
Dimension Reduction on Pre-Trained Language
Models in Natural Language Processing

Huihan Li, Tianyu Gao, Mengzhou Xia
Department of Computer Science

Princeton University
{huihanl,tianyug,mengzhou}@princeton.edu

Abstract

Pre-trained language models have achieved great success in the field of natural
language processing, gaining state-of-the-art results on almost all benchmarks and
making great impact in industrial applications. However, those models are usually
computational expensive, making it less accessible to researchers and practitioners.
In this work, we use the Johnson-Lindenstrauss Lemma and apply dimension
reduction on the Transformer-based pre-trained language models. We explore both
reducing the dimension of the key-value pairs in the attention module and the
sequence length. Extensive experiment results demonstrate that our method can
effectively reduce the computational cost while maintaining good performance on
sentence-level tasks. We also deliver more findings regarding different strategies
of dimension reduction and hope our work can shed light on future research of
efficient pre-trained models.

1 Introduction

Pretraining with unsupervised objective and finetuning on downstream tasks has become the most
effective paradigm for training language models in Natural Language Processing. Among different
model architectures, Transformers [27] have become ubiquitous in the modern deep learning stack
and have seen widespread impact across not only language [5, 21, 3], but also computer vision [6, 1],
reinforcement learning [18] and computational biology [25].

However, training transformers is costly [24, 19]. As a result, researchers often have to work
around limited computing budgets when figuring out the best ways to train their models. Therefore,
discovering empirical scaling methods of transformer models is a research area that has drawn
considerable attention [11, 9]. Researchers have attempted to scale the models across a variety of
axis, such as model size, dataset size, or embedding size.

The Johnson-Lindenstrauss Lemma [10] has been widely applied in dimension reduction, and has
provided the important theoretical foundation for many recent works that use random projections as a
scaling technique for language models [29, 12].

In this work, we explore applying the Johnson-Linderstrauss Lemma to the pre-trained Transformer
models. To be more specific, we explore two ways of using dimension reduction on Transformers.
The challenge is that we cannot touch the parameters of the pre-trained models, since they are trained
on billions of tokens using thousands of GPU hours. This limits our options like directly reducing the
hidden dimensions. We instead investigate the angles of reducing the hidden vector for the attention
module in Transformers and reducing the length as a dimension.

In the first part of our work, we explore applying dimension reduction on the attention module.
Self-attention module takes a large part of memory and computation budget within Transformer

Preprint. Under review.

models. We specifically apply dimension reduction on the key and value vectors of the attention layer.
By conducting extensive experiments, we find that

• Dimension reduction in attention leads to decent performance on single sentence tasks, with
only marginal loss of results.

• For document-level tasks or tasks heavily relying on the cross-token dependency, dimension
reduction in attention does not work well.

Besides hidden size, sequence length is another dimension that increases computation of the Trans-
former models linearly (in feed-forward layers) or even quadratically (in self-attention). When the
sequence length exceeds a certain number, e.g., 1024, the training for the model could easily crash
because of out of memory errors. Reducing sequence length to improve model efficiency while
preserving model performance is an interesting direction to explore. As second part of the work, we
investigate shrinking sequence length through random projection, either a fixed one or a dynamically
sampled one, and finetune the model to update its own parameters to see how much drop it will result
in model performance. We apply the random projection sampled from a normal Gaussian variable to
input of different layers in a pre-trained language model, the backbone of which is a Transformer
model. It’s equivalent to dropping tokens from sequences randomly. From extensive experiments on
two sentiment classification tasks, we find that

• Sentence level tasks are more robust to dimension reduction than document level tasks.

• Dropping the tokens in top layer inputs hurts performance more than dropping the tokens in
lower-layer inputs.

• Reducing the sequence length from 128 to 8 hurts performance drastically in bottom layers
but preserves performance well when reducing sequence level in top layers, indicating that
the information in top layers is mostly redundant and could be freely eliminated.

• The model can fit well for either dynamic or fixed Gaussian projection, showing neural
network’s strong adaptability.

2 Related Works

2.1 Language Models

Natural language involves a vast number of words and structures which can introduce a wide range
of ambiguities that machines are unable to process. The goal of language modeling is to transform
the task of text processing to calculating the probability of a sequence of tokens occurring in a text
corpus, since the only task machines are designed to perform is computing numbers.

Language models are mainly based on the Markov assumption [15], which claims that the distribution
of a word depends on some fixed number of words that immediately precedes it. Although not
entirely true, this assumption makes the calculation of probability distribution of word sequences
much simpler by constraining it to a fixed length of tokens.

The n-gram language model is developed to construct the joint probability distribution of a sequence
of words based on the Markov assumption. In an n-gram model, the process of predicting a word
sequence is broken up into predicting one word at a time. The probability of a word is based on a
history of preceding words, whereby the history is limited to m words:

p(wn | w1, w2, . . . , wn−1) ≈ p(wn | wn−m, . . . , wn−2, wn−1)

The joint probability of p(w1, w2, . . . , wn) is a product of the probabilities of all words in the
sequence word:

p(w1, w2, . . . , wn) ≈ p(w1)p(w2 | w1)...p(wn | wn−m, . . . , wn−2, wn−1)

The n-gram models generate conditional probability tables by calculating the number of times a word
appear in the training corpus:

2

p(wn | wn−m, . . . , wn−2, wn−1) =
c(wn−m, . . . , wn−1, wn)∑
w′ c(wn−m, . . . , wn−1, w′)

While n-gram model is convenient and simple, it also has many drawbacks. One problem is sparsity,
where a simple n-gram model will assign zero-probability to all of the n-grams that does not appear
in the training corpus. The most widely adopted method is to use various smoothing techniques [4, 7].
Another problem is the exponentially many unique n-grams to be discriminated from each other. The
n-gram model can be thought of as a giant look-up table that simply remembers the frequency of each
n-gram, so the huge number of possible sequences make the size of the model exponential to the size
of the vocabulary. Most importantly, the n-gram model does not utilize any linguistic information
of the words, i.e. it is unable to recognize the semantic or syntactic relationships between words,
sentences or documents.

Word Embedding is later proposed to address these drawbacks of count-based n-gram language
models. A word embedding is a vector that represents a word, where each dimension in the vector
signifies a "feature" of the word. The goal of representing words as vectors is to incorporate the
context that the words appear in into the values of the vectors, so that words that appear in similar
contexts have similar vector values. The probability of the next word can then be calculated by using
the vector values of previous words.

Word2Vec [14] and GloVE [20] are representative methods for constructing word embeddings. These
methods use an unsupervised learning technique by feeding the language model with raw text without
label, with the goal of learning the relationships between words. The similarity of words is then
calculated using cosine-similarity of the word embeddings.

These word embeddings enables the use of Neural Networks (NN) for language modeling in con-
tinuous space. Examples of Neural Networks include Feed-Forward Neural Network (FFNN) [2]
and Recurrent Neural Network (RNN) [16] that can automatically learn features and continuous
representation.

Despite its effectiveness, these word embeddings are context-independent (or static), which do not
take into account the syntactic characteristics of words or the different semantics of words under
different contexts (e.g. "play" has different meaning when used as a verb or a noun).

In order to address both the complex and ambiguous characteristics of words, it is important to apply
bi-directional training to language models. BERT (Bidirectional Encoder Representations from
Transformers) [5] introduced a novel pretraining technique named Masked Language Modeling
(MLM) that enabled the neural language model to have a deeper understanding of the context through
bi-directional training. In short, MLM first masks out some tokens from the input sentences using
a special mask token [MASK] and then trains the model to predict the masked tokens by the rest of
the tokens. MLM is usually solved as classification problem. The masked sequences is first fed into
a neural encoder, and then its output vectors are further fed into a softmax classifier to predict the
masked token.

However, simple bidirectional learning is not enough for natural language modeling. In reality, not
every word in the close context of a word is effective for its prediction, and useful words might in
fact exist in the long history. In addition to learning context from both directions, BERT also makes
use of the Transformer architecture [27], an attention mechanism that learns contextual relations
between words (or sub-words) in a text with long dependency. This mechanism helps the model to
obtain the target areas that need to be focused on by a set of attention coefficients for each input.

2.2 Transformer Architecture

A Transformer network is composed of L Transformer blocks with each block consisting of a
multi-head self-attention (MHSA) layer, and a feed-forward (FFN) layer. Denote the input matrix
to the self-attention layer by X ∈ Rl×d, which is either the embedding matrix, or the output of
the previous Transformer block1 and l, d denote the sequence length and hidden size respectively.
X is transformed into a query, a key and value matrix through three linear layers, WQ ∈ Rd×dQ ,
WK ∈ Rd×dK and WV ∈ Rd×dV (bias terms are omitted):

1We omit a dimension of batch size for simplicity.

3

Xq = XWQ, Xk = XWK , Xv = XWV (1)

The output dimension of Xq, Xk and Xv is split into h heads, e.g., the transformed query matrix
Xq = {X1

q , X
2
q . . . , X

h
q | Xi

q ∈ Rl×dq} where dq = dQ/h. Similarly, we define dk = dK/h,
dv = dV /h and split Xk and Xv . The attention operation is performed on each head i = 1, 2, . . . , h:

Xi
a = softmax

(
Xi

q(X
i
k)

T

√
dk

)
Xi

v. (2)

Concatenating outputs from all heads gives Xa ∈ Rl×dV and it is further transformed via an output
linear layer, parameterized by WO ∈ RdV ×d:

Xo = Dropout(XaWO) ∈ Rl×d. (3)

The final output of multi-head attention is given by

Xm = LayerNorm(Xo +X). (4)

The output from the self-attention is then fed into a feed-forward layer, consisting of an up-projection
and a down-projection layer, parameterzied by WU ∈ Rd×4d and WD ∈ R4d×d:

Xi = gelu(XmWU) ∈ Rl×4d (5)

Xd = Dropout(XiWD) ∈ Rl×d (6)

The final FFN output Xl is calculated as follows:

Xl = LayerNorm(Xm +Xd), (7)

which is the input of the next Transformer block.

2.3 Dimension Reduction

The use of embedding vectors to represent natural language tokens opens up the possibility of
applying dimension reduction on these vectors. Since the word embedding vectors are usually
high-dimensional, the cost of computation is usually very high. The goal of dimension reduction in
language modeling is to make comparisons among embeddings more efficient but still preserving
their relative properties.

The Johnson-Lindenstrauss Lemma [10] provides an effective method for finding a linear mapping f
on the original dimension to a much lower dimension, so that the distance between all pairs of points
in the original space is preserved. Given n points v1, ..., vn ∈ Rd, there exists a linear mapping
f : Rd → Rm, where m = O(logn

ϵ2), so that

(1− ϵ)||vi − vj ||2 ≤ ||f(vi)− f(vj)||2 ≤ (1 + ϵ)||vi − vj ||2

In recent years, Johnson–Lindenstrauss Lemma has also been successfully used together with neural
networks [23, 17]. In our work, we explore dimension reduction on pre-trained language models,
more specifically the on the transformer architecture.

3 Dimension Reduction on Pre-trained Language Models

3.1 Dimension Reductions on Attention

The calculation of the attention scores takes a large proportion of the Transformer network computa-
tion time. Given that the attention calculation complexity is quadratic to the input sequence length,

4

any improvement over the attention module will significantly boost the efficiency of the Transformer
model.

Because we only apply the dimension reduction in the fine-tuning stage, we cannot modify any
pre-trained parameters or change any of the dimensions. However, we can manipulate the query and
key vectors, i.e., Xi

q and Xi
k in Eq. (2). We are going to define a mapping f : Rdk → Rm and map

Xi
q and Xi

k to Rm. Then Eq. (2) becomes

Xi′
a = softmax

(
f(Xi

q)f(X
i
k)

T

√
dk

)
Xi

v. (8)

Now we analyze the computation complexity change after we reduce the dimension of the key vectors
and the query vectors. The original cost of computing the attention scores is

costatt = O(l2dk), (9)

where l is the sequence length and dk is the dimension of the key vectors (and the query vectors).
After dimension reduction, the computing cost will be reduced to,

cost′att = O(l2m+ ldkm). (10)

where m is the reduced dimension. Note that in a typical setting, l is much larger than dk, let alone m,
so l2m will be the dominate term. For example, with a BERT-base model, one of the most popular
configuration of Transformer-based pre-trained language models, dk = 64. If we use l = 1024 and
m = 8, we’ll have approximately 7.5x speedup in the attention module.

In the following, we introduce how we generate f . We start with the random Gaussian matrix: let G
be a dk ×m random matrix with each entry a Gaussian random variable, i.e., Gi, j ∼ N (0, 1). And
then let Π = 1√

dk
G, we have,

f(x) = Πx. (11)

3.2 Dimension Reduction on Tokens

Text data come in the format of sequences of tokens, where each sequence consists of several tokens.
However, for sequence level tasks such as sequence classification, not all tokens of the sequence
are useful. Previous works have explored techniques to prune tokens from the input with heuristic
measurements based on attention scores[28, 8]. In this section, we apply random projections on
either the input of the network or intermediate representations of the network to shrink the size of the
sequences. Basically, say if we have an input x ∈ Rl×d to any layer of the model, we want to apply a
random projection to X to shrink the size of l to reduce the computation. The random projection
matrix is sampled from a Gaussian random variable G ∼ N (0, 1), and we have Π = 1√

l
G ∈ Rl′×d:

x′ = Πx (12)

After dimension reduction in this layer, the computation cost in all the following layers is reduced
from l to l′ where l > l′. Note that this dimension reduction could be applied to input on all layers,
including before the first layer. Before the first layer, we apply the matrix to the word embeddings
directly and for the following layers, we apply the matrix to hidden states from the previous layer. l′
is empirically decided.

We have two ways to sample Π, one is to fix it throughout the whole finetuning stage, where we tune
the parameters of the models given a fixed Π and the other way is to sample a new Π every time
we conduct an optimization step, so the parameters are tuned to adapt to the Gaussian distribution.
Applying the random projection from a Gaussian distribution is equivalently to dropping tokens
randomly from the sequence. We train the model under both settings to see if finetuning could adapt
well even though we explicitly drop information from the input.

5

Task Input Label

SST-2 The movie was such a waste of time. Positive / negative
MNLI Premise: Two dogs are running on the grass.

Hypothesis: Two dogs are running.
Entailment / Contradiction / Neutral

SQuAD Question: What causes precipitation to fall?
Evidence Passage: ...

gravity (from the passage)

Table 1: Examples of downstream tasks we use for evaluating pre-trained language models.

4 Experiments

4.1 Pre-trained Models

We choose to use BERT [5] as our model for the experiments. We use the most commonly used
configuration, bert-base-uncased from Huggingface Transformers2. The base model has 12
layers, 12 attention heads, and a hidden dimension of 768. It has approximately 110M parameters in
total.

4.2 Downstream Datasets

We evaluate our dimension reduction strategies on four downstream datasets: SST-2 [26], IMDB [13],
MNLI [30], and SQuAD [22]. We introduce them in the following:

• SST-2 is the Stanford Sentiment Treebank dataset. Given a single sentence from movie
reviews, the model needs to do a binary classification of whether the sentence has a positive
sentiment or a negative sentiment. The dataset has 67k training samples.

• IMDB, like SST-2, is also an sentiment classification task. IMDB dataset has 25k training
examples and the average length of the instances is longer than SST-2.

• MNLI is the Multi-Genre Natural Language Inference dataset. Given a premise and a
hypothesis, the model needs to judge whether they have an entailment relationship (the
hypothesis is always true given the premise), a contradiction relationship (the hypothesis is
always false given the premise), or a neutral relationship (the hypothesis could be true given
the premise). MNLI is a large dataset with 392k training examples.

• SQuAD stands for the Stanford Question Answering Dataset, which has 100k ques-
tion/answer pairs. For each testing instance, the dataset provides an evidence passage
from Wikipedia and a question, and the model needs to answer the question by extracting a
span from the evidence passage.

The above four datasets are some of the most commonly used downstream datasets for evaluating
pre-trained language models. Table 1 shows some examples of each of the tasks. They cover three
major categories of NLP tasks: single sentence classification tasks, sentence pair classification tasks,
and sequence labeling tasks. The ways of fine-tuning the pre-trained language models on different
types of downstream datasets are also different, and we introduce them next.

For single sentence classification tasks (here the SST-2 task), we simply concatenate the input
sentence x with the special starting token [CLS] and the special ending token [SEP] as the input of
the pre-trained model,

[CLS] x [SEP],

and take the last layer hidden representation at [CLS] as the sentence representation, which is sent to
a linear classifier to predict the label.

For sentence pair classification tasks (here the MNLI task), we concatenate the premise x1 and the
hypothesis x2, along with the corresponding special tokens,

2https://github.com/huggingface/transformers

6

https://github.com/huggingface/transformers

Task Learning Rate #Epochs Batch Size Max Length

SST-2 2e-5 3 32 128
IMDB 2e-5 3 32 256
MNLI 2e-5 3 32 128

SQuAD 3e-5 2 24 384

Table 2: Hyperparameter settings for downstream tasks.

[CLS] x1 [SEP] x2 [SEP].

Again, we take the hidden representation at [CLS] for linear classification.

For SQuAD, it is more complicated since the prediction is a span. For the input, we concatenate the
question Q and the evidence passage P together,

[CLS] Q [SEP] P [SEP],

and then we predict the start and the end position of the span. Denote Hi as the last layer hidden
representation at the position i. We introduce two new embeddings S ∈ Rd and E ∈ Rd. We
calculate the probability of word i being the start of the answer span as the dot product of the between
the embedding S and the hidden representation Hi, followed by a softmax,

PS
i =

eS·Hi∑l
j=1 e

S·Hj

. (13)

The analogous formula is also applied to calculate PE
i , the probability of word i being the end of the

answer span. Both PS
i and the PE

i are directly used in training, given the span supervision signals.

During inference, we use S ·Hi + E ·Hj as the candidate score for span (i, j), j ≥ i.

We take the hyperparamter settings as shown in Table 2. All trainings incorporate linear scheduling
for the learning rate and warmup. All experiments are run with 3 different seeds and averaged, given
the random nature of our dimension reduction function (except SQuAD, which takes longer time and
usually has smaller variance itself).

4.3 Dimension Reductions on Attention

m 8 16 32 64 (no reduction)

Accuracy 85.02± 0.47 90.10± 0.57 91.36± 0.39 92.74± 0.43
Accuracy (fix) 86.93± 0.32 90.63± 0.60 91.44± 0.39 92.74± 0.43

Table 3: Results for applying dimension reduction in the attention module on the SST-2 dataset.

m 8 16 32 64 (no reduction)

Accuracy 82.10± 0.39 85.13± 0.13 88.56± 0.06 92.32± 0.05
Accuracy (fix) 84.55± 0.11 86.68± 0.04 89.82± 0.18 92.32± 0.05

Table 4: Results for applying dimension reduction in the attention module on the IMDB dataset.

In this section, we introduce the experiment setting for the dimension reduction on attention, demon-
strate the experiment results, and analyze accordingly.

7

Experiment Setting Since we use the bert-base-uncased pre-trained language model, the
hidden dimension size is 768 and there are 12 attention heads. Thus dk = 64. We try three different
levels of dimension reduction: 8 (8x), 16 (4x), 32 (2x).

Regarding ways of generating the projection function f , we have two settings, dynamic Gaussian
and fixed Gaussian. For the dynamic Gaussian, we randomly sample Π for every forward pass; for
the fixed Gaussian, we only sample once for the whole run and use the same Π all the time.

Experiment Results We first demonstrate the dynamic Gaussian setting. Table 3 shows the results
for SST-2, Table 4 shows the results for IMDB, Table 5 shows the results for MNLI, and Table 6
shows the results for SQuAD.

For all the tasks, we can see a clear trend that higher reduction rate will lead to lower performance.
For SST-2, the most simple task among the four, we see that a reduction rate of even 4 times (reduce
to 16) retains most of the performance (only 2% drop). For IMDB, which has longer input sentences,
the drop is more significant, but we can still get decent results when the reduction rate is 2.

For MNLI, where we need to concatenate the two sentences into one as the input, the performance
drop is much larger given larger reduction rate. This is because to solve tasks like MNLI, the model
relies on the attention among different tokens. We also see similar degradation of performance on
other efficient Transformer works on sentence pair tasks like MNLI.

For SQuAD (Table 6), we see that the model with dimension reduction cannot handle reading
comprehension at all (given the performance is extremely low). SQuAD takes much longer input
compared to classification tasks (because we need to concatenate the evidence passage with the
questions), and some question answering problem heavily relies on the question-passage dependencies
to be solved.

Next we compare the dynamic Gaussian setting to the fixed Gaussian setting. Table 3 and Table 3
show both the dynamic and the fixed setting results. We see that there is no significant difference
between the two. However, in IMDB, the fixed setting has slight advantage. We reason that it is due
to the fact that fixed mapping is easier in terms of optimization (so that the model can be trained to
“fit” the distribution).

m 8 16 32 64 (no reduction)

Accuracy 71.42± 0.34 77.38± 0.28 81.32± 0.39 84.83± 0.17

Table 5: Results for applying dimension reduction in the attention module on the MNLI dataset.

m 8 64 (no reduction)

F1 25.71 87.91

Table 6: Results for applying dimension reduction in the attention module on the SQuAD dataset.

4.4 Dimension Reduction on Tokens

In this section, we introduce the experiment setup for dimension reduction on tokens, demonstrate
the experiment results and present analysis accordingly.

Experiment Setting Similar to the previous section, we finetune the bert-base-uncased pre-
trained language model on two sentiment analysis datasets, SST-2 and IMDB. IMDB is a document-
level sentiment analysis dataset, and we use a sequence length of 256 for the vanilla finetuning
setting. And we set l′ to be 128, 64, 32, 16 and 8. For SST-2, we use a sequence length of 128
for vanilla finetuning, and we set l′ to be 64, 32, 16 and 8. We experiment with both the fixed and
dynamic Gaussian setting. For each setting, we run the experiments three times with different random
seeds and report the average score and standard deviation of all three runs. For finetuning, we run
experiments for 3 epochs and for dimension reduction experiments, we train the model for 20 epochs
as we find that it took longer for the model to adapt to the random projection matrices.

8

70

75

80

85

90

Ac
cu

ra
cy

Layer 0

fixed
FT
dynamic

Layer 1

fixed
FT
dynamic

Layer 2

fixed
FT
dynamic

Layer 3

fixed
FT
dynamic

84

85

86

87

88

89

90

91

92

Ac
cu

ra
cy

Layer 4

fixed
FT
dynamic

Layer 5

fixed
FT
dynamic

Layer 6

fixed
FT
dynamic

Layer 7

fixed
FT
dynamic

8 16 32 64 128
Tokens

86

87

88

89

90

91

92

Ac
cu

ra
cy

Layer 8

fixed
FT
dynamic

8 16 32 64 128
Tokens

Layer 9

fixed
FT
dynamic

8 16 32 64 128
Tokens

Layer 10

fixed
FT
dynamic

8 16 32 64 128
Tokens

Layer 11

fixed
FT
dynamic

(a) IMDB

70

75

80

85

90

95

Ac
cu

ra
cy

Layer 0

fixed
FT
dynamic

Layer 1

fixed
FT
dynamic

Layer 2

fixed
FT
dynamic

Layer 3

fixed
FT
dynamic

86

88

90

92

94

Ac
cu

ra
cy

Layer 4

fixed
FT
dynamic

Layer 5

fixed
FT
dynamic

Layer 6

fixed
FT
dynamic

Layer 7

fixed
FT
dynamic

8 16 32 64
Tokens

86

88

90

92

94

Ac
cu

ra
cy

Layer 8

fixed
FT
dynamic

8 16 32 64
Tokens

Layer 9

fixed
FT
dynamic

8 16 32 64
Tokens

Layer 10

fixed
FT
dynamic

8 16 32 64
Tokens

Layer 11

fixed
FT
dynamic

(b) SST-2

Figure 1: Results from applying random projection on BERT model on two sentiment analysis
datasets: SST-2 and IMDB. The random projection is applied to different layers of the model. Fixed
denotes we use one fixed projection matrix sampled from the Gaussian distribution throughout the
whole training process. Dynamic denotes that for each step of optimization, we resample a new
projection matrix. FT denotes the vanilla finetuning results.

9

Experiment Results We show our main results on token reduction in Figure 1 and we can observe
some patterns clearly from the plots. The first observation is that token reduction hurts performance
of the document-level task more than the sequence-level task. On IMDB, when applying the
random projection to the word embeddings (Layer 0), the performance drop is up to over 20 points
while on SST-2, the performance drop is smaller around over 10 points. Consistently, applying the
random projection on top layers preserves performance better. As the number of layer increases,
the performance consistently increases, indicating that randomly dropping the tokens on top layers is
less effective for the classification performance. Notably, reducing tokens to 8 tokens on a top layer
almost does not hurt SST-2 performance at all. This suggests that for classification tasks, there is
redundant information residing in the input and could be eliminated for a higher efficiency. Also, we
observe that as the remaining token dimensions decrease, the performance of the model drops,
which aligns with the intuition that the more information we drop from the model input, the worse
the finetuning accuracy.

Overall, the results suggest the neural networks are able to preserve performance for easy tasks even
when information of the inputs are randomly eliminated. Unfortunately, we are not able to derive a
bound for downstream tasks accuracy because the function onward is non-convex and the training is
largely affected by hyperparameters for the training process.

5 Conclusion

In this work, we explore more efficient Transformer-based pre-trained language models by applying
dimension reduction in the attention module and in the dimension of sequence length. We conduct
extensive experiments to verity the effectiveness of our method and study the impact of different
dimension reduction strategies. We find that with properly set reduction rate and the right place to
apply the reduction, we can maintain decent performance of sentence-level tasks while reducing the
computation cost. We also show that it is challenging to adopt the same strategy for more challenging
tasks like document-level classification, sentence-pair tasks, or reading comprehension. We hope our
findings can boost further research in the field of more efficient and affordable Transformer models.

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia

Schmid. Vivit: A video vision transformer. arXiv preprint arXiv:2103.15691, 2021.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020.

[4] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–394, 1999.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

[7] Joshua T Goodman. A bit of progress in language modeling. Computer Speech & Language,
15(4):403–434, 2001.

[8] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish
Sabharwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-
vector elimination. In International Conference on Machine Learning, pages 3690–3699.
PMLR, 2020.

[9] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for
transfer. arXiv preprint arXiv:2102.01293, 2021.

[10] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space 26. Contemporary mathematics, 26, 1984.

[11] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[12] Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.

[13] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

[15] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. In Interspeech, volume 2, pages 1045–1048.
Makuhari, 2010.

[16] Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukar Burget, and Jan Cernocky. Rnnlm-
recurrent neural network language modeling toolkit. In Proc. of the 2011 ASRU Workshop,
pages 196–201, 2011.

[17] Ido Nachum, Jan Hązła, Michael Gastpar, and Anatoly Khina. A johnson–lindenstrauss
framework for randomly initialized cnns. arXiv preprint arXiv:2111.02155, 2021.

[18] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayaku-
mar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing
transformers for reinforcement learning. In International Conference on Machine Learning,
pages 7487–7498. PMLR, 2020.

[19] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. arXiv preprint arXiv:2104.10350, 2021.

[20] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for
Computational Linguistics.

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[22] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, November 2016.
Association for Computational Linguistics.

11

[23] Benjamin Schmidt. Stable random projection: Lightweight, general-purpose dimensionality
reduction for digitized libraries. Journal of Cultural Analytics, 1(2):11033, 2018.

[24] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of
the ACM, 63(12):54–63, 2020.

[25] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein
structure prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020.

[26] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[28] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 97–110. IEEE, 2021.

[29] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[30] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics.

12

	Introduction
	Related Works
	Language Models
	Transformer Architecture
	Dimension Reduction

	Dimension Reduction on Pre-trained Language Models
	Dimension Reductions on Attention
	Dimension Reduction on Tokens

	Experiments
	Pre-trained Models
	Downstream Datasets
	Dimension Reductions on Attention
	Dimension Reduction on Tokens

	Conclusion

