
Princeton Univ Fall ’21 COS 521:Advanced Algorithms

Homework 4

Out: Nov 8 Due: Nov 22

Instructions:

• Upload your solutions (to the non-extra-credit) to each problem as a separate PDF
file (one PDF per problem) to codePost. Please make sure you are uploading the
correct PDF! Please anonymize your submission (i.e., do not list your name in the
PDF), but if you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to codePost. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please upload
a brief “collaboration statement” listing any collaborators as a separate PDF on code-
Post (if you forget, it’s OK). But always write up your solutions individually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

Problems:

§1 Consider the following variant of online set cover (slightly different than what we saw
in class — keep an eye on the details). Offline, we are given a universe U := {1, . . . , n}
of n elements and a family S := {S1, . . . , Sm} of m sets where each

⋃
i Si = U . The

algorithm starts with A = ∅ which denotes the collection of selected sets.

1

2

In each time step t ∈ {1, . . . , T}, an adversary reveals an element et ∈ U , and the
online algorithm has to immediately ensure that et ∈

⋃
S∈A S, i.e., if et is already cov-

ered then the algorithm doesn’t need to select a new set, and otherwise the algorithm
has to select a set into A that contains et. The goal of the algorithm is to minimize
the size of A.

To be clear: it may be that not all elements of U are eventually revealed.

Show that there are problem instances such that the offline optimal solution has
|A| = O(1) but any deterministic online algorithm has size Ω(log(mn)), which implies
that no deterministic online algorithm can have o(log(mn)) competitive ratio.

Hint: Think of instances where m and n are polynomially-related, so that log n =
Θ(logm).

Remark: The Ω(log(mn)) bound also holds against randomized online algorithms,
but you do not have to prove this.

§2 Given black-box access to a poly-time algorithm AP that optimizes linear functions
over the convex, compact region P , and poly-time AQ that optimizes linear functions
over the convex, compact region Q, design a poly-time algorithm that optimizes linear
functions over the convex, compact region P ∩Q.

Note: For this problem, you do not need to check bounding boxes, bit complexity,
etc. For example, you may assume that whenever you have a separation oracle for a
convex, compact region R that the Ellipsoid algorithm optimizes linear functions over
R in poly-time.

§3 Define a corner of a convex, compact region P to be any x ∈ P that cannot be written
as a convex combination of other points in P .1 Given black-box access to a poly-time
algorithm SP that is a separation oracle for convex polytope2 P ∈ Rn, design a poly-
time algorithm that takes as input a point x and writes x as a convex combination of
corners of P . That is, output a list {(c1, y1), . . . , (cn+1, yn+1)} such that each yi is a
corner of P , each ci ≥ 0, and

∑
i ci = 1.

Note: For this problem, you do not need to check bounding boxes, bit complexity,
etc. For example, you may assume that whenever you have a separation oracle for a
convex, compact region R that the Ellipsoid algorithm optimizes linear functions over
R in poly-time. Moreover, you may assume that SP outputs a separating hyperplane
that is a facet of P . For example, if P is the unit hypercube, you may assume that
SP always outputs a separating hyperplane of the form xi = 0 or xi = 1, for some i.

§4 In the submodular welfare problem, there are n bidders and m items. The value of
bidder i ∈ {1, . . . n} for a subset of items S ⊆ {1, . . . ,m} is given by a monotone
submodular function fi(S) where fi(∅) = 0. We want to allocate the m items to the

1So for example, if P is a triangle, P has three corners. If P is a circle, it has infinitely many.
2Recall that a convex polytope can be written as the intersection of finitely-many halfspaces. Alterna-

tively, it is the convex hull of finitely-many points.

3

n bidders, i.e., find an item partition where bidder i gets susbset Si ⊆ {1, . . . ,m} and
Si ∩ Sj = ∅ for i 6= j, and the goal is to maximize the welfare

∑
i∈{1,...,n} fi(Si). Show

that the following simple greedy algorithm gives a 2-approximation:

(a) Initialize Si = ∅, for all bidders i.

(b) For item j = 1 to m:

i. Let ij := arg maxi{fi(Si ∪ {j}) − fi(Si)}. That is, let ij be the bidder who
gets greatest marginal value for adding item j to their current set Si. Break
ties arbitrarily (but pick exactly one arg max).

ii. Add item j to Sij , leave all other Sij unchanged.

(c) Output S1, . . . , Sn.

Hint: Note that a submodular function remains submodular even if you “contract”
a set, i.e., fS(A) := f(S ∪ A) − f(S) is also a submodular function on elements
{1, . . . ,m} \ S.

§5 Design a randomized communication protocol for Equality. That is, assume that
Alice and Bob have access to an infinite stream of shared random bits (and access-
ing these bits doesn’t count towards the communication of the protocol). Design a
communication strategy where Alice and Bob each output only O(1) bits, such that:

• If Alice and Bob have equal inputs, they will certainly output “yes.”

• If Alice and Bob have unequal inputs, they will output “no” with probability at
least 2/3 (where the probability is over the randomness in the shared random
stream).

Extra Credit:

§1 (Extra Credit) Consider the following variant on the secretary problem: an adver-
sary puts the elements into any order they desire. Then, instead of being randomly
permuted, the elements are revealed either in order, or in reverse order, each with
probability 1/2 (everything else is the same: upon seeing an element, you must im-
mediately and irrevocably accept or reject). Prove that no algorithm can guarantee
acceptance of the heaviest element with probability > 1/n when there are n elements.

§2 (Extra Credit) Consider the following variant on prophet inequalities: instead of each
Xi being independently drawn, there is a joint distribution over (X1, . . . , Xn) (every-
thing else is the same: you know the joint distribution, the random variables Xi are
revealed to you in order, and you must immediately accept/reject upon seeing). Prove
that no algorithm can guarantee better than E[maxiXi]/n.

§3 (Extra Credit) A non-deterministic communication protcol for f(·, ·) has the following
properties (similar to non-deterministic algorithms):

• Alice decides what to say in round i deterministically as a function of her own
input, A ∈ {0, 1}n, an advice string, S, and the transcript during rounds 1 thru
i− 1.

4

• Bob decides what to say in round i deterministically as a function of his own
input, B ∈ {0, 1}n, an advice string, S, and the transcript during rounds 1 thru
i− 1.

• If f(A,B) = 1, then there exists an advice string S such that Alice and Bob will
output 1.

• If f(A,B) = 0, then for all advice strings S, Alice and Bob will output 0.

• |S| counts towards the amount of communication.

a) Design a non-deterministic algorithm for NotEquality (i.e. f(A,B) = 1 if and
only if A 6= B), and another for NotDisjointness (i.e. f(A,B) = 1 if and only if
A ∩B 6= ∅), each using total communication O(log n).

b) Prove that every non-deterministic algorithm for Equality and Disjointness re-
quire communication n.

c) For f : {0, 1}n×{0, 1}n ⇒ {0, 1}, let f̄(·, ·) := (1− f)(·, ·) (that is, f̄(x, y) := 1−
f(x, y)). Let D(f), ND(f) denote the optimal deterministic and non-deterministic
communication complexity for f , respectively. Prove that:

D(f) = O(ND(f) ·ND(f̄)).

Hint (Part c): Recall the concept of a 1-rectangle from lecture, a set of inputs S for
Alice and T for Bob such that f(x, y) = 1 for all x ∈ S, y ∈ T . Say that a collection
(S1, T1), . . . , (Sk, Tk) of 1-rectangles covers f if ∪i{(x, y)| x ∈ Si, y ∈ Ti} contains
every (x, y) such that f(x, y) = 1. First, try to draw a connection between ND(f)
and the minimum k such that a collection of k 1-rectangles covers f (and do the same
for ND(f̄) and 0-rectangles).

