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Abstract

We examine guarantees for a specific variant of the prophet inequality problem: given a sequence
of random variables X1, . . . , Xn drawn i.i.d. from an unknown distribution D, along with γn other
i.i.d. samples from D, find a stopping time τ with guarantee α such that for all distributions,
E[Xτ ] ≥ αE[max{X1, . . . , Xn}]. Currently, there are tight bounds known for 0 ≤ γ ≤ 1/(e− 1) as
well as Ω(n) samples, but there remains a gap for γ > 1/(e− 1).
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1 Introduction

The theory of optimal stopping is concerned with choosing a time to take an action in order to
maximize reward or minimize cost given imperfect information about the future. Two popular
problems in this field are the secretary problem and the prophet problem.

In the secretary problem, we are shown n distinct, non-negative numbers from an unknown range
in sequential order, and the goal is to stop at one of the numbers to maximize the probability
that we select the maximum of the range. This problem has a simple solution: first, discard 1/e
fraction of the numbers; then select the first number you see that is greater than all of the discarded
numbers. This guarantees that you will select the maximum with probability 1/e, and this is the
best possible solution for correlated random variables.

In the classic single-choice prophet inequality problem, we are shown n non-negative numbers in
sequential order X1, . . . , Xn, and each numberXi is an independent draw from a known distribution
Di. Our goal is to devise a stopping rule, or algorithm, that maximizes the expected value of the
number we stop on in proportion to the expected maximum value of the entire sequence. The
performance of stopping rules is usually measured by their competitive ratio in comparison to a
prophet, who knows all the numbers in advance and gains expected reward E[maxiXi]). This
problem has many variations, and one of the main variations concerns whether the distributions
are distinct or identical. When the distributions are distinct, there is a tight bound of 1/2 (cite??).
When the distributions are identical, Hill and Kertz first determined a lower bound of 1−1/e ≈ 0.632
[HK82], which was eventually improved to 0.745 by [CFH+17], and this is known to be tight due
to an impossibility result of [HK82] and [Ker86] which implies a matching upper bound.

However, there was little known until recently about another variation of the prophet problem for
both identical and non-identical distributions, which is when we assume that the distributions from
which values are drawn are unknown. Instead, we are given incomplete information about the
distributions in the form of offline samples from the distributions Di, and we can use these samples
to help us determine our stopping rule.

The last variation of the prophet problem we will mention here is the presence of an adversary
versus randomness in the problem. An adversary can fix the prophet inequality in different ways,
such as by picking the numbers Xi in the range, by picking the distributions Di which the numbers
are drawn from, by deciding the order that the numbers are presented, and by deciding the reward
Yi for each item that is gained when stopping on item Xi. However, the only adversary we will
generally consider is the adversary that picks the distributions Di ahead of time, and all other
forms of fixing will be left up to randomness, i.e. the actual numbers, the order that the numbers
are revealed, and their respective rewards will all be randomly decided.

When considering the prophet problem with sampling and unknown distinct distributions, the tight
bound of 1/2 from the known distributions case can be guaranteed with a single sample from each
distribution Di with the Single Sample Algorithm in [RWW19]. Rubinstein et al. described the
following algorithm: if X̃1, . . . , X̃n are n independent samples from D1, . . . ,Dn, then simply set
maxi{X̃i} as the threshold for stopping, in other words, we stop when we see a number in the
range that is larger than all of the samples X̃i. This algorithm achieves the optimal competitive
ratio of 1/2.
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In this paper, we will focus on the case of an unknown identical distribution and the work that has
been done to determine bounds on the optimal competitive ratio when we are given kn samples
from the distribution. In [CDFS21], the authors prove a series of lower bounds for the optimal
competitive ratio, starting with a tight lower bound of 1/e with 0 samples and even with o(n)
samples, and improving this to a lower bound of 1− 1/e with n− 1 samples. They also provide a
parametric lower and upper bound for γn samples for γ ≥ 0, which is equal to ln(2) ≈ 0.693 for
rules that use at most n samples and is thus nearly tight. [KNR19] continues this work by matching
the 1 − 1/e lower bound for ≤ n samples, and this lower bound has been continuously improved
since the initial paper by [CDFS21] in [CCES19] and [CDF+20]. Finally, [RWW19] provides an
algorithm with O(n) samples that achieves an optimal competitive ratio of 0.745, which is on par
with the known upper bound of 0.745 and is thus a tight bound for the problem using O(n) samples.

In addition to this research on the best competitive ratio that can be guaranteed to solve an
i.i.d. prophet inequality with kn samples, these results can be extended to other domains, notably
streaming algorithms, and they can be extended to setups that are more generalized than those
presented in the aforementioned papers. [CDF+20] and [CCES21] respectively expand on these
applications and give insight as to other applications of the field of prophet inequalities and open
questions in the field.

Figure 1: Overview of bounds on optimal competitive ratio for the i.i.d. prophet inequality problem
with sampling labeled with the corresponding theorem, sections, or paper. The horizontal axis is
the number of samples and the vertical axis is the performance guarantee. The gray rectangle
represents the range for kn samples with k ∈ (0, 1], and we discuss performance guarantees for kn
samples in Sections 5-7. See Figure 2 for a zoomed in graph that shows lower bounds (solid line)
and upper bounds (dashed line) more clearly based on specific papers. The results for o(n) and
O(n) samples are tight. Reference figure: Figure 1 in [CDFS21].
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Figure 2: Visualization of the lower bounds and upper bounds established for varying γ for γn
samples in the i.i.d. prophet inequality problem with sampling. The solid, red line shows the lower
bound determined in [CDF+20]; dashed black line and solid black line show the parametric upper
bound and lower bound respectively of [CDFS21]; and the blue line denotes the lower bounds of
[KNR19]. The violet mark on the right hand-side line for γ = 1 is the improved lower bound
described in [CCES19]. Reference figure: Figure 1 in [CDF+20].

2 Preliminaries

We define notation similar to that of [CDFS21] and [CDF+20]. Denote N as the set of positive
integers and N0 as the set of non-negative integers. For any i ∈ N, we let [i] be the set {1, . . . , i}.

Definition 2.1 ((k, n) stopping rule). Let k ∈ N0. We consider (k, n)-stopping rules that observe
k samples S1, . . . , Sk, followed by n sequential random variables X1, . . . , Xn, such that we decide
whether or not to stop on Xi given only the samples S1, . . . , Sk and values X1, . . . , Xi, for all i ∈ [n].

Since we are concerned only with the I.I.D. case, we assume that S1, . . . , Sk and X1, . . . Xn are all
i.i.d. from some distribution D. Let f and F be its probability density function and cumulative
density function, respectively. For simplicity, we assume that D has non-negative support and that
F is continuous.

Then formally, a (k, n)-stopping rule is a family of functions r1, . . . , rn where ri : Rk+i
+ → [0, 1] for

all i = 1, . . . , n such that ri(s1, . . . , sk, x1, . . . , xi) is the probability of stopping at Xi after receiving
samples s1, . . . , sk and values x1, . . . , xi, conditioned on not stopping at X1, . . . , Xi−1.

Definition 2.2 (Stopping time τ). The stopping time τ is a random variable with support [n]∪{∞}
such that

Pr[τ = i | S1 = s1, . . . , Xi = xi] =

i−1∏
j=1

(1− rj(s1, . . . , xj))

 · ri(s1, . . . , xi)
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We use the convention that X∞ = 0. Then we are concerned with the expected stopping value
E[Xτ ] and how it compares to the expected maximum E[max{X1, . . . , Xn}]. We say that a stopping
rule achieves a competitive ratio of α if for any distribution D, its stopping time τ satisfies E[Xτ ] ≥
α · E[max{X1, . . . , Xn}].

3 A 1/e lower bound with 0 samples

The 1/e lower bound for the secretary problem immediately translates into a 1/e lower bound for
the prophet problem with 0 samples. This is because we can simply run the same algorithm:

Algorithm 1: Secretary Algorithm

Data: Sequence of i.i.d. random variables X1, . . . , Xn sampled from an unknown distribution
D

Result: Stopping time τ
T ← max{X1, . . . , Xn/e}
for i = n/e+ 1, . . . , n do

if Xi > T then
return i

end

end

Theorem 3.1. There exists a (0, n)-stopping rule that achieves a competitive ratio of 1/e.

Proof. By the guarantee for the secretary problem, we have that

Pr[Xτ = max{X1, . . . , Xn}] ≥
1

e

and thus we immediately have that

E[Xτ ] ≥ Pr[Xτ = max{X1, . . . , Xn}] ·max{X1, . . . , Xn} =
1

e
max{X1, . . . , Xn}

as desired.

We note that it can be shown that 1/e is also an upper bound on (0, n)-stopping rules, and this
can be extended to (o(n), n)-stopping rules as well. We omit the proof, but one can be found in
[CDFS21].

4 A 1− 1/e lower bound with n− 1 samples in [CDFS21]

We now show that we can do much better when given access to a linear amount of samples.
The intuition is that we can use the samples, rather than a prefix of the values, to generate an
appropriate threshold to choose when to stop.
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In particular, first suppose we are given access to n(n−1) i.i.d. samples from D, split into n subsets
T1, . . . , Tn of n− 1 samples. Then for each sequential Xi, we can use maxTi as a threshold value,
such that we accept Xi if Xi > maxTi.

But if we accept this value, then Xi is the maximum of Xi and n − 1 other i.i.d. samples, so we
have E[Xi] = E[max{X1, . . . , Xn}]. Then the probability of termination on any Xi is independently
1/n, so the total probability of termination is 1− (1− 1/n)n ≥ 1− 1/e.

However, we have to be a bit more clever when we only have n − 1 samples. The idea is that
instead of requiring n − 1 new samples for each Xi, we can instead choose a random subset Ti of
size n− 1 of the n− 1 samples and i− 1 values we have seen so far, and then stop at Xi if and only
if Xi > maxTi. The key lemma is as follows.

Lemma 4.1. Conditioned on reaching Xi, the distribution of the set {S1, . . . , Sn−1, X1, . . . , Xi−1}
is identical to n+ i− 2 i.i.d. samples from D.

Proof. We induct on i. This holds for i = 1 by assumption.

Now suppose this holds for i = k− 1. That is, upon reaching Xk−1, the set Sk−1 = {S1, . . . , Xk−2}
is identical to n+k−3 i.i.d. samples. Let Tk−1 be the random subset of n−1 samples chosen from
Sk−1. Then in order to reach Xk, we must discard Xk−1, i.e. we must have Xk−1 ≤ maxTk−1. But
since Xk−1 is also i.i.d., this is just 1− 1/n. In particular, note that this probability is independent
of the value of Xk−1.

Finally consider Sk = {S1, . . . , Xk−1}. By itself, this is clearly identical to n+ k− 2 i.i.d. samples,
and we have just shown that reaching Xk is independent of the value of Xk−1. Thus, even when
conditioned on reaching Xk, Sk is still identical to n+ k − 2 i.i.d. samples, as desired.

We now present the algorithm.

Algorithm 2: Threshold Generation with n− 1 Samples

Data: Sequence of i.i.d. random variables X1, . . . , Xn sampled from an unknown distribution
D, with sample access to D

Result: Stopping time τ
S1, . . . , Sn−1 ← n− 1 samples from D
S ← {S1, . . . , Sn−1}
for i = 1, . . . , n do

if Xi > maxS then
return i

else
S ← random subset of size n− 1 from {S1, . . . , Sn−1, X1, . . . , Xi}

end

end

Theorem 4.2. There exists an (n−1, n)-stopping rule that achieves a competitive ratio of 1− (1−
1/n)n.
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Proof. Let Ti be the random subset S at step i. We have that

E[Xτ ] =

n∑
i=1

E[Xτ |τ = i] · Pr[τ = i]

First, by the lemma, Xτ is the maximum of n i.i.d. values from D independent of the value of τ ,
so we have that E[Xτ |τ = i] = E[max{X1, . . . , Xn}]. Plugging this in, we get that

E[Xτ ] =

n∑
i=1

E[max{X1, . . . , Xn}] · Pr[τ = i] = (1− Pr[τ /∈ [n]]) · E[max{X1, . . . , Xn}]

Again by the lemma, we have that

Pr[τ /∈ [n]] =

(
1− 1

n

)n

which gives that

E[Xτ ] =

(
1−

(
1− 1

n

)n)
· E[max{X1, . . . , Xn}]

as desired.

5 A parametric lower bound with γn samples for γ ≤ 1 in [CDFS21]

The result from the previous section easily translates to a parametric lower bound when we have γn
samples for γ ∈ [0, 1]. The idea is to simply interpret the first few values in X1, . . . , Xn as samples
such that there are an equal number of samples and values again, and then apply the algorithm
from the previous section.

Corollary 5.1. There exists a (γn, n)-stopping rule that achieves a competitive ratio of (1+ γ)/2 ·
(1− 1/e).

Proof. Without loss of generality suppose that γn + n is even. Let n′ =
1 + γ

2
n, and redefine

samples S1, . . . , Sγn and values X1, . . . , Xn into samples

S′
i = Si,∀i ∈ [γn]; S′

γn+j = Xj , ∀j ∈ [n′ − γn]

and values
X ′

k = Xn′−γn+k,∀k ∈ [n′]

Then applying the algorithm gives a stopping time τ with the guarantee

E[X ′
τ ] ≥

(
1− 1

e

)
· E[max{X ′

1, . . . , X
′
n′}] ≥

1 + γ

2
·
(
1− 1

e

)
E[max{X ′

1, . . . , X
′
n′}]

as desired.

We note that we can extend the 1/e upper bound on (0, n)-stopping rules to also give a parametric
upper bound on (γn, n)-stopping rules. We again omit the proof, but it can be found in [CDFS21].
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Corollary 5.2. Any (γn, n)-stopping rule must achieve a competitive ratio of at most f(γ), where

f(γ) =


1 + γ

e
if

γ

1 + γ
≤ 1

e

−γ · log γ

1 + γ
otherwise

6 An improved lower bound with γn samples for γ ≤ 1 in [KNR19]

Following the work in [CDFS21], [KNR19] examines an algorithm that is more careful than simply
setting the number of samples and values to be equal, which is able to achieve an improved lower
bound for (γn, n)-stopping rules. The algorithm works as follows.

Algorithm 3: Parametric Threshold Generation with γn Samples

Data: Sequence of i.i.d. random variables X1, . . . , Xn sampled from an unknown distribution
D, with sample access to D

Result: Stopping time τ
S1, . . . , Sγn ← γn samples from D
S ← {S1, . . . , Sγn}
q ← max

{
0, e−e−γ − γ

}
for i = 1, . . . , n do

S ← S ∪Xi

if i ≤ qn then
Continue

else
if |S| ≤ n then

if Xi = maxS then
return i

end

else
Ti ← random subset of size n− 1 from S
if Xi > maxTi then

return i
end

end

end

end

We note a few things about this algorithm. As a high level overview, we first include more samples
from the initial values until there are qn samples, where q is a parameter of γ. Then if there are
less than n− 1 samples, the algorithm outputs Xi if it is the maximum so far; otherwise, it uses a
random subset of n− 1 values seen so far as a threshold, as before.

Finally, note that the solution of e−e−γ − γ ≥ 0 is at γ ≤ r ≈ 0.567. We have the following.
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Theorem 6.1. There exists a (γn, n)-stopping rule that achieves a competitive ratio of f(y), where

f(y) =

{
e−e−γ

if γ ≤ r

γ(1− ln γ − e−γ) otherwise

We omit the proof, which can be found in [KNR19]. Note that this matches the 1/e bound for
γ = 0 and 1− 1/e for γ = 1, but improves on the previous parametric bound in between.

7 Another improved lower bound with γn samples for γ < 1.44 in
[CDF+20]

Following the work in [KNR19], [CDF+20] further improves the bound for γn samples for all
γ > 0. The idea is to vary the amount of samples that are used in the calculation of the threshold
rather than mostly using n− 1. These are called maximum-of-random-subset algorithms, or MRS
algorithms.

In particular, they consider algorithms that fix a function f : [n]→ N such that value Xi is accepted
if it is greater than f(i) samples and values seen so far, which we previously showed was equivalent
to f(i) i.i.d. samples. Note that letting f(i) = n − 1 for all i gives exactly the previous bound of
1− 1/e for n− 1 samples.

The analysis is straightforward, but very computationally tedious, so we omit the details here. The
idea is simply to use numerical methods to solve for the optimal values of f . Noteworthy results
include the following.

Theorem 7.1. For 0 ≤ γ ≤ 1/(e−1), there exists a (γn, n)-stopping rule that achieves a competitive
ratio of (1 + γ)/e. By the parametric upper bound given in [CDFS21], this is tight.

Theorem 7.2. There exists an (n, n)-stopping rule that achieves a competitive ratio of ≈ 0.6489 ≥
1− 1/e.

Theorem 7.3. The best MRS algorithm gives a (≈ 1.44n, n)-stopping rule that achieves a com-
petitive ratio of ≈ 0.6534.

8 A tight lower bound with O(n) samples in [RWW19]

An algorithm that achieves the upper bound of the optimal competitive ratio of 0.745 with O(n)
samples is defined and guaranteed by [RWW19], which ensures that the bound is tight for the
i.i.d. prophet inequality with linear samples. This result resolves an open problem from [CDFS21],
where the authors of [CDFS21] found that the optimal competitive ratio of α− ε where α ≈ 0.745
is achievable with at least Ω(n) samples and is therefore impossible for O(n) samples. Rubinstein
et al. disprove this by defining the Samples-CFHOV algorithm in [RWW19], which modifies the
algorithm used in [CFH+17] and [CDFS21] denoted by Explicit-CFHOV, and they prove that for
O(n/ε6) samples, the Samples-CFHOV algorithm achieves at least a (1 − O(ε)) fraction of the
expected reward of Explicit-CFHOV.
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The Explicit-CFHOV algorithm sets a probability pi independent of D for each i ∈ [n], and sets a
threshold σi for stopping at Xi, which is exceeded with probability exactly pi and is identical to
stopping at Xi if and only if FD(Xi) > 1− pi.

Theorem 8.1 ([CFH+17], [CDFS21]). The Explicit-CFHOV algorithm has competitive ratio α− ε
in the i.i.d. setting.

The Explicit-CFHOV algorithm depends on explicit access to D to be able to exactly compute
FD(Xi). However, if instead we have m i.i.d. samples from D, we must derive another algorithm
that will allow us to estimate the distribution D. While [CDFS21] showed that m = O(n2) samples
can estimate D sufficiently well, [RWW19] observed that only m = O(n) samples suffice.

The authors define the Samples-CFHOV Algorithm as follows:

1. As a function only of n, and independently of D, define monotone increasing probabilities
0 ≤ p1 ≤ · · · pn ≤ 1.

2. Round down each pi to the nearest integer power of (1 + ε). Denote the rounded value by
⌊pi⌋ ∈ {(1 + ε)−1, (1 + ε)−2, . . .}.

3. Set p̃i := ⌊pi⌋/(1 + ε).

4. Using our m samples, let τi denote the value of the (p̃i ·m)-th highest sample.

5. Stop at Xi if and only if Xi > τi.

Thus, Samples-CFHOV provides an estimate τi of the σi used in Explicit-CFHOV based on the
m samples, and Samples-CFHOV attempts to overestimate σi so that it is unlikely that Samples-
CFHOV will ever choose to stop at a number that Explicit-CFHOV would not stop at.

This algorithm is similar to the one described in [CDFS21] in that they both attempt to set thresh-
olds τi such that FD(τi) ≈ 1− pi, but this algorithm targets a multiplicative (1− ε) approximation
for each threshold while the O(n2) algorithm targets an additive 1/n approximation. In other
words, this algorithm seeks a weaker guarantee such that |FD(τi) − pi| ≤ O(εpi) while the other
algorithm guarantees |FD(τi) − pi| ≤ 1/n. In seeking this weaker guarantee that still provides
”good” thresholds, we are able to use much less samples on the order of O(n) to solve the i.i.d.
prophet inequality.

Theorem 8.2. With O(n/ε6) samples, Samples-CFHOV achieves a competitive ratio of α−O(ε).

The authors prove Theorem 8.2 by showing that the expected value of Samples-CFHOV is at least a
1−O(ε) fraction of that of Explicit-CFHOV. To show this, they make two claims: 1) O(n) samples
suffices to determine ”good” thresholds with high probability, and 2) these ”good” thresholds yield
a good approximation of the Explicit-CFHOV thresholds.

Lemma 8.3 (Thresholds are ”good” with high probability). With δ = ε2/n and m = 12 ln(1/ε)/(ε3δ) =
O(n/ε6) samples, with probability at least 1− ε, we have simultaneously for every i

pi
(1 + ε)3

≤ Px∼D[x > τi] ≤ pi. (1)
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Note that this equation does not reference the values of the actual elements Xi, it simply makes a
claim about the thresholds τi, and thus the probability 1− ε is taken only over the randomness in
drawing the samples. A set of thresholds are “good” if they satisfy Equation (1).

Proof. Recall that τi =
⌊pi⌋·m
(1+ε) . Define Li to be the random variable such that Px∼D[x > Li] = ⌊pi⌋

and define Hi to be the random variable such that Px∼D[x > Hi] = (1 + ε)−2⌊pi⌋. Then, we can
prove (1) by showing that Li < τi < Hi for all i with high probability.

Specifically, we expect to see ⌊pi⌋m samples greater than Li, and we say that ⌊pi⌋ is ”bad” if the
number of samples greater than Li is not in the range [(1 + ε)−1(⌊pi⌋m), (1 + ε)(⌊pi⌋m)]. When
neither ⌊pi⌋ nor (1 + ε)−2⌊pi⌋ is bad, then we indeed have Li < τi < Hi. Then, we only need to
bound the probability that any particular p is bad.

We can use multiplicative Chernoff bounds to get that the probability that a particular p is bad is
upper bounded by

P[p is bad] < e−ε2pm/3.

and then take union bound over all p ∈ {(1 + ε)−1, (1 + ε)−2, . . . , δ} to get the probability that
some p is bad is bounded by

O(ln(1/δ)/ε)∑
i=0

e−ε2(1−ε)−iδm/3 ≤
∞∑
i=0

e−ε2(1−ε)−iδm/3 ≤
∞∑
i=0

e−ε3iδm/6 ≤ e−ε3δm/12

where we start with the a union bound over this (1+ ε) -multiplicative net, and the first inequality
simply extends the sum to infinity. The second inequality follows as (1−ε)−i ≥ εi/2 for all ε ∈ (0, 1)
and i ≥ 0. The final inequality holds at least whenm ≥ 6/(ε3δ). Thus, settingm = 12 ln(1/ε)/(ε3δ)
satisfies the claim with probability at least 1− ε.

For the second claim, let t1 be the stopping time of Explicit-CFHOV, and let t2 be the stopping
time of Samples-CFHOV.

Claim 8.4. Conditioned on (1) holding for every i, t2 ≥ t1. In other words, Samples-CFHOV
stops at an element later than Explicit-CFHOV.

Proof. This is clearly true since by (1) the threshold used by Samples-CFHOV is greater than or
equal to the threshold used by Explicit-CFHOV. Thus, if the algorithms differ at all, it is when
Explicit-CFHOV chooses an element but Samples-CFHOV does not.

Lemma 8.5 (”Good” thresholds are a good approximation). Conditioned on (1) holding for every
i, the following holds for every v:

P[Xt2 > v] ≥ 1

(1 + ε)3
P[Xt1 > v].

In other words, this lemma asserts that when the thresholds are “good”, Samples-CFHOV achieves
at least a 1/(1+ε)3 fraction of the expected reward of Explicit-CFHOV. This is because the expected
reward of Explicit-CFHOV is

∫∞
0 P[Xt1 > v]dv while the expected reward of Samples-CFHOV is∫ ∞

0
P[Xt2 > v]dv ≥

∫ ∞

0

P[Xt1 > v]

(1 + ε)3
dv =

1

(1 + ε)3
· E[Explicit-CFHOV].
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Proof. We would like to prove that the claim holds for every i ∈ [n], in other words, the equivalent
inequality:

P[(Xt2 > v) ∧ (t2 = i)] ≥ 1

(1 + ε)3
P[(Xt1 > v) ∧ (t1 = i)].

The event (Xtb > v)∧ (tb = i) for both b = 1, 2 happens if and only if the corresponding algorithm
(Explicit or Samples) does not stop before i and Xi is larger than both v and the threshold set for
i by the algorithm. We show that the inequality holds by proving that even though τi is a stricter
threshold than σi, we are still roughly as likely to accept an Xi exceeding v using τi versus σi for
all v. This is the following claim:

Claim 8.6. Conditioned on Equation (1) holding for every i, then for every v and i such that
pi ≥ δ:

(1 + ε)3P[(Xi > v) ∧ (Xi > τi)] ≥ P[(Xi > v) ∧ (Xi > σi)].

Proof. We prove this by showing it holds under the three following cases for v:

1. v ≥ τi: if v ≥ τi ≥ σi, we clearly must have

P[(Xi > v) ∧ (Xi > τi)] = Pr[Xi > v] = P[(Xi > v) ∧ (Xi > σi)].

2. v ∈ (σi, τi): this implies that

P[(Xi > v) ∧ (Xi > σi)] ≤ P[Xi > σi]

≤ (1 + ε)3P[Xi > τi]

= (1 + ε)3P[(Xi > v) ∧ (Xi > τi)]

where the first inequality follows due to v > σi and the second inequality follows from condi-
tion 1, and the third equality is by definition of v < τi.

3. v < σi: this implies that

P[(Xi > v) ∧ (Xi > σi)] = P[Xi > σi]

≤ (1 + ε)3P[Xi > τi]

= (1 + ε)3P[(Xi > τi) ∧ (Xi > v)]

which simply follows from condition 1.

Now, note that P[(Xt2 > v) ∧ (t2 = i)] = P[t2 ≥ i] · P[(Xi > v) ∧ (Xi > τi)] and P[(Xt1 > v) ∧ (t1 =
i)] = P[t1 ≥ i] · P[(Xi > v)∧ (Xi > σi)]. Therefore, we have proven the desired inequality for every
i ∈ [n], as

(1 + ε)3P[(Xi > v) ∧ (Xi > τi)] ≥ P[(Xi > v) ∧ (Xi > σi)])

(1 + ε)3P[(Xi > v) ∧ (Xi > τi)] · P[t2 ≥ i] ≥ P[(Xi > v) ∧ (Xi > σi)]) · P[t1 ≥ i]

(1 + ε)3P[(Xt2 > v) ∧ (t2 = i)] ≥ P[(Xt1 > v) ∧ (t1 = i)]

(1 + ε)3P[Xt2 > v] ≥ P[Xt1 > v]
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where we start with Claim 8.6, we apply Claim 8.4, and the rest is by observation of probabilities.
This completes the proof.

Proof of Theorem 8.2. Finally, we apply Lemmas 8.3 and 8.5 to prove Theorem 8.2. Lemma 8.3
shows that the thresholds of Samples-CFHOV are good with probability at least 1− ε, and Lemma
8.5 shows that whenever thresholds are good, Samples-CFHOV achieves at least a 1/(1+ε)3 fraction
of the expected reward of Explicit-CFHOV. All together, Samples-CFHOV achieves at least a 1−ε

(1+ε)3

fraction of the expected reward of Explicit-CFHOV.

Thus, by Theorem 8.2, because the Samples-CFHOV algorithm achieves at least a (1 − O(ε))
fraction of the expected reward of Explicit-CFHOV, this implies that Samples-CFHOV achieves
optimal competitive ratio α− ε for the i.i.d. setting with O(n) samples.

9 Extensions

9.1 Prophet inequalities and streaming algorithms in [CDF+20]

There is a clear extension for prophet inequalities to streaming algorithms, where we are primarily
concerned with the space usage that our algorithms use. In the previous sections, we store all of the
samples and values that we have seen such that we can randomly choose subsets to create threshold
values. Perhaps remarkably, [CDF+20] shows that we can achieve very close bounds even while
restricting the space usage:

Theorem 9.1. Let ϵ > 0. Assume there exists an MRS algorithm with guarantee α using O(n)
samples. Further assume that the MRS algorithm is based on a continuous function g with |{x ∈
[0, 1] : ∃q ∈ N : g(x) = q · ϵ}| = Oϵ(1). Then there exists a streaming algorithm using Oϵ(log n)
space with guarantee α− ϵ.

9.2 A generalization of the prophet inequality problem in [CCES21]

In the previous sections, we saw that the optimal competitive ratio of 0.745 can be guaranteed and
is tight for the i.i.d. prophet inequality problem with kn samples from the distribution. Recent
work is beginning to extend the single-choice i.i.d. prophet inequality problem to more general
versions of the problem which also guarantee the tight optimal competitive ratio of 0.745.

Formally, the authors of [CCES21] study a generic version of the classic single-choice optimal
stopping problem with sampling, which they call the p-sample-driven optimal stopping problem
(p-DOS). In this setup, a collection of n items is shuffled in uniform random order. Instead of
being given k offline samples, the decision maker (DM) initially gets to sample each of the n items
independently with probability p ∈ [0, 1) and can observe the relative rankings of these sampled
items. We call this set of samples the information set or history set. Then, the DM views the
remaining items in sequential order and they must decide whether to stop or continue on each
item, as in the classic prophet inequality. Moreover, the DM’s reward for stopping at the i-th
ranked item is Yi, and the goal of the DM is to maximize their reward. We may assume the
rewards are monotone, i.e. Y1 ≥ · · ·Yn, but we do not assume that they are non-negative. We
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would like to measure the performance of an algorithm that solves this problem by determining the
expected maximum value in the online set over the permutations of the items of the collection.

The authors discuss both the case in which the rewards Yi are known to the DM and the case
in which the rewards Yi are chosen by an adversary. They used a linear program to describe the
problem, and they prove that this LP exactly encodes the optimal algorithm. They further derive
a limit LP, through which they can limit the inequalities and ranges that are tight in an optimal
solution, leading them to solve certain simple ODEs that provide thresholds ti which are the times
at which the DM should accept an item of rank i or higher among the items they have seen thus
far.

In the latter case with an adversary, the authors show that the LP holds with the addition of a
stochastic dominance constraint and thus can be solved for the optimal algorithm, which takes
the form of a sequence of thresholds ti. Based on these algorithms, the authors prove a series of
quantitative results for different values of p, and specifically their guarantee for p approaches 1 of
optimal performance that approaches 0.745, which matches that of the i.i.d. prophet inequality.
This implies that there is no loss by considering a more general combinatorial version of the prophet
inequality problem without full distributional knowledge.

10 Conclusion

In this paper, we have shown a variety of algorithms and stopping rules used in research on the
single-choice i.i.d. prophet inequality problem with sampling, and in particular we discuss each
algorithm’s performance in terms of the optimal competitive ratio α achieved by the algorithm,
i.e. α such that the algorithm guarantees expected value on stopping at a certain element that
is at least an α fraction of the best expected value over all the elements. Researchers have been
able to continuously improve on a lower bound for the optimal competitive ratio with kn samples,
eventually showing that the upper bound of 0.745 for the general prophet inequality problem (where
the distribution is known) is achievable with O(n) samples in the sampling prophet inequality
problem.

Recent work related to the problem of prophet inequality problem with sampling include applica-
tions to other fields, such as streaming algorithms (Section 9.1), and extensions to generalizations
of the problem, such as in combinatorial situations (Section 9.2) and the matroid secretary problem
with sampling. One such related open problem is the existence of a constant competitive algorithm
for the matroid secretary problem, which may be tackled following the algorithms and results of
the p-DOS setup of [CCES21]. Additionally, it is worth noting that the prophet inequality problem
with sampling has been interesting to researchers because of its real-world applications to algorith-
mic pricing such as posted-price mechanisms and choice of prices in online advertising auctions. We
expect future research to apply knowledge in solving the secretary problem and prophet inequality
problem to other related applications, ranging from price mechanisms to streaming algorithms to
combinatorial auctions.
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