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Abstract

This paper surveys a range of online algorithmic approaches to the multi-armed
bandit problem. We introduce and define the multi-armed bandit problem, as
well as its practical applications. We present a formal overview of several classic
online algorithms for this problem, including epsilon-greedy, upper confidence
bound, and Thompson Sampling. We then describe three modern state-of-the-art
approaches and applications of the multi-armed bandit problem which incorporate
causal inference, Bayesian statistics, and combinatorial decomposition into their
frameworks. We also provide analysis on the regret for some of the algorithms, as
well as showing the advantage and drawback of them.

1 Introduction

The multi-armed bandit problem is a cornerstone problem of reinforcement learning. Conceived in
the 1950s, this classic stochastic scheduling problem models a learner that simultaneously attempts
to explore the environment and exploit existing knowledge to optimize their decisions. The agent
attempts to balance the trade-off between these competing tasks to maximize their total value over
the period of time.

In this paper, we will formally define the problem of multi-armed bandit, along with necessary
terminology. Then we will present various classic and modern algorithms for this problem.

1.1 Problem Definition

Robbins (1952) was the first to introduce an early variant of multi-armed bandits, which Robbins
termed "a problem of two populations":

Definition 1 (A Problem of Two Populations) Given two statistical populations with unknown uni-
variate cumulative distribution functions and a fixed number of sample draws, how should we draw
x1, ..., xn to maximize Sn =

∑n
i=1 xi?

Unlike other statistical problems, Robbins (1952) emphasized that the two-population problem’s goal
is to decide how to draw the sample, rather than merely estimating each population’s distribution.

Today, the multi-armed bandit problem is often introduced with the following thought experiment:
consider a gambler who has access to k slot machines. In a given round t, he chooses to play any
of the machines, i.e. arms. Let us assume he chooses the ith arm; then he observes a reward rit,
which is drawn from the arm’s reward distribution Ri (which is unknown to the bandit). His goal is
to maximize the total reward across a fixed n rounds.

We can describe a generic multi-armed bandit algorithm thusly:



Algorithm 1 Multi-Armed Bandit Algorithm Protocol

1: Given: k arms, horizon of T , and arm reward distributions Ri
k
i=1

2: for t=1, . . . , T do
3: Algorithm selects arm at
4: Reward rt is sampled from Rt

5: Algorithm collects rt but does not see other rewards.
6: end for

It is assumed that successive pulls of the same arm are independently and identically distributed
according to the unknown reward distribution Ri and with unknown expectation µi. Moreover, it is
also assumed that rewards across different machines are independently distributed. Also, we consider
only the formulation where the bandit feedback, i.e. the information observed by the agent, is limited
to the reward of the arm it selected (and no other arm).

The goal of the problem is to develop an optimal policy π (i.e. allocation strategy) so as to maximize
the total expected reward.

1.1.1 Useful Terminology

Here we define some useful terms applicable to the multi-armed bandit problem.

Definition 2 (Regret) The regret after T rounds is defined as the difference between the optimal
reward sum and the sum of the collected rewards, i.e.:

ρ(T ) = Tµ∗ −
T∑

t=1

rit

where

µ∗ = max1≤i≤kµi

or can be rewritten as

ρ(T ) = max
1≤i≤K

T∑
t=1

(µ∗ − µi)

Definition 3 (Zero-regret strategy) A zero-regret strategy is one whose average regret per round
tends to zero with certain probability as the time horizon goes to infinity. That is to say, with
probability 1, a zero-regret strategy π has:

limT→∞
ρπ
T

= 0 (1)

Definition 4 (Horizon) The number of rounds left to play.

Definition 5 We define an algorithm to solve multi-armed bandit problem if it can match a lower
bound, ρ(T ) = O(log T ).

This is from a classical result from Lai and Robbins (1985) that

lim
T→∞

E[Regret(T )|µ]
log(T )

=
∑
k ̸=k∗

µk∗ − µk

dKL(µk∗ ||µk)

where dKL(θ||θ′) is the Kullback-Leibler divergence. Thus, no matter how good an algorithm for
solving the multi-armed bandit problem is, its expected regret grows at least logarithmically.
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1.1.2 The Multi-Armed Bandit in the Online Setting

The multi-armed bandit problem is inherently online. The agent has no information of the reward
distributions of any of the machines when the game begins and only iteratively accrues information
as it pulls a lever and learns the reward for each round of the game. While some strategies apply
a batched offline approach (using batches of historical data to construct the strategy for the next
batch of incoming data), we consider online algorithms only. In most real world applications of the
problem, once a player has moved on from a choice they may never visit it again, which is why online
algorithms are perfectly applicable.

1.2 Applications

The multi-armed bandit problem has many real life applications. As introduced in Slivkins (2021),
the original motivation was meant to design ethical medical trials to minimize the pain of patients
while collecting more useful scientific data. The choice in this case will be to decide which drug to
prescribe and the reward will be health for the patients.

More recent and modern applications typically involve user behavior on the Internet. For example,
deciding which advertisement to place on the webpages is a huge application nowadays. Displaying
and recommending the right advertisement can incur much more revenue from the advertisements.
For many pages, user will never return to a page they have visited. Therefore, the webpage owner
will have to decide which advertisement to display to attract more users and draw more revenue in
that single visit. Another common application would be financial portfolio design. However, the
difference would be that the feedback in this case, the previous prices for all stocks, will be publicly
available no matter which action you take. The strategies for different applications of multi-armed
bandit problem will therefore vary and depend on many different aspects of the problem.

1.3 Exploration vs. Exploitation

At the heart of any algorithmic approach to the multi-armed bandit problem is the trade-off between
exploratory strategies which aim to increase the agent’s information about the reward distributions
Rt defining the current problem instance, and exploitative strategies which leverage all information
the algorithm has gained about the arms to earn as much reward as possible. Initially, exploration is
extremely important to prevent premature convergence to a suboptimal exploitation strategy. However,
exploring for too long can lead to an unnecessary increase in regret if the information that we learn
does not change the decisions we make during exploitation.

Exploitation strategies are usually quite standard regardless of the algorithm used. In most cases, the
algorithm keeps some probability distribution per arm and simply selects one greedily when it is time
to exploit. Some examples of greedy selection are the lowest mean reward of the seen samples per
arm and the lowest sample from the aforementioned probability distribution. Then, algorithms are
differentiated in the way in which they approach two subproblems. Firstly, which arms should an
algorithm select in order to gain the most useful information for future decision? Secondly, when
should the algorithm switch from exploration to exploitation?

2 Classic Approaches

2.1 Epsilon-Greedy

Perhaps the best known of the classical approaches, this class of algorithms explicitly addresses the
exploitation-exploration paradigm by performing exploration with probability ϵ and exploitation
otherwise.

2.1.1 Original ϵ-Greedy Approach

First described in Watkins (1989), this approach takes in a fixed exploration probability ϵ and
otherwise selects the arm with the highest empirical mean.
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Algorithm 2 ϵ-Greedy Algorithm
1: Given: fixed ϵ ∈ (0, 1)
2: For each arm k = 1, . . . ,K, set µ̂k = 0
3: for t=1,2,. . . do
4: With probability ϵ select a random arm; else, choose ak such that k = argmaxkµ̂k

5: Play arm k and observe reward rk
6: Update µ̂k

7: end for

Theorem 6 The ϵ-greedy algorithm (with a constant ϵ) has linear regret.

Proof. Suppose that the initial estimate of the reward distribution means are perfect, i.e. that ak such
that k = argmaxµ̂k is indeed the optimal arm to draw. Then with probability ϵ the arm selects a
suboptimal arm. Thus the expected regret is ϵT, i.e. linear.

2.1.2 ϵ-First Algorithm

Developed by Even-Dar et al. (2006), this algorithm is centered on the idea that while we may not be
able to always select the best arm for exploitation, we would like to at least select an arm with an
expected reward that is not too far off from optimal.

Definition 7 (α-Optimal Arm) An arm a is α-optimal if its expected reward is at most α below the
optimal reward, i.e.:

E[rat] ≥ r∗t − α

In this algorithm, the agent spends the first ϵ · T rounds in exploration. The remaining rounds are
spent in exploitation, where the agent pulls only the arm with the highest empirical mean found in
the exploration phase. Ideally, with sufficient time spent in exploration, the agent will choose an
α-optimal arm (i.e. one that is not too much worse than the optimal arm).

Algorithm 3 ϵ-First Algorithm
1: Given: fixed ϵ ∈ (0, 1)
2: For each arm k = 1, . . . ,K, set µ̂k = 0
3: for t=1,. . . , ϵ· T do
4: Choose a random arm ai
5: Play arm i and observe reward ri
6: Update µ̂i

7: end for
8: for t=ϵ· T+1,. . . , T do
9: Choose ak such that k = argmaxkµ̂k

10: Play arm k and observe reward rk
11: end for

Theorem 8 In the exploration phase of the algorithm, a sample complexity of O( K
α2 log(

K
δ ) produces

an α− optimal arm with probability at least 1− δ.

Proof. Consider a non-α-optimal arm a′ (i.e. E[R(a)] < r∗ − α). We want to show that the
probability that algorithm chooses a′ over the optimal arm a∗ is bounded by δ. The algorithm will
choose a′ if it finds that µ̂a′ > µ̂a∗. Applying the Hoeffding inequality gives:

P [µ̂a′ > µ̂a∗] ≤ P [µ̂a′ > E(R(a′)) +
ϵ

2
] + P [µ̂a′ < E(R(a′))− ϵ

2
]

≤ 2e−2( ϵ
2 )

2l

Now let l = 2
ϵ2 ln(

2K
δ ). Plugging this into the last line:
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P [µ̂a′ > µ̂a∗] ≤ 2e−2( ϵ
2 )

2· 2
ϵ2

ln( 2K
δ )

=
δ

K

Thus the probability that we select a particular non-optimal arm is upper bounded by δ
K . Taking the

union bound over all possible non-optimal arms gives us:

(K − 1)
δ

K
< δ

2.1.3 ϵ-decreasing

So far, we have only considered strategies with a fixed ϵ, i.e. a fixed allocation of exploration phase.
Cesa-Bianchi and Fischer (1998) introduced the ϵ-decreasing algorithm, in which we decrease ϵ so as
to allow the algorithm to get arbitrarily close to the optimal strategy as the time horizon approaches
infinity. The intuition behind this algorithm is that, with a constant ϵ, even if we choose the optimal
strategy with probability 1− ϵ, we will always waste time trying a non-optimal arm with ϵ probability.
However, as our time horizon grows asymptotically large, we will have increasingly better estimates
of the reward distributions of the arms and are therefore more likely to be correctly choosing the
optimal arm in the exploitation phase. Therefore, as we play more and more rounds, we should
reduce the amount of time we spent trying random arms and focus on the arms that we are reasonably
sure are optimal. Therefore, we gradually decrease ϵ so that as T goes to infinity, ϵ approaches zero.
Hence, as our time horizon approaches infinity, our ϵ-greedy algorithm can approach the optimal
strategy.

Algorithm 4 ϵ-Decreasing Algorithm
1: Given: fixed ϵ0 ∈ (0, 1)

2: Initialize ϵi
T
i=1 such that each ϵi = min{1, ϵ0 log(t)

t }
3: For each arm k = 1, . . . ,K, set µ̂k = 0
4: for t=1,. . . , T do
5: With probability ϵt select a random arm; else, choose ak such that k = argmaxkµ̂k

6: Play arm k and observe reward rk
7: Update µ̂k

8: end for

2.2 UCB

The Upper Confidence Bound (UCB) algorithm introduced in Auer et al. (2002) is a direct application
of the exploration versus exploration tradeoff in multi-armed bandit algorithms. This algorithm makes
an important constraint on the problem formulation - each arm is associated with a Bernouilli (coin
flip) distribution, and thus the rewards are always either zero or one.

For each round, this algorithm assigns a score to each arm based off of the mean seen reward thus
far from that arm and the number of times that arm has been sampled thus far. At each iteration,
the algorithm is simply to pick the arm with the highest score. Concretely, the score of arm i after t
rounds is:

UCBt(i) = µ̂t,i +

√
ln(t)

nt,i

In the above equation, µ̂t,i is the mean of all of the rewards we have seen in previous rounds after
having selected arm i. nt,i is the number of times which we have selected arm i thus far.
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The first term, µ̂t,i, indicates a clear exploitative strategy: we want to pick an arm which has resulted

in high reward in the past. The second term,
√

ln(t)
nt,i

, forces the algorithm to also explore; the term
keeps increasing as we play more rounds, and we will have to occasionally visit every arm in order to
keep the term down and allow the algorithm to exploit.

2.2.1 Analysis

Much of this analysis is inspired by lecture notes by Agrawal (2019). The structure of the exploration
term in the definition UCBi(t) has a profound connection to the Chernoff Bound which allows this
algorithm to have excellent theoretical guarantees for expected regret.

Lemma 9 If µ̂t,i is the calculated mean of the rewards from selecting arm i seen after t rounds and

µi is the true mean reward received from selecting arm i, P (|µi − µ̂t,i| ≥
√

ln(t)
nt,i

) ≤ 2
t2 .

Proof. Since we have constrained our rewards to come from Bernouilli random variables, we can
apply a corollary from the Chernoff Bound called Hoeffding’s Inequality which holds for the mean of
i.i.d Bernouilli variables. It states:

P (|X̄ − E[X̄]| ≥ δ) ≤ 2e−2δ2n

Applying this to our calculated mean with δ =
√

ln(t)
nt,i

, we immediately get the result we want:

P (|µi − µ̂t,i| ≥

√
ln(t)

nt,i
) ≤ 2e

−2(
ln(t)
nt,i

)nt,i
= 2t−2

Intuitively, this lemma means that that the exploration term is an high probability upper bound on
the error of µ̂t,i. We can use this fact to make a powerful claim about the probability that we make a
suboptimal selection:

Lemma 10 At any point t, given that we have visited a suboptimal arm nt,i ≥ 4 ln(t)
(µ∗−µi)2

times, the
probability of selecting i is less than or equal to 4

t2 .

Proof. Let i∗ be the correct optimal choice. The only way we pick a suboptimal arm i is if
UCBt,i ≥ UCBt,i∗ .

UCBt,i = µ̂t,i +
4 ln(t)

(µ∗ − µi)2
≤ µ̂t,i +

µ∗ − µi

2

given that nt,i ≥ 4 ln(t)
(µ∗−µi)2

.

Now, using Lemma 9, given that nt,i ≥ 4 ln(t)
(µ∗−µi)2

, we know that |µi − µ̂t,i| <
√

ln(t)
nt,i
≤ µ∗−µi

2 with

probability at least 1− 2
t2 . Then, adding |µi − µ̂t,i| to both sides of the expression above, we get

UCBt,i ≤ µi + (µ∗ − µi) = µ∗

Now, applying Lemma 9 to i∗, we get | ˆµt,i∗ − µ∗| <
√

ln(t)
nt,i∗

with probability at least 1− 2
t2 . Then,

algebraicly, UCBt,i∗ = ˆµt,i∗ +
√

ln(t)
nt,i∗

> µ∗.

Thus, we have UCBt,i < UCBt,i∗ with probability at least 1− 4
t2 by union bound. If this is the case,

we will not pick suboptimal arm i. Then, the probability of selecting i is less than or equal to 4
t2 .

This leads to the following upper bound on the expected number of pulls of any given suboptimal
arm i:
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Lemma 11 For any suboptimal arm i, E[nt,i] ≤ 4 ln(t)
µ∗−µi

+ 8.

Proof.

E[nt,i] ≤
4 ln(t)

(µ∗ − µi)2
+ E[nt,i|nt,i ≥

4 ln(t)

(µ∗ − µi)2
]

E[nt,i] ≤
4 ln(t)

(µ∗ − µi)2
+
∑
t

4

t2
≤ 4 ln(t)

(µ∗ − µi)2
+ 8

E[nt,i] ≤
4 ln(t)

µ∗ − µi
+ 8

This leads to the following theorem:

Theorem 12 Using the UCB algorithm, E[Regret] ≤
∑

i(4 ln(T ) + 8(µ∗ − µi)).

Proof.
E[Regret] =

∑
i

(E[nT,i] ∗ (µ∗ − µi)) ≤
∑
i

(4 ln(T ) + 8(µ∗ − µi))

by direct application of Lemma 11

This result is quite a bit better than the regret guarantee of the epsilon-greedy algorithm. The UCB
algorithm achieves logarithmic regret, an order of magnitude better than the previous algorithm. In
fact, according to Definition 5, this performance is the best we can hope for.

2.3 Thomson Sampling

Thomson Sampling is the first algorithm for the problem, proposed by Thompson (1933) in 1933
for allocating experimental effort in two-armed bandit problems arising in clinical trials Russo et al.
(2017). The algorithm was largely ignored until recently when Chapelle and Li (2011) displayed its
strong empirical performance.

2.3.1 Thompson Sampling for Bernoulli Bandits

Thompson (1933) mostly focused on Bernoulli bandits with two arms, and the algorithm is mostly
applied with the Bayesian assumption to stochastic bandits, such that the probability of success for
each arm is drawn from some fixed distribution. Therefore we will present the algorithm for Bernoulli
bandits and discuss some extensions to the general stochastic bandit problem. We will start with the
definition of Bernoulli bandit.

Definition 13 (Bernoulli Bandit) Suppose there are K actions, and when played, any action yields
either a success or a failure. Each action k ∈ {1, . . . ,K} produces a success with probability
θk ∈ [0, 1], which is unknown to the agent, but fixed over time. The reward for each success is 1 and
0 otherwise.

Therefore, from the definition of the Bernoulli Bandit, we can see the success probabilities
(θ1, . . . , θK) can be estimated through experimentation. The algorithm for Bernoulli bandits main-
tains Bayesian priors on the Bernoulli means θk’s. Thus the reward can be conveniently modeled with
Beta distribution since the Beta distribution is the conjugate prior for Bernouilli random variables.

The Thompson Sampling algorithm will assume an initial prior of Beta(1,1) for all θk, which is the
uniform distribution on (0,1). At each time step t, after having observed Sk(t) successes with reward
1 and Fk(t) failures with reward 0 in rk(t) = Sk(t) + Fk(t) rounds of playing arm k, the algorithm
will update the distribution on θk as Beta(Sk(t) + 1, Fk(t) + 1). The algorithm will then sample
from the posterior distributions for θk’s and plays the arm with maximum probability of its θk being
the largest. The algorithm can be summarized as follows:
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Algorithm 5 Thompson Sampling for Bernoulli Bandits
1: For each arm k = 1, . . . ,K, set Sk = 0, Fk = 0
2: for t=1,2,. . . do
3: for k=1,. . . , K do
4: Sample θ̂k ∼Beta(Sk + 1, Fk + 1)
5: end for
6: k ← argmaxk θk
7: Play arm k and observe reward rk
8: (Sk, Fk)← (Sk + rk, Fk + 1− rk)
9: end for

2.3.2 Thompson Sampling for General Stochastic Bandit

The extension of Thompson Sampling to the general stochastic bandit is very similar to that for
Bernoulli Bandits. The algorithm will draw a random sample from the prior distribution p, and apply
the actions that maximize the expected reward. If there are a finite set of possible observations yt, the
expectation will be

Eqθ̂
[r(yt)|xt = x] =

∑
o

qθ̂(o|x)r(o)

Then the distribution p is updated by conditioning on the realized observation ŷt. If θ is restricted to
values from a finite set, then by Bayes rule, this conditional distribution will be

Pp,q(θ = u|xt, yt) =
p(u)qu(yt|xt)∑
v p(v)qv(yt|xt)

Therefore we can summarize the algorithm as follows:

Algorithm 6 Thompson Sampling for General Stochastic Bandit
1: for t=1,2,. . . do
2: Sample θ̂ ∼ p
3: xt ← argmaxx∈X Eqθ̂

[r(yt)|xt = x]
4: Play arm xt and observe reward yt
5: p← Pp,q(θ ∈ ·|xt, yt)
6: end for

Theorem 14 For the N-armed stochastic bandit problem, Thompson Sampling algorithm has ex-
pected regret

E[R(T )] ≤ O

( N∑
a=2

1

∆2
a

)2

lnn


in time T , where ∆i = θ∗ − θi, and θ∗ is the unique optimal arm. Agrawal and Goyal (2011)

Proof. We will present the intuition of the proof; for the full details, the original proof is available in
Agrawal and Goyal (2011).

At any step T , we divide the set of suboptimal arms into two subsets: saturated and unsaturated. The
set C(t) of saturated arms at time t is the set of arms a that have already been played a sufficient
number of times (La = 24(lnT )/∆2

a)) so that with high probability, θ̂a(t) is tightly concentrated
around θa. Then we can estimate the number of steps between two consecutive plays of the optimal
arm. After jth play, the (j + 1)th play of the optimal arm k will occur at the earliest time t such that
θk(t) > θi(t),∀i ̸= k. We can approximate the number of steps before θk(t) is greater than θa(t) of
all saturated arms a ∈ C(t) using a geometric random variable. However, even if θk(t) > θa(t) for
all saturated arms a ∈ C(t), it may not get played due to play of an unsaturated arm u with a greater
θu(t). Call this event an "interruption" by unsaturated arms. It can be shown that if there have been j
plays of the optimal arm with s(j) successes, the expected number of step until the (j + 1)th play
can be upper bounded by the product of the expected value of the geometric random variable, and the
number of interruptions by the unsaturated arms. The toal number of interruptions by unsaturated
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arms is bounded by
∑N

u=2 Lu since an arm u becomes saturated after Lu plays. Then we can derive
the bound assuming the worst case allocation of these

∑
u Lu interruptions.

Note that the major difference between this extended general Thompson Sampling and the Bernoulli
Thompson Sampling is how we calculate the expected distribution and how we update the distribution
given the observed output.

2.3.3 Advantage and Limitations of Thompson Sampling

The reason that Thompson Sampling works is because as information gets collected, beliefs about
action rewards are carefully tracked and updated. By sampling actions according to the updated
posterior probability that are optimal given existing experiments, the algorithm still continues to
sample all actions that could be optimal, and discarding those that are unlikely to be optimal.

However, Thompson sampling does have some limitations that make it not suitable for certain
problems. For problems that do not require exploration, it is usually outperformed by greedier
algorithms that do not spend so much time exploring. In addition, for time-sensitive problems,
Thompson sampling might not be as appropriate as algorithms that exploit a high performing
suboptimal action. And for problems requiring careful assessment of information gain, Thompson
sampling’s strategy of testing the most promising actions might not be optimal as well.

3 Current Approaches

In this section, we provide an overview of three state-of-the-art approaches and applications of the
multi-armed bandit problem.

3.1 Doubly-Adaptive Thompson Sampling

Dimakopoulou et al. (2021b) present a variant on Thompson sampling that utilizes causal inference
to adaptively reweight the terms of a doubly-robust estimator of the expected reward for each arm.
Because the arms are adaptively selected in both Thompson sampling and UCB, the sample averages
of the arm rewards are biased and nonnormal. Standing approaches which attempt to debias these
estimates do so at the cost of failing to satisfy the variance convergence property; thus the central
limit theorem does not apply to them and they also are not asymptotically normal.

3.1.1 Previous Work

The Doubly-Adaptive Thompson Sampling (DATS) algorithm builds off of several previous works.
We provide some useful definitions and background material in this section. Dimakopoulou et al.
(2021a)

Definition 15 (Propensity Score) The propensity score of arm i at time t is the probability with
which it is chosen, given the history Ht−1 of the previously chosen arms and their outputted rewards:

πt,i = P[at = i|Ht−1]

Definition 16 (Inverse Propensity Score Weighting (IPW)) Hadad et al. (2021) Assuming that the
propensity scores are accurate, IPW provides an unbiased estimate of the true mean reward of an
arm I:

rIPW
t,i =

1

t

t∑
s=1

1[as = i]

πs,irs

Definition 17 (Efficient Score) The efficient score is an update to the previous estimate of the reward
using the IPW and the newly acquired reward:

Γs,i = rs1,i +
1[as = i]

πs,i
(rs − rs1,i)
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Definition 18 (Doubly-Robust Estimator (DR)) Assuming that the propensity scores are accurate,
DR shifts the previous estimate of the reward mean using the newly acquired reward and the IPW:

rDR
t,i =

1

t

t∑
s=1

Γs,i

Definition 19 (Adaptive Doubly-Robust Estimator (ADR)) Luedtke and van der Laan (2016)
Rather than the DR’s uniform weight of 1

t , ADR uses a nonuniform weight ws,i which is adapted to
Hs−1.

rADR
t,i =

∑t
s=1 ws,iΓs,i∑t

s=1 ws,i

For the purposes of this paper, we define ws,i =
√
πs,i.

3.1.2 Doubly-Adaptive Thompson Sampling Algorithm

Now we describe the doubly-adaptive Thompson Sampling Algorithm (DATS). Directly building
off of Adaptive Doubly-Robust Estimators, DATS assumes that the sampling distribution of arm i at
time t is chosen to be normal N (µ̂t,i, σ̂

2t, i), such that:

µ̂t,i = rADR
t,i

σ̂2
t,i =

∑t
s=1 πs,i[(Γ− µ̂t,i)

1]

(
∑t

s=1

√
πs,i)2

The probability of sampling arm i at time t is the same as the probability for which a sample reward
drawn from arm i’s distribution is larger than all other sample rewards drawn from all other arms
(i.e. the probability that, if we were to pull all the arms, arm i has the optimal reward). To prevent
diminishing propensity scores, we also remove any arms for which this probability is falls below a
threshold 1

T .

Algorithm 7 Doubly-Adaptive Thompson Sampling Algorithm
1: For each arm k = 1, . . . ,K, set Sk = 0, Fk = 0
2: for i=1,. . . , K do
3: Play arm i and observe reward r0,i
4: Initialize r̂0,i = r0,1, π1,i =

1
K

5: end for
6: for t=1,2,. . . do
7: From distribution at Multinomial(At, (πt,a)a∈At

), draw an arm at from set of optimal
arms At, play it, and observe reward rt

8: Calculate efficient score and update sampling distribution for arm t accordingly
9: Remove arms that fall below a threshold value of draw probability

10: Compute the new propensity scores
11: end for

3.1.3 Significance of DATS

Empirical experiments performed by Dimakopoulou et al. (2021b) show that DATS improved
performance over A-B testing and the previous variants on Thompson Sampling in terms of both
cumulative regret and sample complexity. This demonstrates that the adaptive weights schema used
by DATS allows it to use the unbiased sample mean without suffering from uncontrolled variance,
unlike previous approaches. Dimakopoulou et al. (2021b) also show theoretically that the expected
regret for DATS is upper bounded by O(

√
K2T log(T )) for the K-arm bandit case.

More practically, for applications such as web-service testing or clinical trials where resources are
limited and other approaches (such as A/B testing) may be cost-prohibitive, DATS demonstrates an
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alternative where reliable inference can be produced even in the online setting. In improving both the
reward at test time and the sample complexity needed to identify the optimal arm, DATS shows clear
improvement over previous approaches and is a promising improvement on the standard Thompson
sampling approach.

3.2 Variational Bayesian Optimistic Sampling

Variational Bayesian optimistic sampling (VBOS) is a Bayesian approach to online learning
O’Donoghue and Lattimore (2021). At each step, the VBOS algorithm solves a convex optimization
problem over the simplex. The solution to the problem will be a policy that satisfies a particular
optimal condition. VBOS is similar to the Thompson Sampling algorithm mentioned before.

In O’Donoghue and Lattimore (2021), the authors first provide an upper bound for the conditional
expectation. They denote by ΨX : Rd → R ∪ {∞} the cumulant generating function of X − E[X]

ΨX(β) = logE[exp(βT (X − E[X]))]

Then they present the following lemma for bounding the conditional expectation:

Lemma 20 Let X : Ω→ R be a random variable on (Ω,F ,P) satisfying X ∈ L1, and let A ∈ F
be an event with P(A) > 0. Then for any τ > 0,

E[X|A] ≤ E[X] + τΨX(1/τ)− τ logP(A)

From lemma 20 we can deduce the following theorem:

Theorem 21 Let X : Ω → R be a random variable such that the interior of the domain of ΨX is
non-empty, then under the same assumptions as Lemma 18 we have

E[X|A] ≤ E[X] + (Ψ∗
X)−1(− logP(A))

Then using Theorem 21 we can derive the maximal inequality to bound the regret

Lemma 22 Let µ : Ω → RA, µ ∈ LA
1 be a random variable, let i∗ = argmaxi µi and denote by

Ψi := Ψµi
, then

E[max
i

µi] ≤
A∑
i=1

P(i∗ = i)
(
E[µi] + (Ψ∗

i )
−1(− logP(i∗ = i))

)
Then we need to introduce a ‘optimism’ map Gtϕ : ∆A → R which for a random variable µ : Ω→ RA

distributed according to ϕ(·|Ft) is given by

Gtϕ(π) :=
A∑
i=1

πi

(
Et[µi] + (Ψt∗

i )−1(− log πi)
)

where ∆A denotes the probability simplex of dimension A− 1 and Ψt
i = Ψµi|Ft

With the notation, we can now define the optimist set as the following:

Definition 23 (Optimistic set) Let µ : Ω → RA be a random variable distributed according to
ϕ(·|Ft), then the optimistic set is

Pt
ϕ := {π ∈ ∆A|Et[max

i
µi] ≤ Gtϕ(π)}

Now we can define the variational Bayesian optimistic sampling algorithm. VBOS produces a policy
πt ∈ Pt

ϕ at each round by construction. The maximum is guaranteed to exist since ∆A is compact
and Gtϕ is continuous. We cam summarize the VBOS as follows:

Algorithm 8 VBOS for bandits
1: for t=1,2,. . . , T do
2: compute πt = argmaxπ∈∆A

Gtϕ(π)
3: sample at ∼ πt

4: end for

11



The paper O’Donoghue and Lattimore (2021) also gives an analysis of the regret for VBOS, which
states that

Lemma 24 Let ALG produce any sequence of policies πt for t = 1, . . . , T that satisfy πt ∈ Pt
ϕ, then

BayesRegret(ϕ,ALG, T ) ≤ E
T∑

t=1

A∑
i=1

πt
i(Ψ

t∗

i )−1(− log πt
i)

With the help of Lemma 24, we can prove the following theorem:

Theorem 25 Let ALG produce any sequence of policies πt for t = 1, . . . , T , that satisfy πt ∈ Pt
ϕ

and assume that both the prior and reward noise are 1-sub-Gaussian for each arm, then the Bayes
regret is

BayesRegret(ϕ,ALG, T ) ≤
√

2AT logA(1 + log T ) = Õ(
√
AT )

Proof. Since the prior and noise term are 1-sub-Gaussian for each arm, we can bound the cumulant
generating function of µi at time t as

Ψt
i(β) ≤

β2

2(nt
i + 1)

where nt
i is the number of observations of arm i before time t. Then we have the following bound for

y ≥ 0

(Ψt∗

i )−1(y) ≤

√
2y

nt
i + 1

Combining this with Lemma 24, we have

BayesRegret(ϕ,ALG, T ) ≤ E
T∑

t=1

A∑
i=1

πt
i(Ψ

t∗

i )−1(− log πt
i)

≤ E
T∑

t=1

A∑
i=1

πt
i

√
−2 log πt

nt
i + 1

≤ E

√√√√ T∑
t=1

H(πt)

T∑
t=1

A∑
i=1

2πt

nt
i + 1

which follows from the Cauchy-Schwarz inequality. To conclude the proof we use the fact that
H(πt) ≤ log(A) and the pigeonhole principle.

3.3 Neural Architecture Search via Combinatorial Multi-armed Bandit

Finally, we would like to mention the work of Huang et al. (2021), a fascinating expansion of
the multi-armed bandit formulation to address a problem which is relevant for practical machine
learning. The authors approach the problem of Network Architecture Search (NAS), a complicated
high-dimensional search problem which aims to find the parameters and structures of a successful
deep neural network before it is trained. Since this search is conducted over a potentially infinite
space, NAS approaches often use reinforcement learning formulations such as the multi-armed bandit.

In this work, the authors formulate the NAS problem as a Combinatorial Multi-Armed Bandit problem.
In this modification of the original problem, a global multi-armed bandit problem is decomposed
into many local small multi-armed bandit problems. At each iteration, a global multi-armed bandit
algorithm picks which local problem to execute, and a local algorithm will make the decision for that
smaller problem.

At the heart of this transformation is a monoticity assumption. This assumption is that the the global
reward is approximated well by the sum of the local rewards. Concretely,
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µg ≈
∑
i

µi

where µg is the mean global reward and each µi is the mean reward for a particular local subproblem.
The intuition behind this assumption is that if each local subproblem is relatively independent, then
each one can be optimized separately, cutting down the overall size of the search space. This approach
clearly is successful in network architecture search, in which different architecture parameters
apparently operate independently of each other.

This tiered structure allows the overall algorithm to explore the high dimensional search space much
more efficiently than a standard bandit algorithm. In their evaluation section, the authors show that
this combinatorial approach achieves results that are comparable to the state of the art in 1/20 of the
overall training time. This unique way of modifying the multi-armed bandit formulation leads to a
powerful benefit for end users seeking to explore neural network architectures.

4 Conclusion

In this report, we began by introducing the setup of the problem and the main way multi-armed
bandit algorithms are evaluated: regret. We continued by describing and mathematically analyzing
three classic algorithmic approaches to the problem: epsilon-greedy, upper confidence bound, and
thompson sampling. Finally, we explored three modern additions to the literature - an expansion upon
thompson sampling, an expansion based on bayesian samping, and a combinatorial decomposition
into local and global bandits. The multi-armed bandit problem is a foundational and important
formulation in reinforcement learning and online learning algorithms, and continues to be a rich
subfield for future work.
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