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Abstract

Abstract: Image Anomaly detection is an important research topic in computer vision
due to its wide application in real-world scenarios (i.g., detecting defective products in man-
ufacturing pipelines.) In this project, we aim to improve the PADIM method [8], one of the
state-of-the-art image anomaly detection algorithms, using the Johnson-Lindenstrauss dimen-
sion reduction algorithm learned in the course. Our proposed approach demonstrates signif-
icant advantages: using the same computational budget as the PADIM method reported in
their paper, our proposed method achieves significantly better performance; with the same
performance requirement, our proposed method uses much less memory and allows for faster
inference.

1 Background and Introduction

Anomaly detection is a crucial task for computer vision applications due to its wide applications
in real-world scenarios. To be more specific, typical use cases include 1. Addressing the safety
issue in certain scenarios, like human-robot interactions; if there is something wrong with the
camera sensor, we should detect the anomaly image immediately. Otherwise, the robot might be
out of control and hurt humans nearby. Or to say, for autonomous driving vehicles, any missing
in anomaly detection might cause a severe car accident. 2. Monitoring the quality of the product
produced in the manufacturing factory, which requires a robust and efficient anomaly detection
algorithm to find the inferior-quality product. 3. Controlling food safety, which exploits image
anomaly detection methods to find overdue or degenerative food.

One of the SOTA solutions, PADIM [8], aims to capture the distribution of clean images by
exploiting the features extracted by the convolutional neural network (CNN). However, the feature
space is high dimensional, forcing the algorithm to perform sub-sampling and operate on a subspace
of lower dimensions. This practice, as we show, is suboptimal as it leads to information loss.
Towards solving this issue, in this report, we introduce a novel solution by using JL. lemma to
project the high-dimensional original data point into a low-dimension one. We first formulate the
image anomaly detection problem as a high-dimensional distance measurement problem. Then we
project the data item into low-dimensional space via JL projection, whose relative new distances
among different points can be guaranteed by the JL lemma. After projection, we apply the Mixture
of the Gaussian model to fit the parameters; the likelihood from this distribution is used to detect the
anomaly images. With extensive experiments, we show that our method can be much faster than the
original one to achieve the same detection performance. Moreover, within the same computation
budget, our model can achieve consistently better performance.



2 Related Work

While image anomaly detection can be framed as a binary classification problem and approached
using classification models, such practice is undesirable because positive samples (anomalies) are
typically extremely rare in the real-world setting. With limited positive samples in training data, a
classification model would fail to capture all existing patterns in minor class (anomaly class) and
thus fail to generalize in the deployment environment. With such consideration, the mainstream
anomaly detection methods would use no abnormal image for training. In other words, the models
are trained with normal images only, aiming to capture the distribution of normal images and then
compare it with the normal distribution to identify the anomaly. Current image anomaly detection
methods can be categorized into four types: Reconstruction-based method, feature embedding-
based method, Self-supervised learning method, and SVDD-based method.

1. Reconstruction-based methods: Reconstruction-based methods are widely used in practice
due to their simplicity and scalability [6, 4, 10, 11, 12, 22, 14, 24] , where the anomaly is
identified based on reconstruction error. Typically, an auto-encoder is trained (on normal
images only) to capture the normal distribution. At inference time, the input image is re-
constructed using the learned auto-encoder, and the reconstructed loss is calculated as the
anomaly score. The intuition behind such methods is that abnormal images would lead to
high reconstruction loss as the auto-encoder is trained only on normal images. Moreover, the
pixel-based reconstruction loss can be used to localize the anomalies patterns, making these
methods highly interpretable.

Recent works also proposed adopting GAN (generative adversarial network) to exploit its
strong ability to model image distribution [21, 17, 1]. At the inference time, reconstruction is
performed through latent code optimization and, similarly, reconstruction loss is calculated
and used as anomaly score. While these methods also lead to good detection performance, it’s
much more costly compared to the auto encoder-based methods, as the iterative steps must be
performed to find the reconstruction latent code of the GAN. Because of the high inference
latency and weak scalability, GAN-based methods are less commonly used in practice.

2. Feature embedding-based methods: While the distribution of the image itself is hard to
model, meaningful image features can be extracted with deep learning approaches. With
such inspiration, the feature embedding-based methods [19, 18, 2, 3, 5, 7, 26, 16] typically
use a pre-trained CNN (i.e., on ImageNet) to extract features embedding, whose distribution
is then modeled with an n-sphere or multivariate Gaussian. At the inference time, embedding
for the input image is extracted, and its distance to the center of the normal embedding is
measured and used as the anomaly score. Again, abnormal images are expected to have high
distances to the center of normal distribution. As such methods essentially require no real
“learning” process, a good performance can be achieved with limited training samples, which
is common in industrial practices.

3. Self-supervised learning methods: Self-supervised learning methods aim to learn meaning
patterns on unlabeled data using self-defined, programming-based labels. Such methods also
inspire anomaly detection practices. For example, Golan et al. [9] randomly flips, rotates,
and translates unlabeled images, and then trains a classifier to predict the particular type of
transformation performed. At the inference time, the input image is predicted to be abnor-
mal when the classifier does not provide a confident and correct prediction. The underlying
assumption is that the learned classifiers lose confidence in the abnormal input images. Such
methods work best when a large amount of unlabeled data is available.



4. SVDD-based methods: SVDD [23] is a classical anomalies detection method where the
normal data is mapped to predefined kernel space. After that, the algorithm searches for the
smallest hypersphere enclosing the normal data, primarily to ensure anomalies fall outside the
learned hypersphere. Recent works [20] extend the method to image data by replacing kernel
function with deep learning models, both enhancing detection performance and allowing
anomaly localization.

3 JL Lemma Review

Much of the real-world data can be represented as high-dimensional points, such as images, sen-
tences, audios, etc. The motivation behind JL lemma in the high-dimensional analysis is the fact
that the algorithm complexity usually explodes exponentially as the dimension grows. According
to [13], even if for the simple nearest neighbor search algorithm, it suffers from the high-dimension
very much. Consequently, how to project the point into low-dimension space is very critical in
many scenarios.

According to Wikipedia[25], the Johnson-Lindenstrauss lemma is a result concerning low-
distortion embeddings of points from high-dimensional into low-dimensional Euclidean space, pro-
posed by William B. Johnson and Joram Lindenstrauss. The lemma states that a set of points in a
high-dimensional space can be embedded into a space of much lower dimension in such a way that
distances between the points are nearly preserved. Here we rewrite this lemma as follows:

If m = O(log(1/4) /€, then for any vector z, with probability (1-6), we have:

(1= o)l=[[3 < [Tz ][5 < (1 + €)l[xll3 (D)

This distance reservation property has many potential applications. In this report, we connect
it with the anomaly detection task. The anomaly examples are defined by the distance between
the selected sample and the center of the left other samples. Since the distance is preserved after
the projection to the low-dimensional, it allows us to directly detect the anomaly examples in low-
dimension space, with high probability.

There are some other formulations, one of them is its extension to the subspace embedding. This
lemma says that, there is one d-dimensional linear subspace ¢/ C R”, 11 is any matrix satisfying the
JL lemma, then if m = O (42l Ezjlog(l/ %), with probability 1 — d, we have:

(1= o]l < [Tz|lz < (1 +€)ll=]]3 2)

The difference between this subspace embedding version and the original one lies in two as-
pects: one is that the projection matrix II should be shared by all the points in the subspace, another
one is that the low-dimension m is larger than the original one. For this report, we choose the
subspace embedding version of the JL lemma.

When it comes to the projection matrix, there are many possible candidates. One common
projection matrix is chosen from Gaussian distribution: firstly, choose the random unit vector from
the sphere S™~1; secondly, choose random unit vector from the space orthogonal to the first row,
thirdly choose it from the space orthogonal to the first two rows... repeat this process until we
finally get the whole projection matrix with shape d x m. By sampling the matrix this way, some
properties like the Spherical symmetry, Orthogonality, Normality can be satisfied. In this report,
we choose this projection matrix as default.



4 Method Introduction

4.1 PADIM algorithm

We start by introducing the PADIM algorithm [8], one of the SOTA methods for anomaly detection,
which we aim to improve. The method works by first modeling the distribution of clean images and
then measuring the distance between the test image and the clean images to decide whether the input
image is an anomaly or not. Specifically, it adopts a pre-trained convolutional neural network to
extract image features and then models the distribution of image features with multivariate Gaussian
distributions. At the testing time, it calculates the Mahalanobis distance between test image features
and the learned distribution to decide the anomaly score.
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Figure 1: For each image patch corresponding to position (i, j) in the largest CNN feature map, PaDiM learns the
Gaussian parameters (/;;, %;;) from the set of N training embedding vectors X;; = {z¥; "»k € [1, N]}, computed from
N different training images and three different pretrained CNN layers. The figure is extracted from PADIM paper

4.1.1 Training stage details

At the training stage, a pre-trained convolutional neural networks (i.e., Wide-ResBet pre-trained on
ImageNet) is first used to extract the feature embeddings from images. Let X;; = {xfj, ke [1,N]}
denote the patch embedding vectors at position (7, j) for normal training image 1,2,3,..., N as
shown on Figure 1. The PADIM method models the distribution using the multivariate Gaussian
distribution N ( Lij, Xi;), Where the population mean 4;; and covariance ¥;; are estimated using the
formula below :

1 N
Hig = 5 DT 3)
k=1
1 N
Lij = N1 D (ly = i) (@ — )"+ €l (4)
k=1

where €/ is the regularization term to ensure the estimated covariance matrix Y;; is of full rank
and invertible. Note that the method fits a separate multivariate Gaussian distribution for each
patch at different position (7, j). Note that the patch embedding vectors carry semantic informa-
tion from different hierarchical levels. Therefore, the estimated multivariate Gaussian distribution
N (pij, 2i5) captures hierarchical semantic information and X;; captures the inter-level correla-
tions.



4.1.2 Inference stage details

We adopt the Mahalanobis distance [15] M (x;;) to measure the distance between the test patch
embedding x;; and learned distribution N (15, X;;), which is then used as the anomaly score.
Specifically, M (x;;) is computed as:

M (i) = \/(%‘j — i) T8 (i — pij) (5)

Higher value M (x;;) means that the test patch embedding is far away from the normal distribution,
indicating a higher possibility of anomalous areas. The image-level anomaly score (anomaly of
the entire image) is the maximum of anomaly map M (i.e., max{M (x; ), Vi, j}). The method is
scalable as the anomaly score of the different patch (i, j) can be computed parallelly.

4.2 Proposed Improvement

While rich image features can be extracted with pre-trained CNN, the features space is of very
high dimension (e.g., 6048 for wide-ResNet). Accordingly, the PADIM fails to exploit all these
features due to time and physical constraints (i.e., inference time constraints, CPU & GPU memory
constraints). Because of this, the PADIM method works by randomly sampling approximately 1/10
dimension of features space to use (550 randomly selected dimension in specific), meaning that the
potentially useful information in the remaining 9/10 dimensions remains unexploited.

Motivated by this, we plan to improve the method using the dimensional reduction algorithm
(Johnson-Lindenstrauss) learned in the course, allowing the algorithm to exploit all information in
feature space to detect the anomaly patterns. Specifically, we prepared a transformation matrix I1
as discussed in the course,

1

NLD

,where II is of size (reduced_dimension, original dimension). The original dimension is 6048 for
wide-ResNet and the reduced_dimension is set to be 550 to keep the same computation budget as

IT G, G~N(0,1) (6)

o . . . k; k. . .
the original paper. We then use I to reduce the dimension of z7; to get new xgj , specifically:
it =T, (7)
we then fit the multivariate Gassian distribution NV (uj;, 37) with
| N
1 !k
Ky = 7 Z Lij (8)
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at the inference time, the distance is calculated as
M(aly) = \/(af; — i TS5 )y — i) (10)



Figure 2: Curve shape from our theory prediction. X-axis represents the projected dimension,
y-axis represents the anomaly detection performance. This curve provides the lowerbound for our
method after dimension reduction.

4.3 Theoretical Prediction for Model Performance

Here we provide a brief proof for the theoretical guarantees of our proposed method. It is obvious
to see that after we project the subspace into low dimension one, the performance drops. Here in
the following, we deduct the theory to predict the relationship between the anomaly detection per-
formance y and low-space dimension z, which guarantees that the performance drop is limited by
a lower bound. We denote the low-space dimension as z = O (2. 6)6';1055(1/ 2)). For each anomaly
item in the original space, we define its distance to the dataset center as ;. For each clean item
in the original space, we define the distance as D,. After projection, we define the corresponding
distance in the low-dimensional space as d; and ds. Then from JL subspace embedding, with a

high probability 1 — §, we can have the following:
(1—€)D1 <d < (1+6)D1,(1—E)D2 <d; < (1—|—€)D2 (11)

The model will predict correctly if Dy > D, is in the original space. Similarly, the model will
confuse the output when d; < ds. This only happens when there is an overlap between the interval
of d; and the interval of d,. For this case, we can estimate the new performance value via the
following equation:

1 max{dy} — min{d; } ] (1+€)Dy— (1 —¢€)Dy (12)

r = — — _
max{d; } — min{ds} (14 €)Dy — (1 —€)Dy

Define k = (Dy — Ds)/(Dy + D), then we can get: » = 2k/(e + k). Define p as the probability
for the case that there is an overlap between interval for d; and the interval for ds, then the new
performance y can be calculated via expectation:

2pk

From the following equation
dlog(1/e) +log(1/0)

. y=<1 (14)

€2

x =0

We can get € = \/q/x, then place it into the equation 13, we can get:
2pk

YTVl

q
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(PADIM [8],Wide-ResNet) | (Proposed,Wide-ResNet) | (PADIM [8],ResNet18) | (Proposed,ResNet18)
Carpet 99.1 99.2 98.9 99.0
Grid 97.3 97.8 94.9 95.2
Leather 99.2 994 99.1 99.3
Tile 94.1 95.1 91.2 91.2
Wood 94.9 95.2 93.6 93.8
Bottle 98.3 98.7 98.1 98.4
Cable 96.7 97.3 95.8 96.0
Capsule 98.5 98.8 98.3 98.4
Hazelnut 98.2 98.4 97.7 97.8
Metal Nut 97.2 97.9 96.7 97.2
Pill 95.7 96.0 94.7 94.9
Screw 98.5 98.8 97.4 97.5
Toothbrush 98.8 99.1 98.7 98.9
Transistor 97.5 98.0 97.2 97.6
Zipper 98.5 98.7 98.2 98.3

Table 1: Quantitative Comparison of PADIM vs. Proposed Method: We quantitatively compare
the proposed method with the PADIM baseline for all classes in MVTec AD [4] dataset. As results
demonstrate, our proposed method shows consistent improvement.

Figure 3: Ablation Study: In this
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Here p, q, k are some hyper-parameters determined by the property of the dataset. We can draw the
predicted curve shape, which is visualized in Fig.2.

S Experiment Results

Datasets. We evaluate the proposed method on the MVTec AD [4], the same dataset used in the
PADIM paper. The dataset is collected from the real-world setting of industrial quality control.
It contains 15 object classes, where each class has approximately 200-300 images. The image
resolution is between 700x700 and 1024 x 1024. To facilitate anomaly localization, objects in each
image are well-centered and aligned similarly across the dataset.

Qualitative Comparison & Analysis. We first set the reduced dimension to be 550, the same
as the dimension size used in the PADIM paper. This practice ensures the comparison is fair as
we use the same computation budget. We evaluate the model performance and report the pixel
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Figure 4: Qualitative Comparison of PADIM vs. Proposed Method: For each class, we show
the predictions of the PADIM baseline in the first line and the predictions of the proposed method
in the second line. As the result shows, our method provides more accurate localization for the
anomaly.



AUC score in the table 1. As the results show, the proposed method significantly outperforms the
original PADIM method in all classes. Note that the maximum value of AUC is 1 (100%), so the
improvement from 97.3% to 97.8% for Grid class or 99.2% to 99.4% for Leather class should be
considered as significant.

Quantitative Comparison & Analysis. We also qualitatively compare our method with baseline
PADIM in figure 4. For each class, we show the predictions of the PADIM baseline in the first line
and the predictions of the proposed method in the second line. As the result shows, our method
provides more accurate localization. Specifically, our predicted mask is more accurately aligned
with the ground truth mask and our predicted heatmaps fire less on the non-anomaly region.

Ablation study. We further ablate on the number of dimensions used for the reduced feature
embedding to evaluate how the model performance changes with the increase/decrease of feature
dimension. A larger dimension would enable to less information loss and accordingly better per-
formance, but also lead to slower inference as more computation is needed. As the figure 3 shows,
the performance improves rapidly as the dimension used increases from 50 to 200, while the im-
provement is relatively stagnant after the dimension goes above 200. Note that for our method, we
only need to use 150 dimensions to achieve the performance of the original PADIM method, which
in comparison uses 550 dimensions. This leads to approximately 10x saving for memory space
and 3x improvement for inference speed. Also, using the same computational budget (using 550
dimensions), the proposed method improves the PADIM performance from 96.7% to 97.3%, which
is a significant improvement considering that the maximum AUC score metric is 1.

6 Conclusion

In this report, we propose a novel method to improve the PADIM algorithm, one of the state-of-the-
art algorithms for image anomaly detection, by exploiting the JL Lemma. The extensive experiment
shows that the proposed algorithm significantly outperforms the original PADIM method for both
detection performance and inference speed.
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