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Abstract

Word reference games provide a setting for exploring the computational models that underlie human
similarity judgments. In this paper, we explore algorithms for the popular reference game Codenames.
We describe the optimal solution to the computational problem, and then develop a range of algorithms
for approximately solving the problem under different resource constraints, including (a) constraints on
the data structures and primitives for calculating word similarity, (b) constraints on prior coordination
between speaker and listener, and (c) constraints on the resources available for inference. Further, we
propose a simple generative model, under which there exists a computationally efficient algorithm with
theoretical guarantees. Finally, we corroborate our results with an empirical study.

1 Introduction

Codenames [Chvátil, 2015] is a word reference game played in two teams, each made up of a speaker and a
listener. Twenty-five words are drawn from a deck. Nine are assigned to the team that goes first, eight are
assigned to team that goes second, seven are marked as neutral, and one is designated as the “assassin.” All
players see the words, but only the speakers see the partition assignments. The speakers take turns giving
their partner a single codeword and integer k, and the listener has to guess which k words the speaker was
thinking of, with the turn ending when the listener decides to stop guessing or guesses a word not belonging
to their subset. The game ends when one team reveals all of the words, winning the game, or reveals the
assassin and loses instantly.

Word reference games like Codenames provide a natural setting for studying the computational mechanisms
underlying human word association. In this paper, we develop algorithms for playing Codenames, following
from prior work in cognitive science and machine learning. In cognitive science, Shen et al. [2018] use
a simplified version of the game to compare computational models of human similarity judgments and
reference. In machine learning, Summerville et al. [2019] introduced the Codenames AI Competition, with
subsequent work comparing heuristics for selecting codewords for a given set of target words, using word
vectors or knowledge graphs [Kim et al., 2019, Koyyalagunta et al., 2021].

Following prior work, we focus on algorithms for generating codewords, assuming a speaker with some
(possibly probabilistic) model of the listener’s similarity function. First, we describe an algorithm for finding
the codeword identifying the largest possible subset of target words for a given similarity function. Prior
work enumerates over every possible subset of target words; our algorithm finds the maximum size subset
in time linear to the vocabulary size. Second, we give a formal characterization of the optimal similarity
structure in terms of a similarity matrix or a word association graph, and give bounds on the best expected
performance given a codeword vocabulary with fixed size. We extend this analysis to a stochastic setting,
where the speaker has a probabilistic model of the listener’s similarity function. Third, we describe how
similarity structures derived from real-world semantic resources differ from the optimal structure. Fourth,
we develop an approximate search algorithm that improves the runtime of our search procedure, finding
good codewords without looping over the vocabulary or enumerating all subsets of target words.
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Figure 1: An example Codenames game board (right) and key (left). Each word is highlighted in the image
(but not in the game) with the key’s corresponding color.(Jaramillo et al. [2020])

We do simulations to illustrate the tradeoffs between different algorithms under different assumptions about
the similarity structure and the computational resources available to the speaker. In a “bot-to-bot” setting,
where both speaker and listener have access to the same word embeddings, our algorithm can consistently
find clues that successfully pick out most or all of the target words in the first round, using only ten thousand
25-dimensional word vectors, which considerably outperforms the prior work. In preliminary user studies,
we find that our algorithm finds human-guessable codewords for targets of size three or four, outperforming
human and computer baselines.

2 Background

2.1 Notation

We will focus on a single turn of Codenames, which consists of a set of words U ⊂ V and a set of target
words A ⊂ U , where V is the vocabulary. Optionally, also partition U \ A into opponent words B, neutral
words C, and an “assassin” word {s}. Let S denote a speaker and L denote a listener. Both players can see
U , but only S can see the partition assignments. In each turn, S picks a code word c ∈ V and an integer
k between 1 and |A|, and L responds by selecting words in U until either deciding to stop or revealing a
word w ̸∈ A. Let let k′ denote the number of words guessed by L and let π denote the ordered sequence of
k′ words in U that L guessed. Then score(π, k′) = k′ − 1 + score(wπk′ ), where score(wπk′ ) = 1 if wπk′ ∈ A,
−1 if wπk′ ∈ B, 0 if wπk′ ∈ C, and −∞ if wπk′ = s. Our objective will be to find the clue (c, k) maximizing
E[score(π, k′)] under some model Pr(π, k′ | c, k). We will also write πc to denote the permutation of U
induced by codeword c, with πc,i identifying the ith word in the permutation, and assume for simplicity that
Pr(π, k′ | c, k) = Pr(π | c)δ(k − k′), i.e. the listener always guesses k words.

2.2 Speaker/Listener Model

Following Shen et al. [2018], we use the Rational Speech Act model [RSA; Frank and Goodman, 2012] to
define the extent to which speaker and listener recursively reason about the mental state of the other player.
The RSA model consists of the following components:
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• A literal listener L0 calculates likelihoods of the form PrL0
(π, k′ | c, k, θL0

), without recursively reason-
ing about the other player. We assume PrL0

is from a predefined class of probability functions with
parameters θL0

.

• A pragmatic listener S1 picks a cue (c, n) that maximizes the expected score, given some belief PS1(θL0)
about the listener’s likelihood function:

EPrS1
(θL0

)

[
EPrL0

(W |c,n,θL0
) [score(W )]

]
• The true listener is either pragmatic (denoted L1), and picks a subset by recursively reasoning about
S1, or literal (L0), and picks the subset maximizing PrL0(W | c, n, θL0). We will mostly assume that
the listener is literal.

The optimal strategy is for the speaker to pick the clue maximizing the expected score and for the listener
to pick the maximum likelihood subset. In the remainder of this paper, we explore questions that arise in
implementing this strategy, including: what is the form of the likelihood function, PrL0

(W | c, n, θL0
); how

much knowledge does S1 have about PrL0
(and to what extent can the players coordinate); and how can

the players approximately identify good clues and subsets if we impose restrictions on the computational
resources available for inference.

2.3 Baselines

Prior work in machine learning adopts some form of the following algorithm:

• The listener uses a factored likelihood function:

Pr
L0

(W | c, n, θL0
) = 1{|W | ≤ n}

∏
w∈W

Pr
L0

(w | c, θL0
),

where 1 is the indicator function and PrL0
(w | c, θL0

) ∝ simθL0
(c → w) is proportional to pairwise

similarities defined by θL0 .

• The speaker enumerates subsets: for each k, the speaker enumerates all subsets W ⊆ A of size k and
then loops over the vocabulary to find the codeword c such that minw∈W sim(c→ w) > maxu∈U\W ∼
(c→ u) and minw∈W sim(c→ w) > t for a heuristically chosen threshold t.

The main difference between prior work is then in the choice of how to parameterize sim(c→ w), for example
using word vectors or a knowledge graph [e.g. Kim et al., 2019, Koyyalagunta et al., 2021]. In this work, we
will adopt the first assumption (factored likelihood). However, enumerating subsets is clearly sub-optimal
as it incurs a cost of at least O(|A|!|V ||U |) to enumerate over every subset of target words in A, then over
the vocabulary, and then over all of the game words U to compare pairwise distances.

3 Algorithms

In this section, we develop algorithms and analysis for Codenames given a series of assumptions about the
similarity function; the speaker’s knowledge of the similarity function; and computational constraints. First
we describe a similarity function for a deterministic protocol, along with an O(|A||V |) search function, that
finds the maximum scoring subset, and present an urn-problem construction for analyzing the trade-off
between expected score and vocabulary size. Then we extend the analysis to a stochastic setting, where the
speaker has a noisy probabilistic model of the listener’s similarity function. Third, we present an approximate-
nearest-neighbors algorithm that reduces the cost of our search algorithm to O(|A|

√
|V |) [Dan: confirm]

.
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3.1 Deterministic protocol

In the deterministic protocol, we assume that P (W | c) =
∏

w∈W P (w | c), P (w | c) ∝ sim(c→ w), and the
speaker and listener have the same similarity function sim(c → w). The main limitation in this setting is
on the size of the vocabulary and the structure of the similarity function. (Otherwise, the first team could
guess all words on their first turn by assigning every possible subset of |A| game words to a single unique
word in the vocabulary.)

3.1.1 Deterministic clue finder

Observation Our main observation is that for any similarity function sim(c → w), every codeword c
corresponds to a permutation of the vocabulary, πc, induced by sorting the vocabulary in decreasing order
of sim(c→ w) with ties broken arbitrarily. We can then define the score of a codeword, score(c) = score(πc),
where score(πc) is equal to the maximum index i such that πc,j ∈ A for all j ≤ i. Clearly, the optimal
deterministic strategy is to select the clue c maximizing score(πc).

Algorithm 1 Deterministic clue-finder

Require: a vocabulary V , game words U , a similarity function sim(c→ w) for all c, w ∈ V .
Preprocess to get πc,i, the word with the ith largest value of sim(c→ w), for i ∈ {1, . . . , |V |}.
for c ∈ V do

Let kc be the smallest index such that πc,i ∈ A for all i ≤ kc.
end for
Let ĉ = argmaxc kc.
Return ĉ, kĉ.

Analysis of Algorithm 1. Algorithm 1 finds a maximum scoring subset by construction. The version
described above using O(|V | × |V |) memory to precompute πc for all c and runs in time O(|U ||V |). For
example, if we precompute a map from every w to its rank in πc, we can find kc by finding the minimum-
rank word in U \A by enumeration. We could trade off memory for time by calculating sim(c→ w) on the
fly for all w ∈ U and the sorting, resulting in time O(|V ||U | log |U |). Either solution is an improvement over
the baselines (Section 2.3), which run in time O(|A|!|V ||U |).

3.1.2 Optimal deterministic similarity function

Now we consider the properties of an optimal similarity function, assuming that speaker and listener can
communicate prior to the game.

Lemma 1. Suppose c ∈ V is a vocabulary word; πc is drawn uniformly at random from the set of all
permutation of indices into V ; U ⊂ V is a set of randomly drawn game words with target words A ⊂ U ;
and score(πc) is the maximum index j such that πc,i ∈ A for all i ≤ j. Then the probability that the score
is greater than or equal to some integer k is:

Pr (score(πc) ≥ k) =

(|A|
k

)(|U |
k

) .
Proof. This problem is an instance of the urn problem without replacement, which defines the hypergeometric
distribution. Consider an urn containing |U | marbles, with |A| colored blue and the rest colored red. Each
code word defines a random ordering of the vocabulary—and so also a random ordering of U—which can
be modeled as a sequence of draws from U without replacement. The probability of achieving score ≥ k is
equal to the probability of drawing k blue marbles in k turns, which equal to the number of subsets of k
elements in A divided by the number of subsets of k elements in U .
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Figure 2: The expected value of the maximum scoring clue for a random game (left) and the probability of
guessing all nine words on the first turn of a random game (right) as a function of vocabulary size, assuming
word similarities are drawn uniformly at random from the set of permutations.

Now we can characterize the relationship between the size of the vocabulary and the expected performance
of the deterministic protocol.

Theorem 3.1. Suppose that, for all c ∈ V , πc is drawn uniformly at random from the set of all permutation
of indices into V and fixed; U ⊂ V is a game; and A ⊂ U is the set of target words. Then the probability
that there is a codeword c ∈ V with score(c) ≥ k is

Pr(∃c ∈ V : score(c) ≥ k) = 1−

(
1−

(|A|
k

)(|U |
k

))|V |

.

Proof. The probability that every codeword has score less than k is equal to the product of the probabilities
that each individual word in |V | has score less than k, which is given by the lemma. The probability that
any codeword has score ≥ k is the remaining probability.

Discussion We plot how the probability of finding a codeword changes with |V | and k in Figure 2. In
the first round of Codenames, |U | = 25 and |A| = 9. Assuming that πc is a random and shared between
speaker and listener, even with a vocabulary containing only 212 = 4096 words, we can expect to find clues
that identify more than six target words on the first round, which, anecdotally, is much better than human
performance. With ten million words we can expect to guess all of the target words on the first turn more
than 99% of the time. We simulate this scenario in Section 4. In the next section, we extend this analysis to
the stochastic setting where the speaker does not know the listener’s similarity function exactly, and then to
a scenario where the πc are not uniformly random permutations but are instead derived from a pre-existing
word similarity graph.

Open question: are random similarities optimal? For a fixed vocabulary size, is there a similarity
function sim(c → w) that achieves better expected score than the random permutations described above?
We leave this question for future work, but offer an intuitive proof sketch here. For fixed integer k, every
permutation πc can also be thought of as describing a distribution over games, Pr(G = U,A | πc), which is
uniform over all of the games such that k words in A appear before any words in U in πc, and equal to 0
everywhere else. The expected performance of a set of permutations Π = {πc}c∈V can be expressed in terms
of the number of games G = U,A for which the marginal probability Pr(G | Π) = 1

|V |
∑

c∈V Pr(G | πc) is

non-zero. This term resembles a divergence between Pr(G) and Pr(G | Π), where Pr(G) is the probability of
drawing a particular game. Pr(G) is uniform over games, hence Pr(G | Π) ought to be as close as possible
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to uniform, i.e. the maximum entropy distribution. This proof sketch indicates that a random similarity
function might in fact be optimal.

3.2 Stochastic protocols

In the previous section, we made the assumption that speaker and listener share the same similarity function.
In this section, we extend our analysis to a more realistic setting in which the speaker has only a noisy
probabilistic model of sim(c→ w).

3.2.1 Distributions over rankings

In order to calculate probabilities under the framework from Section 3.1, we need a function that can assign
probabilities to rankings. Here we construct such a distribution by extending the urn construction of the
hypergeometric distribution.

Categorical urn construction (“exploded logit” distribution) Consider an urn containing N marbles
and let Pr(xi) = pi denote the probability that marble i is the next marble drawn from the urn, which is
given by categorical distribution with parameter p. Then the probability of a ranking π of elements in N is
the probability of drawing the elements in π in order:

Pr(π) =

N∏
i=1

Pr(xπi
| xπ<i

),

where Pr(xπi | π<i) is the categorical distribution obtained by setting Pr(xj) = 0 for all j ∈ π<i and
renormalizing π. Thus we have a distribution over rankings, which we can parameterize with multinomial
parameters pc for each c ∈ V . This distribution is also called the “exploded logit” distribution [Nicenboim,
2021] and has been used to model the outcomes of horse races [Gakis et al., 2018].

Two-color categorical urn construction In order to use the categorical urn construction to model
Codenames, we need to augment it by coloring the marbles. Recall that the main value we need to compute
is the probability that the first k elements in a permutation π are all drawn from A. If π is unknown, we
would like to calculated the expectation:

EPr(π)[1{score(π) ≥ k}] =
∑
π

Pr(π)1{score(π) ≥ k} =
∑

π′∈perm(A,k)

Pr(π′).

Here, perm(A, k) denotes the set of all permutations of k elements in W . Pr(π′) is the probability of drawing
this permutation before drawing any other elements of U . While the naive solution requires enumerating
over every permutation of U , we only need to calculate the sum of the probability of every permutation of k
elements in A, which gives the probability that the first k elements drawn from the urn are all from A. Still,
enumerating every permutation of k elements imposes an unwanted cost of O(|A|!).

Approximate inference for the two-color categorical urn Unfortunately, we have not yet found an
efficient closed form expression to calculate EPr(π)[score(π)] without marginalizing over permutations, so we
consider two simple schemes for approximate inference.

1. Monte Carlo estimate: Given categorical distributions Pr(w | pc) for each w, c, we can sample from
Pr(πc | pc) in O(|A|) time by sampling words without replacement until sampling a word in U \A.

2. Maximum likelihood estimate: We can take a lower bound by using the maximum likelihood point
estimate:

E[score(π)] =
∑
π

Pr(π)score(π) ≥ Pr(π∗)score(π∗),
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where π∗ is the maximum likelihood ordering obtained by selecting the marble i with maximum prob-
ability pi at each time step without replacement. This model is now equivalent to the deterministic
model from above with the difference that the expected score is now weighted by Pr(π∗).

Stochastic speaker/listener model If both speaker and listener have access to the same categorical
parameters p, then they can recover the deterministic protocol by both taking maximum likelihood estimates.
In order to make the setting stochastic, we can require that either the listener or both speaker and listener can
only take a finite number of samples from the distribution. Alternatively, we can assume that speaker and
listener have different categorical parameters, pS

c and pL
c , bot hsampled from a shared prior, Dirichlet(αc),

where αc is the concentration parameter. We call this model the Two-color Dirichlet urn construction.
As we will discuss in the next section, using a Dirichlet prior over word association strengths also gives us a
natural way of modeling the effect of the types of sparse structure that appear in real world word similarity
graph. (Note that an optimal speaker would estimate the Dirichlet parameters; we leave this exploration for
future work and assume that the speaker models Pr(πc) using only point estimates or samples from their
own similarity distribution.)

3.3 Approximate nearest neighbor search

To reduce the complexity of search of a clue-word for the speaker, we can follow the following strategy:

1. Create k clusters over words in the vocabulary V . Denote the clusters by C1, . . . Ck and their centers
as vC1

, . . . , vCk
respectively.

2. Given U = A ∪B, search the cluster center vCi
that maximizes the following score:

max
W⊂A

|W |

s.t. for all w ∈W,dist(w, vCi) < dist(b, vCi) for all b ∈ B.

3. Search for the clue-word c only in the cluster Ci.

Theorem 3.2. Under the assumption that the k clusters are uniform in size, the above algorithm computes

a clue-word in O(k + |V |
k ) operations. Thus, under the same assumption, the number of operations can be

reduced to O(
√
|V |), when k =

√
|V |.

Proof. The algorithm searches the clue-word in two steps:

1. First, it searches over the k-cluster centers to find the best cluster to focus on. This involves O(k)
operations.

2. Second, it searches over the words in a specific cluster found in the first step. Under the assumption
that all clusters are uniform in size, the total number of words to search over in the cluster becomes
|V |
k , and hence the total operations involved can be bounded by O( |V |

k ).

3.4 A provable algorithm under a generative model

To show the existence of an efficient algorithm, that can choose the optimal clue-word without having to
go over the entire vocabulary, we need to take some structural assumptions on the word embeddings. We
assume that there exist a set of concepts/topics underlying the word embeddings. A word’s embedding
implicitly contains the relevance of the topics for the word. We are interested in the setting, where given
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Figure 3: A figurative description of the generative model. The vertices of the simplex are given by the
topics T1, . . . , Tk, and the words are present inside the simplex. Each topic has at-least one anchor word.

words U = A ∪B, the algorithm has to return a clue-word c, such that c differentiates as many words in A
as possible from the words in B, based on at-least one concept.

A running example can be given as follows: suppose there are two topics, sport and animal. A word like cat
can be represented by the embedding for the topic animal, while the word bat can be represented by a convex
combination of the embeddings of the two topics. To differentiate between {dog, cat} and {soccer,baseball},
one can use the concept of sports, and hence any word representing sports suffices.

Formally, Consider the following generative model underlying the words in the vocabulary V :

1. There exist a set of topics T1, . . . , Tk. Each topic Ti is represented by a vector vTi ∈ Rd. Let T ∈ Rd×k

denote the matrix, where each column corresponds to a unique topic vector.

2. Each word w is generated as follows:

(a) Sample pw ∈ ∆k, where ∆k denotes the space of 1-simplex in Rk.

(b) Generate vw = Tpw.

A figurative explanation is given in fig. 3.

For the provable efficient algorithm that we propose based on the generative model, we need to take an
assumption:

Assumption 3.3 (Anchor word assumption). For each topic Ti, there exists an anchor word wTi
∈ V that

specifically belongs to the topic Ti, i.e. pwTi
[i] = 1 and pwTi

[j] = 0 for all j ∈ [k] \ {i}.

We take the above assumption for the simplicity of presentation. The above assumption can be strengthened
to the case where for each topic Ti, there exists an anchor word s.t. p(Ti|w) > p for some constant p.

3.4.1 Efficient provable algorithm

The main idea is to capture the anchor words {wTi
}i∈[k] in the vocabulary. A simple observation from the

generative model is that the words lie in a k-dimensional simplex in Rd, with the anchor words forming the
vertices of the simplex. Thus, the main idea can be summarized as capturing the vertices of the convex hull
of the word embeddings {vw}w∈V . The algorithm to find the anchor words has been summarized in figure 2.
We have taken the algorithm from Arora et al. [2013].
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Once we know the k anchor words in the vocabulary, the problem of searching a clue-word boils down to
finding the anchor word that is closer to a subset of words in A, compared to the words in B. To find such
a subset, we only need to look at each anchor word, sort the words in U according to their distance to the
anchor word, and select the anchor word that maximizes the number of words in A closer to itself than the
words in B. The algorithm has been summarized in figure 3.

Algorithm 2 Anchor word locator (Arora et al. [2013])

Require: a set of vertices {vw}w∈V in d-dimensions, present in a simplex withK vertices, and some constant
ϵ > 0.
S ← {vw} s.t. vw is the farthest point from the origin.
for i = 1, . . . , k − 1 do

Let vw′ be the point in {vw}w∈V that has the largest distance to span(S).
S ← S ∪ {vw′}.

end for
Let the current S = {v′1, . . . , v′K}.
for i = 1, . . . ,K do

Let vw′ be the point in {vw}w∈V that has the largest distance to span(S) \ {v′i}.
Update v′i to vw′ .

end for
Return S.

Algorithm 3 Clue-word finder

Require: Codename words U , partitions A and B, Candidate clue-words S.
D ← [].
for c ∈ S do

Set D[c] = |{a ∈ A | dist(a, c) < minb∈B dist(b, c)}|.
end for
Return argmaxc∈S D[c].

3.4.2 Theoretical guarantees

Theorem 3.4 (Arora et al. [2013]). Algorithm 2 runs in time O(|V |2 + d |V | k) and returns the vertices of
the convex hull P of the words {vw} in the vocabulary.

Theorem 3.5. If S denotes the set of anchor words in the vocabulary, then algo 3 finds the optimal clue-word
in time O(k) w.r.t. the given set of clue-words:

{c | ∃Ti ∈ {T1, . . . , Tk} s.t. ordering(U, c) = ordering(U, Ti)},

where ordering(U, x) is the sorted order of the set U w.r.t. the distance of the embeddings of the words in U
with the embedding of x.

Proof. By assumption 3.3, for each topic Ti, its corresponding anchor word wTi
has the same embedding

as vTi
. Since algo 3 searches over all possible orderings of the set U w.r.t. the anchor words, implicitly it

searches over the possible orderings w.r.t. the topics {Ti}ki=1.

Thus, the above algorithm works, when we search over clue-words that differentiate words in U on the basis
of at-least one concept/topic. Improving the generative model to have theoretical guarantees w.r.t a more
stronger class of possible clue-words remains an interesting future direction.
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4 Experiments

4.1 Setup

We simulate our algorithms by drawing 1000 random games from the standard Codewords vocabulary and
testing speakers and listeners using different similarity functions. We construct similarity functions from two
pre-existing semantic resources, along with random similarity functions.

Small World of Words Small World of Words (SWOW; De Deyne et al., 2019) is a semantic association
graph that was collected by showing human subjects a series of cue words and asking them to write down
the first three words that came to mind. We create a |V | × |V | matrix S, with Si,j equal to the number of
participants who responded with word j in response to word i. (|V | = 12K and maxi,j(Si,j) = 98). We set
sim(c→ w) = sim(w → c) = Si,j + Sj,i, which assumes that the similarity function is symmetric.

GloVe-Twitter-25d GloVe vectors [Pennington et al., 2014] are real-valued vectors created by approxi-
mately factorizing a matrix of word co-occurrence counts. We use 25-dimensional vectors that were trained
on 27-billion tokens from Twitter, which we download from the gensim library [Rehurek et al., 2011]. We
normalize the vectors and set sim(c→ w) = v⊤

c vw, where vc and vw are the vectors for c and w.

Random similarities We also use two random similarity functions. Random permutations are created
by sampling |V | permutations of of the vocabulary uniformly at random, and setting sim(c → w) to be
proportional to the position of w in the permutation assigned to c. Random vectors are 25 dimension vectors
with entries drawn independently from the standard normal distribution, and sim(c→ w) = v⊤

c vw.

4.2 Code-finding experiments

Deterministic Random

sim function
1st-turn
score

1st-turn
advantage # rounds

1st-turn
score

1st-turn
advantage # rounds

Random permutations 6.7 0.822 1.816
Random vectors 25d 6.3 0.858 1.863
Small World of Words 3.6 0.573 3.164
GloVe-Twitter-25d 5.7 0.667 1.998

Table 1: Results averaged over 1000 simulations of Codenames. |V | = 11, 808 for all models, which is the
number of words in the intersection of the Small World of Words and GloVe vocabularies. 1-st turn score
is the average number of words guessed correctly after the first codeword. 1-st turn advantage is the
proportion of games won by the team that went first. # rounds is the average number of rounds to end
the game. See Section 4.1 for more details about the similarity functions.

Deterministic setting The first columns of Table 1 compares the performance of speakers and listeners
with different similarity functions using the deterministic protocol in Section 3.1. In these settings, we
assume that speaker and listener have identical, deterministic similarity functions. The best performance is
achieved by the random permutations model, which assigns every codeword to a random permutation of the
vocabulary. The average first turn score attained by this model is 6.7, which is the same as the expected
first-turn score predicted by Theorem 3.1 for |V | = 11, 808 (6.73). Random 25-dimensional vectors perform
worse than random discrete permutations but better than GloVe vectors. Overall, these results support our
conjecture in Section 3.1 that the best similarity function for codenames is the one with the highest entropy
over permutations of the vocabulary.

The semantic association graph performs the worst, for reasons we discuss in more detail in the next section.
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Stochastic setting Unfortunately we could not implement the stochastic setting in time, so we will leave
it for future work.

4.3 ANN experiments

Figure 4: Average number of words predicted
with first clue

Figure 5: Average first-turn advantage.

Figure 6: Average number of rounds to complete
the game.

Figure 7: Time to compute Clusters

Figure 8: Time to compute clues for 100 games

We perform experiments on the approximate nearest neighbor search algorithm, in the setting where the
vocabulary size is large. For the experiments, we consider the setting where the clue-word can come from
the GloVe vocabulary, where |V | = 1193514.

We use the standard kmeans clustering (Sculley [2010]) to cluster the GloVe emebddings of the words in our
vocabulary into k clusters. Then, we follow the algorithm outlined in section 3.3 to compute the clue-word
at the speaker.
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Fig. 4 shows the behavior of the number of words hit with the first clue, averaged over 100 games, with
respect to the number of clusters k. In Fig. 5, we show the behavior of the the 1st-turn advantage, which
computes the proportion of the games won by the first team that went first, with the number of clusters k. In
Fig. 6, we show the behavior of the average number of rounds necessary to end the game. In fig. 7 and fig. 8,
we plot the computation time involved in the clustering algorithm and the average time to compute the first
clue-word, and their behavior with k respectively. All the plots have been averaged over 100 simulations.

The observations can be succinctly summarized as follows:

1. With increase in the number of clusters, the average number of words hit with the first clue-word drops
mildly. This was expected, since we increasingly localize the search of a clue-word, with increasing
number of clusters.

2. The average number of rounds taken by the 2 teams generally increases with increase in the number
of clusters. The first-turn advantage also seems to decrease with the increasing number of clusters,
although we don’t see a clear trend as other plots. The increase in the number of rounds can be
explained in terms of the drop in the number of codenames recovered in each turn, as observed before.
However, here we have only assumed that the players are single-minded, i.e. they only try to increase
their chances of winning, without trying to hurt the other team. Calculating the performance of the
approximate algorithm in a competitive game framework remains an interesting problem.

3. The pre-processing time, which involves running the kmeans algorithm to find k-clusters, increases
with increasing number of clusters.

4. The run-time to compute a clue-word for 100 different games drastically decreases with increasing
number of clusters, since we are further localizing the search with the increase in k.

5 Discussion

In this section, we give an example of a board-game and show the codenames returned by the different
similarity functions (see section 4 the details). Here, we consider the case where the clue-word can come
only from the set of words present in the vocabularies of both GloVe and SWOW.

The set of words on the board are given by

’organ’, ’teacher’, ’school’, ’spring’, ’sock’, ’poison’, ’superhero’, ’plate’, ’change’, ’state’, ’jam’, ’soldier’,
’temple’, ’ship’, ’code’, ’plot’, ’screen’, ’litter’, ’brush’, ’shark’, ’pyramid’, ’compound’, ’hand’, ’mexico’,
’press’.

and the random partition is given by

’A’: ’change’, ’organ’, ’plate’, ’poison’, ’school’, ’sock’, ’spring’, ’superhero’, ’teacher’,
’B’: ’soldier’, ’temple’, ’code’, ’jam’, ’plot’, ’state’, ’ship’, ’screen’,
’Neutral’: ’shark’, ’brush’, ’mexico’, ’litter’, ’compound’, ’pyramid’, ’hand’,
’Assassin’: ’press’.

Here, ′A′ and ′B′ denote the set of words belonging to teams A and B, while ′Neutral′ and ′Assassin′

denote the set of neutral words and the assassin word respectively.

On running the deterministic algorithm on the basis of GloVe embeddings, we get a clue-word for 6 intended
code-words, with the clue ’romantic’ in the first turn for the speaker in team A, and the intended set of
code-words for the listener in team A are
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superhero’, ’change’, ’spring’, ’organ’, ’poison’, ’teacher’.

However, On running the deterministic algorithm on the basis of SWOW similarity matrix, we get a clue-
word for 4 intended code-words, with the clue ’clarify’ in the first turn for the speaker in team A, and the
intended set of code-words for the listener in team A are

’teacher’, ’school’, ’spring’, ’change’.

This illustrates that the underlying structure of the similarity matrix changes, with different datasets. Al-
though clue-word derived based on GloVe gives more intended code-names in this example, the clue-word
derived based on SWOW seems to be more semantically related to the intended code-names. Understanding
the generative model that returns interpretable clue-words and also returns optimal number of intended
code-names remains an interesting open problem.

6 Conclusion

In this paper, we explored algorithms for the popular reference game Codenames. We describe the optimal
solution to the computational problem, and then develop a range of algorithms for approximately solving the
problem under different resource constraints, including (a) constraints on the data structures and primitives
for calculating word similarity, (b) constraints on prior coordination between speaker and listener, and (c)
constraints on the resources available for inference. Further, we propose a simple generative model, under
which there exists a computationally efficient algorithm with theoretical guarantees. Finally, we corroborate
our results with an empirical study.
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