the integers x and y relatively prime?
- **PERFECT-MATCHING:** Given graph G, is there a perfect matching?

Strong Church-Turing Thesis

Definition of P fundamental because of SCT.

Strong Church-Turing thesis:

 P is the set of decision problems solvable in polynomial time on REAL computers.

Evidence supporting thesis:

- True for all physical computers.
- Can create deterministic TM that efficiently simulates any real general-purpose machine (and vice versa).

Possible exception?

• Quantum computers: no conventional gates.

Efficient Certification

Certification algorithm.

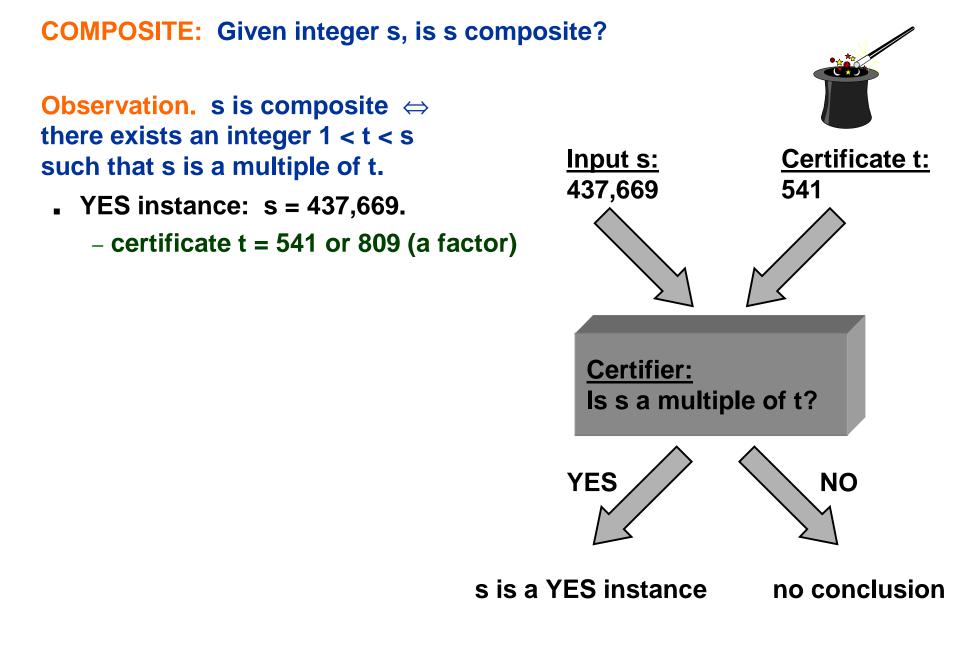
 Design an algorithm that checks whether proposed solution is a YES instance.

Algorithm C is an efficient certifier for X if:

- C is a polynomial-time algorithm that takes two inputs s and t.
- There exists a polynomial p() so that for every string s, $s \in X \iff$ there exists a string t such that $|t| \le p(|s|)$ and C(s, t) = YES.

Intuition.

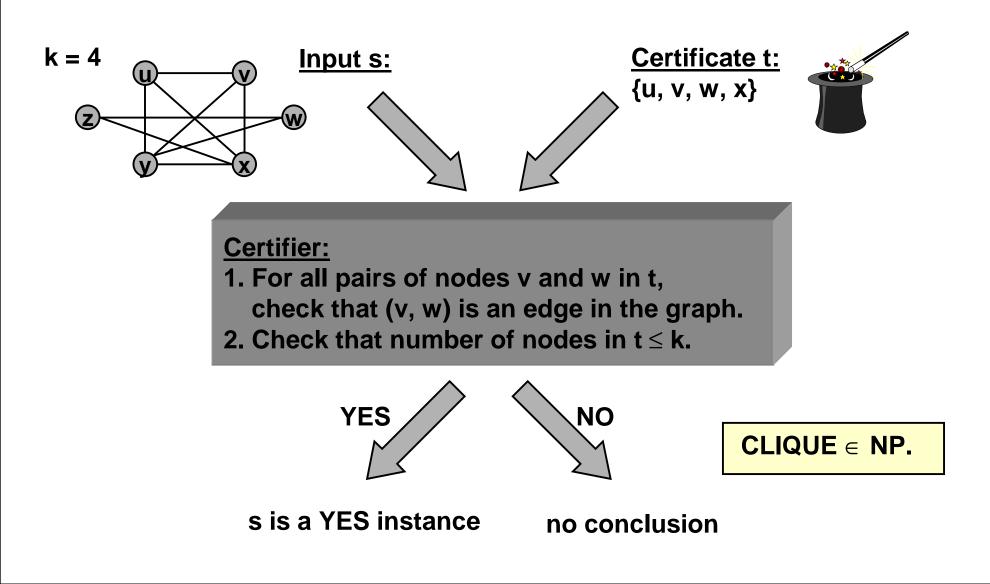
- Efficient certifier views things from "managerial" viewpoint.
- It doesn't determine whether $s \in X$ on its own.
- Rather, it evaluates a proposed proof t that $s \in X$.
- Accepts if and only if given a "short" proof of this fact.



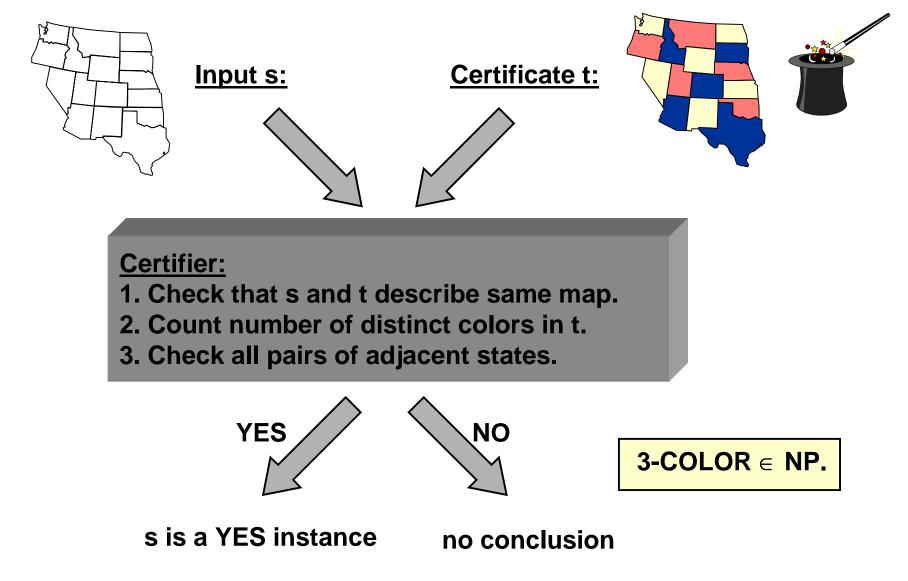
COMPOSITE: Given integer s, is s composite?

Observation. s is composite \Leftrightarrow there exists an integer 1 < t < s **Certificate t:** Input s: such that s is a multiple of t. 437,677 ??? • YES instance: s = 437,669. – certificate t = 541 or 809 (a factor) • NO instance: s = 437,677. no witness can fool verifier **Certifier:** into saying YES Is s a multiple of t? • Conclusion: COMPOSITE \in NP. YES NO s is a YES instance no conclusion

CLIQUE: Given an undirected graph, is there a subset S of k nodes such that there is an arc connecting every pair of nodes in S?



3-COLOR: Given planar map, can it be colored with 3 colors?



NP

Definition of NP:

Does NOT mean "not polynomial."

Definition of NP:

- Set of all decision problems for which there exists an efficient certifier.
- Definition important because it links many fundamental problems.

Claim: $P \subseteq NP$.

Proof: Consider problem $X \in P$.

- Then, there exists efficient algorithm A(s) that solves X.
- Efficient certifier B(s, t): return A(s).

NP

Definition of EXP:

 Set of all decision problems solvable in exponential time on a deterministic Turing machine.

Claim: NP \subseteq EXP.

Proof: Consider problem $X \in NP$.

- Then, there exists efficient certifier C(s, t) for X.
- To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
- Return YES, if C(s, t) returns YES for any of these.

Useful alternate definition of NP:

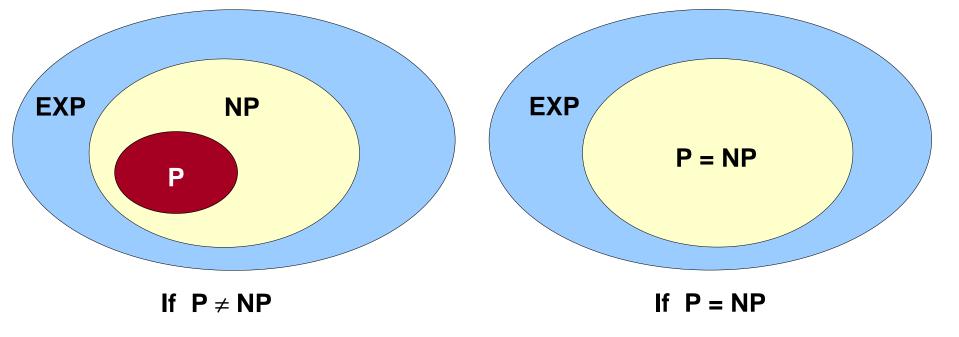
- Set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine.
- Intuition: act of searching for t is viewed as a non-deterministic search over the space of possible proofs. Nondeterministic TM can try all possible solutions in parallel.

Does P = NP? (Edmonds, 1962)

- Is the original DECISION problem as easy as CERTIFICATION?
- Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

- If yes, staggering practical significance.
- Clay Foundation Millennium \$1 million prize.



Generator (P)

- Factor integer s.
- Color a map with minimum # colors.
- Design airfoil of minimum drag.
- Prove a beautiful theorem.
- Write a beautiful sonnet.
- Devise a good joke.
- Vinify fine wine.
- Orate a good lecture.
- Ace an exam.

Certifier (NP)

- Is s a multiple of t?
- Check if all adjacent regions have different colors.
- Compute drag of airfoil.
- Understand its proof.
- Appreciate it.
- Laugh at it.
- Be a wine snob.
- Know when you've heard one.
- Verify TA's solutions.

Imagine the wealth of a society that produces optimal planes, bridges, rockets, theorems, art, music, wine, jokes.

Does P = NP?

Is the original DECISION problem as easy as CERTIFICATION?

If yes, then:

- Efficient algorithms for 3-COLOR, TSP, FACTOR, ...
- Cryptography is impossible (except for one-time pads) on conventional machines.
- Modern banking system will collapse.
- Harmonial bliss.

If no, then:

- Can't hope to write efficient algorithm for TSP.
- But maybe efficient algorithm still exists for FACTOR

Does P = NP?

Is the original DECISION problem as easy as CERTIFICATION?

Probably no, since:

- Thousands of researchers have spent four frustrating decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: $P \neq NP$.

But maybe yes, since:

• No success in proving $P \neq NP$ either.

Polynomial Transformation

Problem X polynomial reduces (Cook-Turing) to problem Y (X \leq_P Y) if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a YES instance of X if and only if y is a YES instance of Y.

• We require |y| to be of size polynomial in |x|.

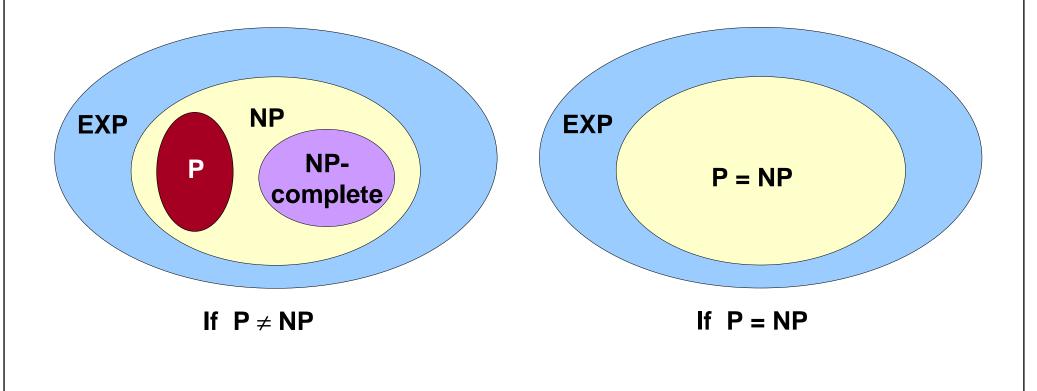
Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.

Note: all previous reductions were of this form!

NP-Complete

Definition of NP-complete:

- A problem Y in NP with the property that for every problem X in NP, X polynomial transforms to Y.
- "Hardest computational problems" in NP.



NP-Complete

Definition of NP-complete:

 A problem Y in NP with the property that for every problem X in NP, X polynomial transforms to Y.

Significance.

- Efficient algorithm for any NP-complete problem \Rightarrow efficient algorithm for every other problem in NP.
- Links together a huge and diverse number of fundamental problems:

- TSP, 3-COLOR, CNF-SAT, CLIQUE,

• Can implement any computer program in 3-COLOR.

Notorious complexity class.

- Only exponential algorithms known for these problems.
- Called "intractable" unlikely that they can be solved given limited computing resources.

Some NP-Complete Problems

Most natural problems in NP are either in P or NP-complete.

Six basic genres and paradigmatic examples of NP-complete problems.

- Packing problems: SET-PACKING, INDEPENDENT-SET.
- **Covering problems:** SET-COVER, VERTEX-COVER.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, CLIQUE.
- Constraint satisfaction problems: SAT, 3-SAT.
- **Numerical problems:** SUBSET-SUM, PARTITION, KNAPSACK.

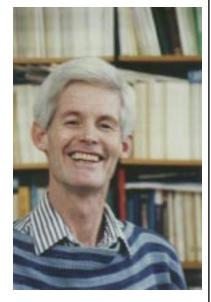
Caveat: PRIME, FACTOR not known to be NP-complete.

The "World's First" NP-Complete Problem

CNF-SAT is NP-complete. (Cook-Levin, 1960's)

Idea of proof:

- Given problem X in NP, by definition, there exists nondeterministic TM M that solves X in polynomial time.
- Possible execution of M on input string s forms a branching tree of configurations, where each configuration gives snapshot of M (tape contents, head position, state of finite control) at some time step t.
- M is polynomial time \Rightarrow polynomial tree depth \Rightarrow polynomial number of tape cells in play.
- Use polynomial number of Boolean variables to model which symbol occupies cell i at time t, location of read head at time t, state of finite control, etc.
- Use polynomial number of clauses to ensure machine makes legal moves, starts and ends in appropriate configurations, etc.



Stephen Cook

Establishing NP-Completeness

Definition of NP-complete:

• A problem $Y \in NP$ with the property that for every problem X in NP, X polynomial transforms to Y.

Cook's theorem. CNF-SAT is NP-complete.

Recipe to establish NP-completeness of problem Y.

- . Step 1. Show that $Y \in NP$.
- Step 2. Show that CNF-SAT (or any other NP-complete problem) transforms to Y.

Example: CLIQUE is NP-complete.

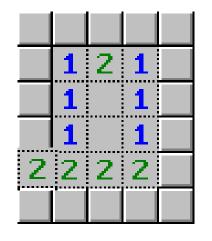
- ✓ Step 1. CLIQUE \in NP.
- ✓ Step 2. CNF-SAT polynomial transforms to CLIQUE.

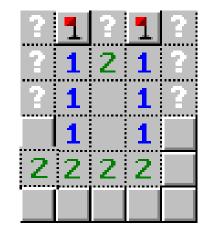
Minesweeper.

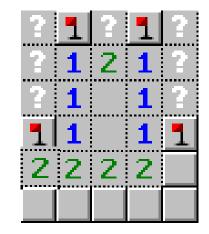
- Start: blank grid of squares.
- Some squares conceal mines; the rest are safe.
- Find location of mines without detonating any.
- Choose a square.
 - if mine underneath, it detonates and you lose
 - If no mine, computer tells you how many total mines in 8 neighboring squares

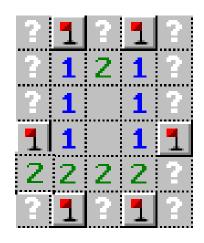
Minesweeper consistency problem.

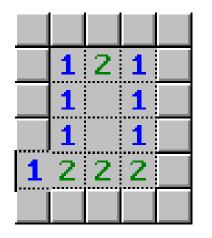
 Given a state of what purports to be a Minesweeper games, is it logically consistent.

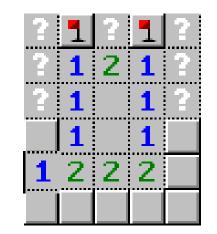


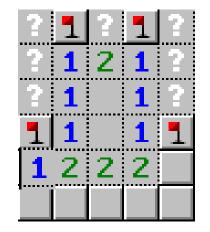












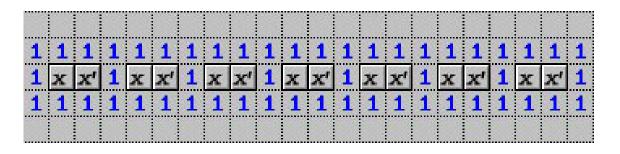
NO

Minesweeper consistency problem.

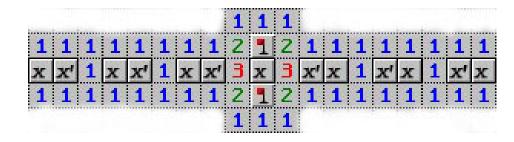
 Given a state of what purports to be a Minesweeper games, is it logically consistent.

Claim. Minesweeper consistency is NP-complete.

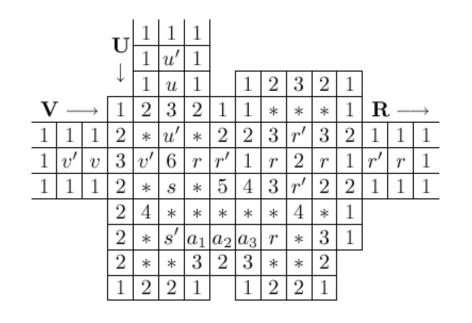
- Proof idea: reduce from circuit satisfiability.
- Build circuit by laying out appropriate minesweeper configurations.

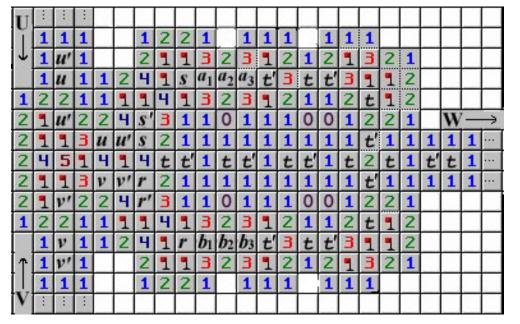


A Minesweeper Wire



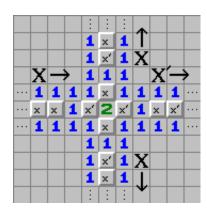
A NOT Gate



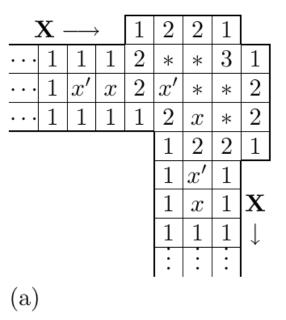


A OR Gate

An AND Gate



A 3-way Splitter



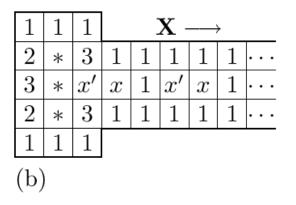
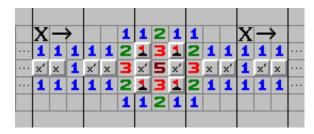
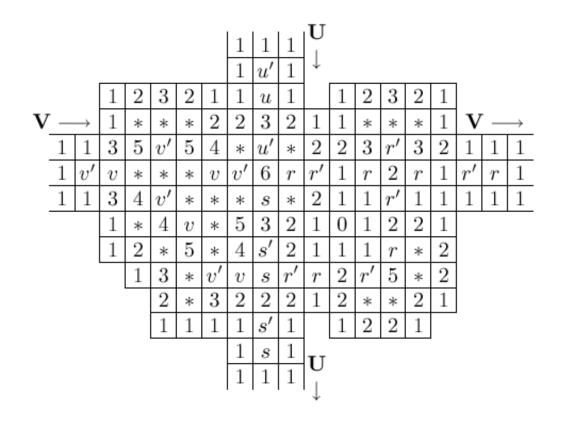


Figure 4: (a) A bent wire. (b) A terminated wire.



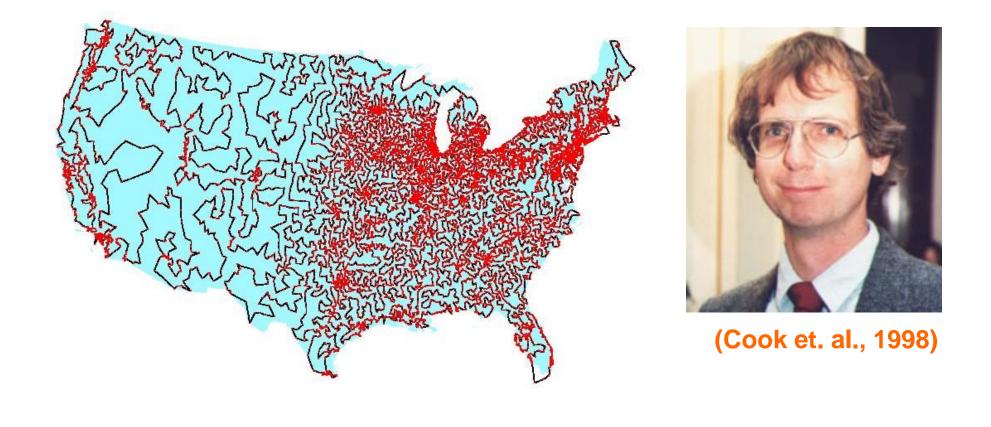
A Phase Changer



A Wire Crossing

Hope that worst case doesn't occur.

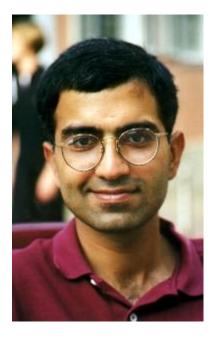
- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be "easy."
 - TSP where all points are on a line or circle
 - 13,509 US city TSP problem solved



Hope that worst case doesn't occur.

Change the problem.

- Develop a heuristic, and hope it produces a good solution.
- Design an approximation algorithm: algorithm that is guaranteed to find a high-quality solution in polynomial time.
 - active area of research, but not always possible unless P = NP!
 - Euclidean TSP tour within 1% of optimal
 - stay tuned



Sanjeev Arora (1997)

Hope that worst case doesn't occur.

Change the problem.

Exploit intractability.

• Cryptography.

Hope that worst case doesn't occur.

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.

A person can be at most two of the following three things:

- Monest.
- Intelligent.
- A politician.

If a problem is NP-complete, you design an algorithm to do at most two of the following three things:

- Solve the problem exactly.
- Guarantee to solve the problem in polynomial time.
- Solve arbitrary instances of the problem.

Asymmetry of NP

Definition of NP: $X \in NP$ if there exists a certifier C(s, t) such that:

- Input string s is a YES instance if and only if there exists a short certificate t such that C(s, t) = YES.
- Alternatively, input string s is a NO instance if and only if for all short t, C(s, t) = NO.

Ex. HAM-CYCLE vs. NO-HAM-CYCLE.

- Given G and a proposed Hamiltonian cycle, easy to if check if it really is a Hamiltonian cycle.
- Given G, hard to assert that it is not Hamiltonian.

Ex. PRIME vs. COMPOSITE.

- Given integer s and proposed factor t, it is easy to check if s is a multiple of t.
- Appears harder to assert that an integer is not composite.

Co-NP

NP: Decision problem $X \in NP$ if there exists a certifier C(s, t) s.t.

- Input string s is a YES instance if and only if there exists a short certificate t such that C(s, t) = YES.
- Alternatively, input string s is a NO instance if and only if for all short t, C(s, t) = NO.

co-NP: $X \in$ **co-NP** if there exists a certifier C(s, t) s.t.

- Input string s is a NO instance if and only if there exists a short certificate t such that C(s, t) = YES.
- Alternatively, input string s is a YES instance if and only if for all short t, C(s, t) = NO.

Co-NP Certifiers and Certificates

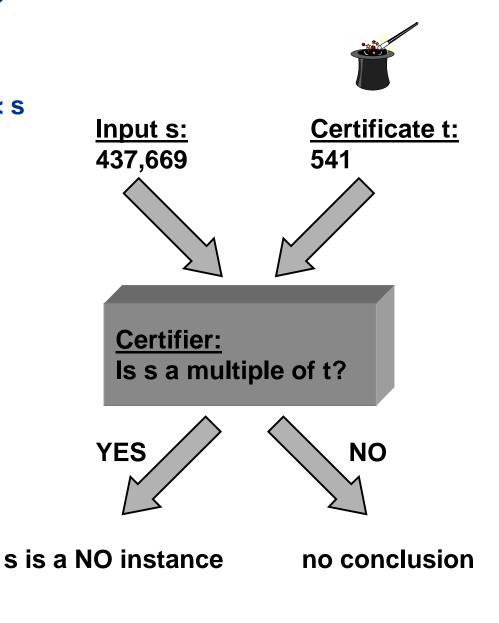
PRIME: Given integer s, is s prime?

Observation. s is composite if and only if there exists an integer 1 < t < ssuch that s is a multiple of t.

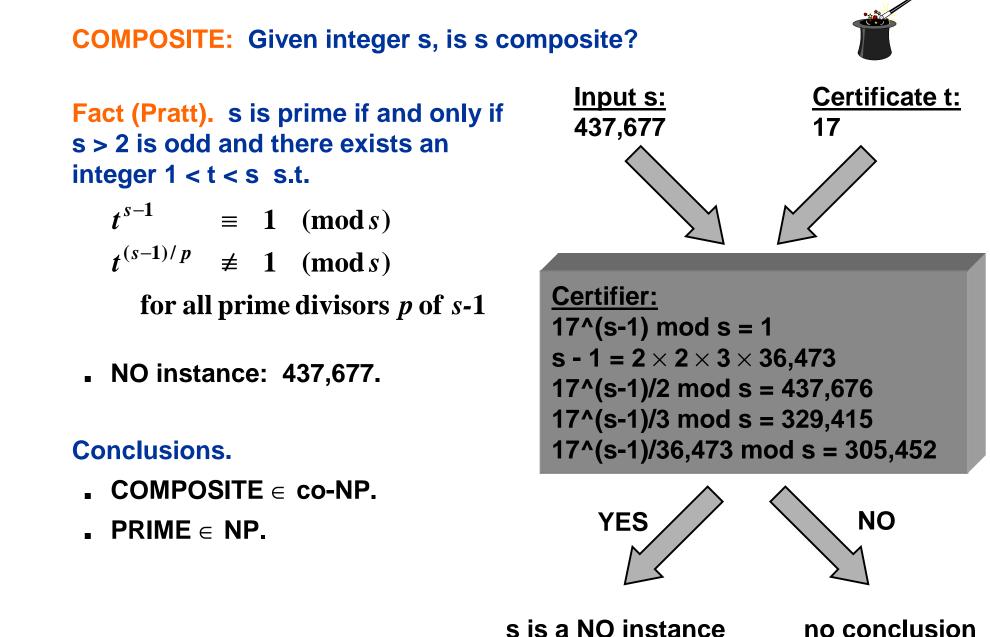
• NO instance: s = 437,669.

Conclusions.

- PRIME \in co-NP.
- . COMPOSITE \in P.



Co-NP Verifiers and Certificates



38

NP = co-NP?

Fundamental question: does NP = co-NP?

- Do YES-instances have short certificates if and only if NOinstances have short certificates.
- Consensus opinion: no.

Theorem. If NP \neq co-NP, then P \neq NP.

Proof. We prove if P = NP, then NP = co-NP.

- Key idea: P is closed under complementation, so if P = NP, then NP is closed under complementation as well.
- More formally, using the assumption P = NP:

$$X \in NP \Rightarrow X \in P \Rightarrow \overline{X} \in P \Rightarrow \overline{X} \in NP \Rightarrow X \in \text{co-}NP$$

 $X \in \text{co-}NP \Rightarrow \overline{X} \in NP \Rightarrow \overline{X} \in P \Rightarrow X \in P \Rightarrow X \in NP$

• Thus, NP \subseteq co-NP and co-NP \subseteq NP, so co-NP = NP.

Good Characterizations

Good characterization: NP $\,\cap\,$ co-NP.

- If problem X is in NP and co-NP, then:
 - for YES instance, there is a short certificate
 - for NO instance, there is a short certificate
- Provides conceptual leverage for reasoning about a problem.

Examples.

- MAX-FLOW: given a network, is there an s-t flow of value \geq W.
 - if yes, can exhibit s-t flow that achieves this value
 - if no, can exhibit s-t cut whose capacity is less than W
- PERFECT-MATCHING: given a bipartite graph, is there a perfect matching.
 - if yes, can exhibit a perfect matching
 - if no, can exhibit a set of vertices $S \subseteq L$ such that the total number of neighbors of S is strictly less than |S|

Good Characterizations

Observation. $P \subseteq NP \cap co-NP$.

- Proof of max-flow min-cut theorem and Hall's theorem led to stronger results that max-flow and bipartite matching are in P.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm: linear programming.

Fundamental question: does $P = NP \cap co-NP$?

- Mixed opinions.
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
- Note: PRIME \in NP \cap co-NP, but not known to be in P.

A Note on Terminology

Knuth. (SIGACT News 6, January 1974, p. 12 – 18)

Find an adjective x that sounds good in sentences like.

- FIND-TSP-TOUR is x.
- It is x to decide whether a given graph has a Hamiltonian cycle.
- It is unknown whether FACTOR is an x problem.

Note: x does not necessarily imply that a problem is in NP or even a decision problem.

Knuth's original suggestions.

- Hard.
- . Tough.
- Herculean.
- Formidable.
- Arduous.

A Note on Terminology

Some English word write-ins.

- Impractical.
- Bad.
- Heavy.
- Tricky.
- Intricate.
- Prodigious.
- Difficult.
- Intractable.
- Costly.
- Obdurate.
- Obstinate.
- Exorbitant.
- Interminable.

A Note on Terminology

Hard-boiled. (Ken Steiglitz)

In honor of Cook.

Hard-ass. (Al Meyer)

• Hard as satisfiability.

Sisyphean. (Bob Floyd)

- Problem of Sisyphus was time-consuming.
- . Hercules needed great strength.
- Problem: Sisyphus never finished his task \Rightarrow unsolvable.

Ulyssean. (Don Knuth)

• Ulysses was note for his persistence and also finished.

A Note on Terminology: Made-Up Words

Exparent. (Mike Paterson)

exponential + apparent

Perarduous. (Mike Paterson)

through, in space or time + completely

Supersat. (Al Meyer)

greater than or equal to satisfiability

Polychronious. (Ed Reingold)

- enduringly long; chronic
- Appears in Webster's 2nd unabridged, but apparently in no other dictionary.

A Note on Terminology: Acronyms

PET. (Shen Lin)

- Probably exponential time.
- Provably exponential time, previously exponential time.

GNP. (Al Meyer)

- Greater than or equal to NP in difficulty.
- Costing more than GNP to resolve.

A Note on Terminology: Consensus

NP-complete.

• A problem in NP such that every other problem in NP transforms to it.

NP-hard. (Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni)

• A problem such that every problem in NP transforms to it.

Knuth's conclusion.

 "create research workers are as full of ideas for new terminology as they are empty of enthusiasm for adopting it."

Summary

Many fundamental problems are NP-complete.

• TSP, 3-CNF-SAT, 3-COLOR, CLIQUE,

Theory says we probably won't be able to design efficient algorithms for NP-complete problems.

- You will likely run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time.