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1 Background

1.1 Introduction

Games are important indicators of computer capabilities. Researchers have created bots capability of
defeating any human in games such as in chess, go, and even complex, team-based games such as Starcraft
2 and DOTA 2. Hidden-information games, where certain data is only made known to a subset of the
players, has received additional attention recently. In particular, poker has become a popular domain for
research in solving large games of imperfect information. Another interesting example is The Resistance,
which is a popular hidden roles game. This game has been featured in work such as developing a new
form of Monte Carlo Tree Search, MT-ISMCTS [5], game AI development conferences [1], and applying
deep neural networks to role deduction [11].

1.2 Extensive-form game notation

Games are often expressed in extensive-form, which is an intuitive way to consider a complex game. The
following notion is similar to [6]. An extensive-form game consists of a tree, where each non-terminal
node h ∈ H in the tree represents a distinct game history. Each node has is owned by a player or by
‘chance’. Chance nodes have a fixed transition probability to each child. The information sets for player i
partition the nodes owned by that player. An information set I ∈ Ii contains the set of game states that
are indistinguishable to the acting player. Terminal nodes z ∈ Z have utility ui(z) for each player. In this
paper, we restrict ourselves to perfect recall games, which means that players remember the sequence of
actions leading to any node. In other words, there is a single path from every node to the root.

A behavioral strategy σi : I → [0, 1]|A(I)| for a player gives a probability distribution over the actions
A(I) available in each information set I . Let u(σ) be the expected utilities given than players use strategies
σ. Denote πσ(h) to be the probability of reaching node h when players use strategies σ = [σ1, σ2]. Let
I[a] be the node reached from I after taking action a.

Given all other player’s strategies, a best response is a strategy for the remaining player that maximizes
their utility. A Nash equilibrium consists of strategies such that each is a best response to the other
strategies, meaning that no player can improve their expected utility by modifying their own strategy. Any
2-player extensive-form games has an equilibrium. This is easy to see by expressing the game in normal
form. Let all pure strategies for each player A(I1) × · · · × A(I|I|) be options in a bimatrix game, and
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Table 1: Standard mission sizes. * indicates that the mission passes with only 1 failure.
Players Mission number

1 2 3 4 5

5 2 3 2 3 3
6 2 3 4 3 4
7 2 3 3 4* 4
8 3 4 4 5* 5

let the entries of the payoff matrices A, B be
∑

z∈Z ui(z)π
σ(z) where σ1, σ2 are the strategies given

by the row and column indices, respectively. By Nash’s theorem [9], the normal-form game has an
equilibrium. Since all strategies in the extensive form game can be described by convex combinations
of the pure strategies, the equilibrium in the corresponding bimatrix game induces an equilibrium in the
extensive-form game.

2 The Resistance game

2.1 Rules

Similar to games like Mafia, Werewolf, or Secret Hitler, the players in The Resistance are randomly
partitioned into two teams: the resistance and the spies. The spies know the identities of the other spies
while the resistance members are unaware of the other players’ teams, but have a majority. During each
round, players successively propose missions, which consist of a subset of players. All players publicly
vote on whether they approve the mission. A majority of players is required to approve the mission. When
a mission is not approved, another player selects a new mission. When a mission is approved, each player
on the mission secretly determines whether they will pass or fail the mission. Resistance members must
always pass a mission. Missions pass when all members select pass, and fail otherwise. The spies win
the game when three missions fail and the resistance wins when three missions pass, so the game lasts at
most five rounds. The number of spies and members in each mission is predetermined. Table 1 shows
those values for different player counts in a standard game [13].

2.2 Two-player extensive-form game

While each player in The Resistance acts individually and may have knowledge unknown to the other
players, it is possible to formulate The Resistance as a 2-player zero-sum extensive-form game. Given
some public game history (previous missions and their results), let there be some procedure to determine
the next mission. Let us force resistance members to only propose the mission determined by that
procedure and only approve that mission. This insures that in any given round, only that mission could be
sent, since the resistance team has the majority. In this case, the spies must propose and vote exactly like
they would if they were resistance, since otherwise they would reveal themselves for no strategic reason.

We may make the above simplifications since there is no private information that resistance members
could benefit from sharing (unlike in Resistance: Avalon). While resistance members may have private
information, for example when there is a two person mission that fails, there is nothing productive to be
said to the other resistance members, since a spy would make the same public actions.

Now let us consider each team as a player. The resistance team must select a next mission based on the
public history. The spy team knows which people are spies and must choose whether to fail a mission
when that option is available. This defines an extensive-form game.
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2.3 Equilibrium in the 5-person game

For 5-person Resistance, the following strategies are a Nash equilibrium with a 0.3 winrate for
the resistance player:

Theorem 2.1. • Resistance randomly selects 2 people to trust. Attempt 2-person missions with
both people. Attempt 3-person missions with those plus each of the other people in turn.

• Spies pass 2-person missions and fail 3-person missions.

Proof. For the resistance strategy, when randomly selecting 2 people,
(
3
2

)
out of the

(
5
2

)
possible spy

locations have both people as resistance members. In those cases, both size 2 missions must pass and at
least 1 of the size 3 missions must pass. This means that the resistance wins with at least 0.3 probability
regardless of the spy strategy.

With the spy strategy, the size 2 missions always pass regardless of who is placed on them, so they can be
ignored. The game is won for the resistance whenever they can correctly place the 3 resistance members
on one of the 3 size 3 missions. When a mission fails, the resistance gains the information that that
selection of 3 people has a spy, but learns nothing of the other size 3 subsets. The resistance can do no
better than randomly guessing 3 unique size 3 subsets, which succeeds with probability 3/10.

The above shows that neither side can improve their winrate against the other’s strategy, so this is a Nash
equilibrium.

2.4 Reducing the tree size

A first approach for constructing the game tree for P -person Resistance could be as follows:

• Chance randomly selects a subset of indices [P ] to be spies.
• Each resistance node has a child for each size m subsets of [P ], where m is the mission size for

the current round.
• Each spy node has a pass and fail option if there is a spy on the mission.
• When three passing or failing missions are in the history, the node is terminal.

For 7-person resistance, such a game tree would have at least
(
4
2

)(
7
2

)(
7
3

)3(7
4

)2 ≈ 1010 nodes. This would
probably be too big to feasibly solve on basic modern hardware in reasonable time. However, many
of nodes in the above construction are redundant, so it is possible to produce an equivalent game with
significantly fewer states. For the resistance player, the only distinguishing factor between players is
which missions they have been on. Instead of considering all subsets for a mission, the resistance only
needs to consider a single subsets for each strategically different option. Additionally, it is not necessary
to reveal the exact indices of the spies to the spy player at the start of the game. The spy player only
needs to know how many of the people sent on each selected mission are spies. Also, many actions
can be eliminated from the tree, since they would never be chosen at equilibrium, such as re-picking a
mission that has already failed or passing a mission when failing it would give the spies the win. These
simplifications motivate the following game tree construction:

• Maintain a partition P of the indices [P ] such that people in the same subset have been on the
exact same missions. Also maintain the number of spies in each of those subsets.

• Each resistance node has one child for each way of selecting m elements of P such that each
subset can be repeated as many times as its size (in order words, one child for each strategically
different mission). Remove options that contain a previously failed mission.

• After resistance picks a new mission, there may need to be a chance node that updates the
positions of the spies. For each possible combination of spies compatible with the current
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Figure 1: Start of initial tree versus reduced tree. Players are (r)esistance, (s)pies, and (c)hance. Circled
nodes are in the same information set.

number of spies per subset, determine the spy placements in the new partition and transition with
the appropriate probability.

• Spy nodes only exist when there is a spy on the mission and the number of passed missions is
< 2 and the number of failed missions is < 2. Otherwise, the mission always passes when no
spy is on the mission and fails when a spy is on the mission.

• When three passing or failing missions are in the history, the node is terminal.

The above construction leads to only 3.7 · 105 nodes for 7-person resistance, which should be feasible to
solve on basic hardware.
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3 Solving using sequence form

It is possible to construct a linear complementary problem whose solution gives an equilibrium of an
extensive form game. This is the method described in [14].

3.1 Realization weights

We aim to express strategies in a way such that utilities are linear with the weight on each strategy. This is
true of normal form strategies but not behavioral strategies. The issue with the normal form strategies is
that there is exponentially many in the size of the game tree, since an action must be specified for each
information set, even if the information cannot be reached due to the other actions selected. The solution
is use sequences instead of pure strategies. A sequence si ∈ Si consists of a possible list of actions taken
by player i on some path in the game tree.

Selecting realization weights ri : Si → [0, 1] is sufficient to express the strategy space for a player. The
realization weight ri(si) represent the contribution of player i to πi(I), where I is an information set
reachable using si. This is the probability of reaching I given that the other players always make moves
compatible with reaching I . The correspondence with behavioral strategies is

ri(si) =
∏
a∈si

σi(a[I])(a)

where si contains the list of actions a taken by player i from information sets a[I]. Given the realization
weights, the behavior strategies can be computed by

σi(si[I])(a) =
ri(si ∪ {a})

ri(si)

where si[I] is the information set reached after si. When the realization weight of an information set is 0,
the behavioral strategies are undefined, but this is irrelevant for computing a Nash equilibrium since those
nodes can never be reached.

The realization weights must satisfy ri(∅) = 1 and ri(si) =
∑

a∈si[I]
ri(si ∪ {a}), so we have 1 + |Ii|

constraints. Let us index each possible sequence and let the realization weights be vectors r1 ∈ [0, 1]|S1|,
r2 ∈ [0, 1]|S2|. Let E and F are matrices where rows correspond to information sets and columns
correspond to sequences with entries in {−1, 0, 1} that encode the above constraints for players 1 and 2,
respectively. Then we can write that x, y are valid realization weights whenever

Ex = [1 0 . . . 0]
⊤
= e

Fy = [1 0 . . . 0]
⊤
= f

x, y ≥ 0

3.2 Equilibrium conditions

The utility of a player can be written as a linear function of their realization weights given their opponent’s
strategy. Define A(s1, s2) =

∑
z∈Z fs(z)u1(z) where fs(z) is the probability of ending at terminal node

z when the players choose the actions along sequences s1 and s2. Note that if the sequences s1 and s2 are
never terminal, then A(s1, s2) = 0. This allows us to write that

u1(σ) = x⊤Ay

where σ is the strategy given by realization weights x, y. This means that a best response to player 1’s
strategy x solves

max
y

(x⊤(−A))y
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subject to Fy = f, y ≥ 0 (1)

The dual LP is
min
q

q⊤f

subject to q⊤F ≥ x⊤(−A) (2)

Since a feasible solution is optimal only if the object values match by strong duality, we have that
x⊤(−A)y = q⊤f , so

y⊤(A⊤x+ F⊤q) = 0 (3)

Similarly, the best response to player 2’s strategy y solves

max
x

x⊤(Ay)

subject to Ex = e, x ≥ 0 (4)

which has a dual LP
min
p

p⊤f

subject to E⊤p ≥ Ay (5)

Applying strong duality gives that x⊤Ay = e⊤p, so

x⊤(−Ay + E⊤p) = 0 (6)

x, y that solve equations 1 through 6 must be a Nash equilibrium, since the strategies are best responses to
each other.

3.3 LCP formation

A linear complementary problem (LCP) consists of finding a z such that

z⊤(Mz + q) = 0

Mz + q ≥ 0

z ≥ 0

As shown in [7], computing an equilibrium for a sequence-form game as described above can be formulated
as a LCP by letting

M =


−A E⊤ −E⊤

−B⊤ F⊤ −F⊤

−E
E

−F
F

 , q =


0
0
e
−e
f
−f
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3.4 LCP solve attempts

Unfortunately, I was unsuccessful when attempting to solve the LCPs produced for The Resistance. As
shown in [7], Lemke’s method always works on the the LCP instances given by extensive-form games in
theory. However, multiple implementations of Lemke’s algorithms as well as other LCP solvers failed to
produce accurate solutions. Specifically, the following methods were attempted on toy extensive-form
game examples:

• Lemke’s algorithm (from Siconos [8], OpenOut [10], and MATLAB [2])
• Other pivot methods (from Siconos)
• Iterative solvers (from Siconos)
• QP-reformation (from Siconos and CVXOPT [4])

The only method that produced a correct solution for the toy examples was the non-symmetric quadratic
program (NSPQ) solver from Siconos. The NSPQ solver failed on larger inputs. This suggests that there
is not bug in the way that the inputs were produced from the game, since it was possible to get a correct
solution in some cases. This article [3] explains numerical issues with Lemke’s algorithm, so it may be
that the kind of LCPs produced by extensive form games lead to stability issues, but this would require
further investigation.

4 CFR

Since I could not find a way to solve LCPs, another method of solving large extensive form games was
required. Counterfactual regret minimization (CFR) is a method often used to approximate equilibrium
for games too large for to be solved exactly.

4.1 Regret

CFR involves iteratively improving each player’s strategies and was introduced in [15]. Let σt be the
strategies after t iterations. Define the average overall regret to be

RT
i =

1

T
max
σ∗
i

T∑
t=1

(ui(σ
∗
i , σ

t
−i)− ui(σ

t))

In other words, the average overall regret for player i is the average difference in utility between the best
single strategy played for all iterations and the strategies actually played. Also define the average strategy
to be

σ̄t
i(I)(a) =

∑T
t=1 π

σt

i (I)σt(I)(a)∑T
t=1 π

σt

i (I)

A key result about regret is that in a zero-sum 2-player game, if both player’s average overall regret is
< ϵ

2 at iteration T , then each player can gain no more than ϵ utility by deviating from σ̄T , which means
that the strategies are an ϵ-Nash equilibrium.

4.2 Counterfactual regret

By decomposing average overall regret into regret at each information set, it is possible to produce
strategies converging to a Nash equilibrium using self-play. Let σ|I→a be the strategy where action a is
always playing at information set I . Define the counterfactual regret + to be

RT+
i (I, a) =

1

T

T∑
t=1

πσt

−i(I)max{0, ui(σ
t|I→a, I)− ui(σ

t, I)}
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Table 2: Solving with CFR.
Player count ϵ winrate iterations iteration per second tree size

5 0.002 0.030 11080 22.1 12162
6 0.002 0.332 11920 8.55 42438
7 0.002 0.257 1950 1.19 369869
8 0.003 0.160 500 0.213 4110657

Counterfactual regret corresponds to the amount of regret a player has from not playing a at I .This specific
formula was first suggested by [12]. Let the strategies at each iteration be given by

σT+1
i (I)(a) =

RT+
i (I, a)∑

b∈A(I) R
T+
i (I, b)

In the case that the denominator is 0, let σT+1
i (I) be uniform over actions. As shown in [15], this gives

average strategies σ̄t that converge to a ϵ-Nash equilibrium in O( 1
ϵ2 ) iterations.

4.3 Results

Vanilla CFR was implemented and successfully found strategies close to a Nash equilibrium for 5, 6,
and 7-person Resistance, as shown in table 2. Winrate refers to the fraction of the time the resistance
player wins. ϵ refers to exploitability, which means to the maximum winrate decrease a player could face
by when their opponents deviates from the average strategy. The exploitability is found by recursively
calculating the best responses in subgames.

The strategies for spies the 5-person game match the solution 2.1, but the resistance strategy is different.
The rule ‘fail exactly the missions with size >2’ seems to apply to the other player sizes as well.

5 Conclusions

Of the two main approaches taken for calculating optimal strategies, CFR was the successful. It appears
that tools for solving extensive-form game LCPs are not readily available, or the author may be making
a large error when attempting to use those tools. CFR was straightforward to implement, effective, and
more intuitive than LCP solving.

5.1 Comparison with other results

As shown in 2.1, an optimal strategy for spies is to pass 2-person missions and fail 3-person missions (and
propose missions and vote as if they were a resistance member). [5] produced bots that played 5-person
Resistance and reported winrates that were much lower than 0.7 for the spies, which suggests that the
spies act in a way that distinguishes them from resistance members. From personal experience playing the
game, the resistance similarly wins much more often in person than the equilibrium winrates. People,
especially those less experienced with hidden role games, find it difficult to interact with in the group in
the same way when they are resistance versus spy.

5.2 Future work

Given access to these optimal solutions, it would be interesting to analyze the specific strategies to see if
they shed any light on how to better play the game. Current, it is possible to view the action frequencies at
a particular node, but there are no ways to visualize the strategies.

8
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Figure 2: Exploitability versus number of iterations

Additionally, implementing a faster CFR algorithm, such as Monte Carlo CFR, may find the strategies
faster, allowing less exploitable strategies to be found for the larger games. In addition, it may be possible
to find exact equilibrium strategies by rounding. For instance in the 5-person game, the pure strategy ‘fail
when the mission size is 3 and pass when it is 2’ is a spy strategy with exploitability 0. It seems possible
that a similar result would emerge in the larger games.
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