
Johnson-Lindenstrauss for Approximate Optical Flow

Lahav Lipson, Alexander Raistrick, Darby Haller

December 2021

1 Introduction

Optical Flow is the task of estimating per-pixel correspondences between two images. That is, given a pair
of input images, we want to match each pixel in the left image with one on the right, such that both pixels
correspond to the same point in the scene.

The ability to estimate correspondences between pairs of images is critical for applications in which the
main objective is to reconstruct scene geometry from only camera input. Specifically, if the scene is assumed
to be static, accurate correspondences between photographs taken from known viewpoints can uniquely define
a 3D point cloud for the scene. Equivalently, if the scene geometry is known but the camera trajectory is
not, it can be uniquely defined using (a small number of) correspondences. This latter problem is equivalent
to the problem of orienting objects subject to rigid motion while the camera locations are known. The
usefulness of optical flow for 3D scene understating and/or reconstruction problems has motivated the study
into better methods for estimating correspondences between images.

Having a motion vector per-pixel is useful for many applications as it is predictive of the scene state at
future time steps. Fast moving objects, thin structures, and non-rigid motion all make the problem difficult
to solve, however. In practice, many indoor surfaces are textureless or otherwise have very low-frequency
details, causing ambiguity about which pixels correspond with one another. Classical methods solve such
problems by incorporating priors about scene geometry, or interpolate between values with higher confidence.
Furthermore, cameras often contain motion blur, which further complicate the problem.

Optical Flow is even grounded in psychology and human perception through its connection to ”Looming”,
a measurable physiological reaction to an object’s visual expansion towards the eye. Optical Flow is said
to be a ’low level’ task, meaning that it requires us to make estimates of fundamental properties of an
unconstrained scene (i.e., it’s motion) rather than structured, high-level object labels or other semantic
information.

Traditional approaches tackle optical flow as an optimization optimization problem over hand-designed
image features [1, 2]. Given some procedure to extract a feature descriptor vector for each pixel, one must
compute a matching between pixels. Such methods typically define a matching loss penalizes pixels with
dissimilar features, while simultaneously enforcing hand-chosen priors. For instance, some methods impose
that the flow should be piece-wise smooth, should not contain too extreme motions, or should be cycle-
consistent, meaning applying the flow model in both directions leads back to the source pixel.

While classical methods use hand-designed features descriptors such as SIFT [3] and ORB [4], modern
approaches instead use learned features. RAFT [5], a state-of-the-art deep learning method for optical flow,

(a) Image 1 (b) Image 2 (c) Optical Flow Vectors (d) Optical Flow Visualization

Figure 1: Example Optical Flow Input/Output Given two input images (a, b), we must estimate pixel-wise
motion vectors (c). We can compactly represent direction and magnitude of motion with color hue and saturation,
as shown in (d)

1

p

Input Images (I, I') ResNet
Image Encoder

Feature Maps
(FI, FI')

FI'

p'

p

Predicted Optical Flow

Ground Truth

Figure 2: Simplified Model Architecture Given two input images, we produce ResNet [6] feature maps, and
directly decode optical flow by matching each pixel p to the pixel p’ with closest feature distance ∥FI(p)− FI′(p

′)∥

produces 256 × H × W feature maps for each image, and uses these per-pixel feature vectors to inform
iterative updates to a running estimate of the optical flow between the two input images. Specifically, an
optical flow estimate is used to sample and compare pairs of feature vectors between the images, serving as
a kind of self-consistency check.

For high resolution images, generating and storing these high dimensional feature maps becomes a sig-
nificant memory bottleneck. Currently, RAFT works around this issue by operating at reduced resolution,
as low as 1/8th of the original image size. This greatly reduces the memory bottleneck, but limits the detail
that can be achieved by the model, and leads to incorrect predictions for thin structures.

In this paper, we investigate the application of Johnson-Lindenstrauss (JL) maps to reduce the memory
cost of computing and storing these feature maps by reducing the feature dimension of the feature vectors.
Under a simplified proxy model, we produce theoretical bounds regarding the effect of JL on evaluation
metrics. We justify this result empirically by evaluating our method on a real optical flow benchmark for
various JL-reduced feature dimensions. Finally, we discuss the implication of our results for a downstream
application of optical flow, and show initial theoretical results on how JL reduction could be used in an
online setting to process a video of unknown length under fixed memory budget.

2 Preliminaries

2.1 Simplified Model Architecture

Unfortunately, the operations applied to the correlation volume computed by RAFT are complex and not
conducive to direct analysis using Johnson-Lindenstrauss. As a simplyifying assumption, we will instead
analyze an architecture which derives optical flow by matching the features directly (as opposed to using
more deep network layers). We assume that the network produces feature maps FI , FI′ of shape C×W ×H,
and computes optical flow by matching each pixel p in the first image to the pixel p′ in the second image
with the closest feature distance ∥FI(p)− FI′(p′)∥. This architecture is depicted in Figure 2.

Essentially, we assume that any complex architecture components take place before matching all pairs of
feature vectors, and that the resultant features directly represent the network’s estimate of optical flow.

2.2 Optical Flow Evaluation

To evaluate the performance of an optical flow system, we one must obtain videos with known ground truth
optical flow, and decide a set of metrics to measure performance.

Obtaining ground truth optical flow for arbitrary real-world videos is difficult in-practice. By definition,
we must track every pixel between frames. In theory we could cover surfaces densely with motion tracking

2

markers, but in reality this is impractical and would bias the dataset by introducing easily trackable visual
features.

Instead, we use SINTEL [7], a widely adopted flow benchmark composed of computer generated images,
for which we can obtain ground truth from graphics data. SINTEL is derived from an open source animated
short-film, and contains suitably complex motion, textures and rendering effects.

Optical Flow accuracy is measured using two categories of error metrics. The first is End-Point-Error
(EPE), which reports the mean euclidean distance between optical flow predictions and ground truths.
Second, it is common to report N-pixel error (for N=1, 3, 5), which represents the percentage of flow vectors
which are within N pixel-distance of the ground truth.

For our purposes, N-pixel error is a more useful metric. Achieving state of the art EPE numbers requires
not just matching corresponding pixels, but predicting flow vectors accurate to distances less than a pixel
across. In applying JL, we accept that our flow results will not be accurate to this degree, but hope that
we still obtain approximately correct results. For this reason, we will focus on error metrics such as 5-pixel
error, which better captures this goal.

2.2.1 Occlusion

Since the goal of optical flow is to match pixels between images, we can run into issues when a pixel’s match
is not in the other image. This can happen because it went out of frame due to the motion of the camera,
or became occluded for one reason or another. To remedy this, benchmarks either compare only on pixels
which are visible in both images, or require that methods make predictions even for unseen pixels. In order
to do the latter, the method must extrapolate based on what is visible using smoothness assumptions or
learned priors about the data (such as object rigidity).

3 Theoretical results

Optical flow estimators output offset vectors in the Cartesian image-space plane based on input features;
our goal is to reduce the dimensionality of these input features without perturbing the output offset vec-
tors too much. Johnson-Lindenstrauss maps approximately preserve input feature-space distances, but we
need further distributional assumptions to translate that into guarantees on the output (image-space offset
preservation).

To have any hope of doing well on dimension-reduced optical flow, we first need to be able to do well on
unreduced optical flow. Our model takes in a source pixel and outputs the closest target pixel in feature space.
So before dimension reduction, our source pixels need to be closer in feature space to their corresponding
ground truth target pixels than to all other target pixels. It is also acceptable if a source pixel is instead
closest in feature space to a target pixel that is very close to (but not exactly) the correct target pixel in
image space; guessing one or two pixels off is still good.

But image-space approximate maximality is not quite enough for JL to work; we also need a score-space
margin separating the matching scores of the good close by pixel from those of the bad far off pixels. To see
this, imagine if the above condition held in the unreduced setting, but with nearly no margin. For example,
what if the correct target pixel was in the top left corner of the image, and its features had distance 1 from
the source pixel’s features, but there were a bunch of (independently) incorrect target pixels in the bottom
right corner of the image that were only .00000000000001 farther away from the source pixel than the correct
target pixel was? Then, with high probability, applying a Johnson-Lindenstrauss map would make our model
incorrectly predict a flow to the bottom right of the image rather than to the top left.

In summary, not only do we need the best match to be within a certain image-space radius of the correct
target pixel, we also need it to be a significant margin better than all incorrect pixels outside of that image-
space radius. Definition 1 formalizes this notion, parameterized by an image space tolerance radius r and
feature space distance margin ϵ. Note that it applies to ground truth pixel pairs, not entire image pairs -
optimal bounds are sometimes achieved by choosing different ϵ and r’s for different ground truth pixel pairs
in the same image pair.

Let || · ||i denote the euclidean norm in Cartesian image space, and || · ||f denote the euclidean norm in
feature space. For any image-space coordinates p, let FI(p) equal the features present at pixel p in image I.

3

Definition 1 In the ground truth optical flow, every pixel p in the source image I flows to a corresponding
pixel p′ in the target image I ′. For any image-space radius r, let p∗′ := argminy∈Nr(p′)||FI(p) − FI′(y)||2f .
Then, let ϵ be (arbitrarily close to) the largest positive margin such that ||FI(p)− FI′(p∗′)||2f < 1−ϵ

1+ϵ ||FI(p)−
FI′(y)||2f∀y ∈ I ′ \Nr(p

′).

ϵ is a function of p, p′, I, I ′, and r, and for certain combinations of those inputs, it may not even exist
(if the closest pixel in feature space is not within an r radius of p′). The smaller the radius, or the larger
the score margin, the better accuracy guarantees we can make for dimension reduced optical flow, but in
general, increasing the margin requires us to increase the radius. So each ground truth pixel pair has an
associated r− ϵ curve, which, when m is fixed, trades off between how tight of a neighborhood we are trying
to ensure we map into, and how likely it is that we map into that neighborhood (though this tradeoff only
exists theoretically - in reality, all of these neighborhood likelihoods exist simultaneously, it’s just that we
can only use one of them at a time in the evaluation metric bounds we produce). Different evaluation metrics
will be optimally bounded by using different points on any given r − ϵ curve.

Now, we will show upper bounds on the probability that Johnson-Lindenstrauss maps perturb flow
predictions for source pixels too far away from their correct corresponding target pixels. Because we only
need to get perturbation probability bounds on O(n) vector distances at any one time for n vectors, we get
a better probability of success than naively applying the Johnson-Lindenstrauss likelihood of not changing
the O(n2) pairwise distances between n vectors.

Theorem 2 Fix a source pixel p ∈ I and its corresponding target pixel p′ ∈ I ′. The chance that p gets
mapped more than r away from p′ after Johnson-Lindenstrauss dimension reduction is no more than (H ×
W − πr2 + 1)× 2e−mϵ2/8.

Proof. p doesn’t get mapped more than r away from p′ as long as ||Π(FI(p) − FI′(p∗′))||2f < ||Π(FI(p) −
FI′(y))||2f∀y ∈ I ′ \ Nr(p

′). By the definition of ϵ, this is ensured as long as none of the H × W − πr2 + 1
squared vector norms of interest are perturbed by more than a factor of ϵ (though better results could be
achieved by using one-sided Johnson-Lindenstrauss tail bounds, and also by using a different ϵ′ for p∗′ and
ϵy for all y ∈ I ′ \Nr(p

′), and optimizing over their feasible combinations). Then, for all y ∈ I ′ \Nr(p
′),

||Π(FI(p)− FI′(p∗′))||2f ≤ (1)

(1 + ϵ)||FI(p)− FI′(p∗′)||2f < (2)

(1 + ϵ)
1− ϵ

1 + ϵ
||Π(FI(p)− FI′(y))||2f = (3)

(1− ϵ)||Π(FI(p)− FI′(y))||2f ≤ (4)

||Π(FI(p)− FI′(y))||2f (5)

From the lecture notes, for any feature vector v, Pr[||Πv||2f] /∈ (1 ± ϵ)||v||2f ≤ 2e−mϵ2/8, so by the union

bound, the probability that any of the H ×W − πr2 + 1 squared vector norms of interest are are perturbed
by more than ϵ is ≤ (H ×W − πr2 + 1)× 2e−mϵ2/8.

Now, depending on what distributions of per-pixel ϵ as functions of r our data provide, we can use
the above bound to provide theoretical guarantees on the expected performance of Johnson-Lindenstrauss
reduced optical flow for EPE (the average distance between the ground truth target and the target our model
predicts) and Accr (the fraction of times our model guesses within r pixels of the ground truth target).

Theorem 3 EΠ[EPEJL] ≤ Ep,p′∈D[maxr[max(0, (1− (H ×W − πr2 + 1)× 2e−mϵ2/8))× r +min(1, (H ×
W − πr2 + 1) × 2e−mϵ2/8)||(1 − |px|, 1 − |py|)||i]], where ϵ varies based on p, p′, I, I ′, and r, and D is the
distribution over all ground truth pixel pairs in all image pairs.

Proof. For any pixel pair p, p′ and radius r such that ϵ exists, if p is mapped into an r neighborhood
of p′, then its error is no more than r. By the above theorem, the chance of this happening is at least
1− (H×W −πr2+1)×2e−mϵ2/8 (and also at least 0 by the rules of probability). The only other possibility
is that it gets mapped outside of the r neighborhood of p′, in which case its error can’t be any worse than
its distance to the furthest corner, ||(1 − |px|, 1 − |py|)||i (assuming the image size is [0, 1] × [0, 1]). The

4

probability of this happening is no more than (H×W −πr2+1)×2e−mϵ2/8 (and also no more than 1 by the
rules of probability). As the maximizing r will never be more than the distance to the farthest corner, the

expectation of the error is no more than max(0, (1− (H ×W −πr2+1)× 2e−mϵ2/8))× r+min(1, (H ×W −
πr2+1)×2e−mϵ2/8)||(1−|px|, 1−|py|)||i. Because this is true for all r such that ϵ exists, it is true in particular
for the r that maximizes this term. By linearity of expectation, the expectation over the distribution of pixel
pairs follows.

Theorem 4 For any pixel-space margin r, EΠ[Accr,JL] ≥ Ep,p′∈D[max(0, 1−(H×W−πr2+1)×2e−mϵ2r/8)],
where ϵ varies based on p, p′, I, I ′ (and is taken to be −∞ if it does not exist for r), and D is the distribution
over all ground truth pixel pairs in all image pairs.

Proof. Theorem 2 states that the chance that a given source pixel is mapped within r of its ground truth
target pixel is no less than 1 − (H × W − πr2 + 1) × 2e−mϵ2r/8, and due to the rules of probability, that
chance also can’t be any less than 0. Accr,JL is defined as Ep,p′∈D[p mapped within r of p′], so by linearity
of expectations,

EΠ[Accr,JL] = (6)

EΠ[Ep,p′∈D[p mapped within r of p’]] = (7)

Ep,p′∈D[EΠ[p mapped within r of p’]] ≥ (8)

Ep,p′∈D[max(0, 1− (H ×W − πr2 + 1)× 2e−mϵ2r/8)] (9)

4 Online SLAM

Recently, DROID-SLAM [8] made use of optical flow as an intermediate step for Deep Visual SLAM. Simul-
taneous Localization and Mapping is a core problem in robotics. Critically, it requires us to process images
online, without advance knowledge of the total length of a video. This requires that we retain sufficient
information from each image to be able to compute optical flow between every pair of images seen so far.
In practice, we simply store each feature map FI , which eliminates repeated work of re-running the image
encoder.

However, since all the features must be stored in memory, this places a limit on the length of a video that
can be processed with a fixed memory budget. In an online setting, where we don’t know how many frames
we will have to process ahead of time, it is hard to choose the embedding dimension m of the Johnson-
Lindenstrauss map. If we choose m to be very small, and it turns out that we didn’t have to process many
video frames, we would have sacrificed a lot of accuracy unnecessarily. On the other hand, if we choose m to
be too big, but it turns out that we have to process many video frames, our system will run out of memory.
Ideally, m would start high, and decrease as we received more and more frames, always using as much
memory as was available. But we can’t go back and apply a new, smaller Johnson-Lindenstrauss map to the
original feature vectors - those have already been cleared out of memory. However, in the following section,
we will show that simply dropping m −m′ indices across all dimension-reduced stored features works just
as well as recomputing new dimension-reduced feature vectors using a new, smaller Johnson-Lindenstrauss
map in Rm′×d, while only requiring access to the latest set of dimension reduced vectors.

Specifically, we will show that taking any m′ elements of the output of a Johnson-Lindenstrauss map
(and rescaling appropriately) is still a Johnson-Lindenstrauss map, but to a lower dimensional space. Then,
getting the result of this new, smaller Johnson-Lindenstrauss map applied to the original features is as simple
as dropping some of the indices from the latest set of dimension reduced vectors and rescaling.

Theorem 5 Let i1...im′ be any m′ indices in [m]. If Π ∈ Rm×d is a Johnson-Lindenstrauss map, then

f(x) =
√
m√
m′ (Πx)[i1...im′] is still a Johnson-Lindenstrauss map, though now in Rm′×d.

Proof. A Johnson-Lindenstrauss map Π ∈ Rm×d is a Gaussian random matrix where each variable is
sampled from N(0, 1√

m
). If Π is a Gaussian random matrix where each variable is sampled from N(0, 1√

m
),

5

and Π′ ∈ Rm′×d is any m′ rows from
√
m√
m′Π, then Π′ ∈ Rm′×d is a Gaussian random matrix where each

variable is sampled from N(0, 1√
m′), and is therefore a Johnson-Lindenstrauss map.

Figure 3: The algorithm works because corresponding
pixels have small distances in feature space. The measure-
ments were obtained by randomly sampling 10% of the top
10k closest matches in each image pair, across 40 image
pairs chosen i.i.d. ”GT-Flow-Error” is measured in pixels.

So, given this fact, and our established results
for the performance of JL-reduced optical flow, we
can devise a strategy that slowly degrades quality
once memory is exceeded, rather than crashing alto-
gether. Specifically, whenever adding a new image’s
features to memory would exceed our capacity, sim-
ply drop features dimensions from all existing im-
ages to make space for it, and rescale according to
Theorem 5 to preserve feature distances according
to JL.

5 Experiments

We investigate the effectiveness of using a JL-Map
to reduce the memory requirements of storing fea-
ture maps for predicting correspondences (i.e. opti-
cal flow) between two images. Specifically, we want
to be able to take two C×H×W feature maps and
shrink them to k ×H ×W where k < C, such that
corresponding pixels still have similar features.

We evaluate on SINTEL [7] using the 5-px error
metric as discussed in Section 2.2. We extract fea-
ture maps using a standard ResNet [6] convolutional
neural network. This produces feature maps of dimension 55×128 for each image. In order to avoid training
the model entirely from scratch, we initialize the network using weights released publicly by the authors of
RAFT [5], which uses the same ResNet architecture for it’s feature extraction stage.

Our matching algorithm assigns each pixel in the left image to the pixel in the right image whose feature
has the highest inner-product with its own. This is a standard similarity metric used in optical flow literature.
In order to keep our method simple and easy to analyze theoretically, we do not incorporate any additional
priors such as cycle consistency or smoothness. As shown in Figure 4, this leads to large changes in optical
flow between adjacent pixels.

5.1 Empirical Results

We compare the effects of three methods for dimensionality reduction in Figure 5. We find that average
pooling of adjacent feature dimensions or randomly selecting a subset of feature dimensions preserves accu-
racy slightly better than using a JL-Map. This is likely due to the JL-Map arbitrarily scaling the relative
importance of different feature dimensions. In all cases, we find that one can trade-off about 10% of accuracy
in exchange for a 4x reduction in feature dimensions, i.e. 4× less memory usage.

In general, we also observe that, across all pairs of pixels, corresponding pixels have similar feature
vectors. Similarly, non-corresponding pixels have dissimilar feature vectors. See Figure 3. This implies that
the ResNet backbone of RAFT learned to approximate visual similarity in the feature space.

6 Discussion

Overall, we have shown that under significant simplifying assumptions, it is possible to use Johnson-
Lindenstrauss maps to significantly reduce the memory and compute overhead of computing and matching
features for optical flow. We obtain a theoretical lower bound, then achieve an even stronger empirical result
on a popular optical flow benchmark [7] showing that one may reduce the dimensionality of our feature
vectors by up to 80% with only incremental drops in performance.

6

In
pu

t I
m

ag
e

1
G

ro
un

d
Tr

ut
h

Pr
ed

ic
te

d
Fl

ow

Figure 4: Example Optical Flow Predictions. For each example SINTEL test frame, we show one of the two RGB
input frames (top row), the ground truth optical flow (middle row) and our prediction using feature matching.

Figure 5: We compare the effects three methods of dimen-
sionality reduction on the accuracy of the matchings. Ran-
domly selecting the feature dimensions to preserve (red)
performs as well as averaging adjacent feature dimensions
(green). Using a JL-Map (blue) performs slightly worse,
potentially because because it arbitrarily scales the relative
importance of different feature dimensions. In all cases, we
see approximately a 10% drop in accuracy in exchange for
a 4x drop in feature size.

We also find however that naive solutions such as
dropping random dimensions, or typical deep learn-
ing operations such as ’average pooling’ bins of di-
mensions together work just as well. We anticipate
with a revised training loss (e.g. a Triplet Loss) de-
signed specifically to promote a margin in feature
distance we could improve results, however we leave
this to future work.

We see the most significant potential for this
method as an intermediate step in dense visual slam.
We show that we can apply JL once to the initial
features of each image, then drop feature dimen-
sions online as new images are received in order to
produce approximate flow estimates for a video of
unknown length.

More broadly, our results are interesting as an
initial analysis of whether Johnson-Lindenstrauss
can be applied to a broader class of vision architec-
tures. Our simplified optical flow model is a specific
instance of associative embedding [9]. Associative
embedding is a task-agnostic architecture used to
represent any association between pixels by match-
ing nearest feature vectors. For example, one can
represent semantic segmentation (grouping all pix-

els of the same object class), or multi-human pose prediction (grouping detected joints into coherent human
skeletons) in this setting. While many instances of associative embedding are less dense than optical flow (i.e,
they do not require a prediction for every pixel), our results provide some evidence that JL could be applied
for special cases where large numbers of features must be retained in memory or matched simultaneously.

References

[1] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. ARTIFICAL INTELLIGENCE,
17:185–203, 1981.

[2] Christian Banz, Sebastian Hesselbarth, Holger Flatt, Holger Blume, and Peter Pirsch. Real-time stereo
vision system using semi-global matching disparity estimation: Architecture and fpga-implementation. In

7

2010 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation,
pages 93–101. IEEE, 2010.

[3] David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE
international conference on computer vision, volume 2, pages 1150–1157. Ieee, 1999.

[4] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift
or surf. In 2011 International conference on computer vision, pages 2564–2571. Ieee, 2011.

[5] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field transforms for optical flow. CoRR,
abs/2003.12039, 2020. URL https://arxiv.org/abs/2003.12039.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[7] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow
evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer Vision (ECCV), Part
IV, LNCS 7577, pages 611–625. Springer-Verlag, October 2012.

[8] Zachary Teed and Jia Deng. DROID-SLAM: deep visual SLAM for monocular, stereo, and RGB-D
cameras. CoRR, abs/2108.10869, 2021. URL https://arxiv.org/abs/2108.10869.

[9] Alejandro Newell and Jia Deng. Associative embedding: End-to-end learning for joint detection and
grouping. CoRR, abs/1611.05424, 2016. URL http://arxiv.org/abs/1611.05424.

8

