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Abstract

Recently different variants of Prophet Inequalities, a central problem in the theory
of optimal stopping, has sparked an emerging interest in computational economics.
The general prophet problem asks the following: given n of real-valued, nonnegative
random variables X1, X2, ..., Xn ∼ D1, ...,Dn, arriving online, we (the gambler) wish
to pick a random variable Xi∗ ∈ {X1, ..., Xn} such that the random variable we pick is
as close to the value chosen by the prophet OPT = E[maxiXi], as possible. There are
many variations of the same problem: for instance, when we are required to retain k
random variables instead of one random variable, whether the distributions are (not)
known in advance, and when the distributions are i.i.d. In this paper, we present a
survey of recent developments of prophet inequalities where the distributions are known
in advance, but the random variables arrive online under three different order-based
settings: (1) adversarial order, in which the order of arrival of the random variables
Xi is fixed by some adversary; (2) random order, in which the random variable Xi’s
arrive in an order chosen uniformly at random; (3) free order, where an algorithm can
be used to determine the order of arrival by looking at the input parameters.
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1 Preliminaries

1.1 Introduction

The general problem of prophet inequalities asks the following: given n of real-valued,
nonnegative random variables X1, X2, ..., Xn ∼ D1, ...,Dn, arriving online, we (the gambler)
wish to pick a random variable Xi∗ ∈ {X1, ..., Xn} such that the random variable we pick
is as close to the value chosen by the prophet OPT = E[maxi Xi], as possible. How well
the gambler performs is typically measured by a multiplicative approximation ratio α: Let
τ ∗ denote the stopping time of the gambler and let OPT = E [max(X1, ..., Xn)] denote the
expected reward of the prophet. We seek to design an algorithm such that

E [Xτ∗ ] ≥ αOPT.

In this setting, a lower bound generally means an algorithm that concretely gets us an
expected reward within α of the optimum, whereas an upper bound generally means an
impossibility result, that we (the gambler) cannot achieve an approximation ratio to within
< α of the optimum.

In order-based prophet inequalities, the order of arrival of the n random variables can
change. We present a survey on prophet inequalities under different order-based models:
adversarial order, in which an adversary picks an ordering of arrivals; free order, in which
the algorithm can determine some chosen order of arrival based of the random variables; and
random order, in which case the random variables are permuted uniformly at random and
then arrive online.

1.2 Related Works

The research along adversarial order prophet inequalities is closed and complete. The initial
work on prophet inequalities, [10], proved a tight upper bound of α = 1

2
which can also

be achieved via multiple different strategies. In the free order model, the earliest work,
by T. P. Hill [7], showed that when the optimal strategy is used, the reward obtained by
a predetermined offline ordering is just as good, if not better, than a dynamic ordering
computed online. This motivates the subsequent work by [2], which proved that the problem
of finding an optimal offline optimal ordering is NP-hard, and [11], which designed improved
polynomial-time approximation algorithms for optimal ordering. In the random order model,
there are two cases: (1) when the random variables are all i.i.d., in which case, the problem
is well studied with a tight upper bound governed by a solution of β = 0.745 to the Kertz
equation [9] and a matching algorithm (lower bound) given by [1] and [4]; (2) when the
random variables are non-i.i.d.; in which case, no tight bound exists to date, and the best
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upper bound and lower bound are 0.732 and 0.669 correspondingly, given by [5], with most
recently [11] showing that given an appropriately configured choice of ϵ, removing ϵ−1 random
variables from the input sequence recovers the Kertz bound in the non-i.i.d. case.

The structure of this paper is as follows. In section 3, we cover the classical result of a 1
2
-

approximation in the adversarial order model by a proof due to [12]. In section 4, we present
a simplified proof of the result in [7] that the optimal reward in obtained by offline ordering
is just as good as an online ordering, and give, in expository fashion, a proof by [2] that
finding the optimal offline ordering is NP-hard. In section 5 and section 6 correspondingly,
we give an expository account of the results given by [9], [1], [4], and [5] on the i.i.d and
non-i.i.d. random order models.

2 Adversarial Order

In the adversarial order prophet model, the random variables Xi draw from independent, but
not necessarily identical, distributions D1, ...,Dn. They arrive in some fixed, adversarially
determined order. In this case it can be shown that the optimal approximation bound cannot
be improved beyond 1

2
.

2.1 1/2 Approximation

Krengel and Sucheston [10], showed that the gambler can obtain at least 1
2
using an optimal

stopping rule. We first present a simpler proof of 1
2
approximation due Samuel-Cahn [12],

that uses the following threshold policies:

1. Let t(c) = smallest i < n such that Xi ≥ c, otherwise t(c) = n.

2. Let s(c) = smallest i < n such that Xi > c, otherwise s(c) = n.

We define E+[Xt(c)] = E[Xt(c)I(Xt(c)≥x] and E+[Xs(c)] = E[Xs(c)I(Xs(c) > x]. Let m be the
median of the distribution of X∗, i.e.

Pr(X∗ < m) = q ≤ 1

2
, Pr(X∗ > m) = p ≤ 1

2

Finally, let

β =
n∑

i=1

E[Xi −m]+

Now we are in a position to formally state our theorem.

Theorem 1. Let X1, ..., Xn be independent nonnegative random variables and let X∗ =
max(X1, ..., Xn) then

1. If β ≥ m then E[X∗
n] ≤ 2E+[Xs(m)] ≤ 2E[Xs(m)]

2. If β ≤ m then E[X∗
n] ≤ 2E+[Xt(m)] ≤ 2E[Xt(m)]
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Proof. We begin by noting that E[X∗
n] ≤ m+ E[X∗

n −m]+ ≤ m+ β.
Suppose β ≥ m. Since m is the median,

E+[Xs(m)] = mp+ E[Xs(m) −m]+ = mp+ E

[
n∑

i=1

E[Xi −m]+I(s(m) = i)

]

= mp+ E

[
n∑

i=1

E[Xi −m]+I(s(m) > i− 1)

]
By independence,

= mp+ E

[
n∑

i=1

E[Xi −m]+Pr(s(m) > i− 1)

]
≥ mp+ β(1− p) ≥ (m+ β)/2 ≥ E[X∗

n]/2

Similarly, when β ≤ m,

E+[Xt(m)] = m(1− q) + E

[
n∑

i=1

E[Xi −m]+ Pr(t(m) > i− 1)

]

≥ m(1− q) + βp ≥ (m+ β)/2 ≥ E[X∗
n]/2

We note that 1/2 approximation cannot be improved upon in the non-Independent and
identically distributed case. This is a common folklore construction that we now formalize
here. Set Xn−1 = µ and set Xn = 1 and 0 with probability µ and 1 − µ. Setting all other
Xi’s smaller than µ and letting µ → 0 yields the result.
This motivates us to study the i.i.d case where the constant factor can be improved.
We remark that [12] also proves any non-adaptive threshold rule cannot improve the constant
factor of 1/2 in even the i.i.d case, where random order, free order and adversarial order
prophet inequalities coincide.

3 Free Order

In the free order model, the algorithm ALG decides an ordering of the arrival of random
variables X1, ..., Xn. As we will show, the main problem under this context is how to choose
an optimal offline ordering such that algorithm yields the best reward. This is called the
optimal ordering problem; its history traces back to [7], when Hill first proved that an
optimal offline ordering is as good as the optimal dynamic online ordering, and [2] proved
that computing a restricted case of offline ordering is NP-hard via a reduction from the subset
product problem. More recent works, such as [11] aim at providing better polynomial-time
approximation algorithms for optimal ordering.
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3.1 Order selection in optimal stopping.

We call an ordering offline, static if it is decided in advance before the variables Xi arrive.
We call an ordering online, dynamic otherwise, where in a dynamic setting, the order of
arrival of subsequent variables Xj+1, ..., Xn could change dynamically based on the current
and previous arrivals X1, .., Xj at stage j. T. P. Hill showed in 1983 [7] that when all
variables Xi are independent, the optimal offline ordering is just as good as the optimal
online ordering, even for a random process formed by a possibly infinite sequence of arriving
random variables (X1, X2, ...). However, when the independence assumption is removed, the
claim may not be true. We present an abridged version of Hill’s proof of the result below,
but for the case where the sequence of arriving random variables X = {X1, ..., Xn} is finite,
and present a counterexample when the random variables are dependent.

Let P(n) denote the set of permutations π : [n] → [n]. Let an online dynamic ordering
be a map r : R∞ → P(n) where r(X1, ..., Xi−1)[i] determines the index of the i-th random
variable that arrives, possibly based on the value of the previous arrivals. Without loss of
generality one may view an offline static ordering as a permutation map π ∈ P(n) that does
not take in any context of already arrived of random variables.

For instance, when n = 3, we can define the following online dynamic ordering : r[1] 7→ 2,

r(X1)[2] 7→

{
1 X1 >

5
3

3 Otherwise
, and r(X1, X2)[3] 7→

{
1 X1 ≤ 5

3

3 Otherwise
. On the other hand the

permutation map π :=
(
1 3 2

)
is a static offline ordering.

The problem we study is as follows. The player fixes a possibly dynamic ordering (policy)
r ∈ R at the beginning. At each time step t, the random variable Xr(x1,...,xt−1)[t] arrives. The
player either accepts this random variable as reward or moves on. If the player exhausts of
random variables then the game stops automatically with zero reward. Observe that offline,
the optimal policy can be computed via a dynamic program via backwards induction:

Definition 2 (Optimal policy). For a sequence of random variables X := X1, ..., Xn we
define its optimal, offline stopping value as follows:

V (X ) = V (X1, ..., Xn)

= E[max(X1,E[max(X2, ...,E[max(Xn, 0)], ..., )])]

Similarly the optimal policy for X w.r.t. an order r ∈ R(n) is given by the same dynamic
program, where instead of using the index set [n] we apply the ordering function r on the
index set.

Definition 3 (Optimal reward w.r.t. chosen ordering r). For a sequence of random variables
X := X1, ..., Xn we define its value as

V (r,X ) = sup{E[Xr[t]] : t is a stopping rule}

V (r,X ) =

{
E
[
max

(
Xr(x1,...,xj−1)[j], V (r, {X1, ..., Xj−1})

)]
X = {X1, ..., Xj}

0 X = ∅
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where T = [n] denotes the set of all stopping locations for the sequence X1, X2, ..., Xn.
Let R(n) denote the universe of all possible online orderings r : Rn → P(n). According to
definition 2, we design the following dynamic program which gives us the optimal policy:

V (r, j) = E[max(Xr(X1,...,Xj−1)[j], V (r, j + 1))]

V (r, n+ 1) = 0

The optimal stopping policy as described by the dynamic program is written verbally as
follows:

Optimal Policy (Given ordering r). At time step t, compare the value of random
variable Xr,t := Xr(Xr[1],...,Xr[t−1])[t] to V (r, t + 1). If the realized value of Xr,t ≥ V (r, t + 1)
then stop and accept the reward. Otherwise continue.

We would like to show that a precomputed, offline static ordering is just as good as, if
not better than, a dynamic online ordering. Specifically, we prove the following theorem:

Theorem 4.
sup

r∈R(n)

V (r,X ) = max
π∈P(n)

V (π,X ).

Proof. Via forward induction on n and backward induction for fixed n. For the base case
n = 1, the statement is trivially true: there is only one item which forces the same ordering
on the LHS and RHS. Assume the statement holds for 1 ≤ k ≤ n− 1, and let r ∈ R(n) be
arbitrary. Without loss of generality we may assume the following

A1. r[1] 7→ 1, since otherwise we can permute X in the beginning such that it holds. And

A2. V (X2, ..., Xn) = maxπ∈P(n);π[1]=1 V (Xπ[2], ..., Xπ[n])

Since P(n) may be viewed as a subset of R(n) it suffices to show that V (X1, ..., Xn) upper
bounds the LHS, i.e. for any choice of r,

V (r,X ) ≤ V (X1, ..., Xn)

To help our proof, we first state a lemma from [Hill], which is a natural consequence from
the definition of V , X, and r.

Lemma 5 (Lemma 3.5 of [7]). If r[1] = 1 and let X1 ∼ D1 then

V (Xr[2], ..., Xr[n]|X1 = x) = V (Xr(x)[2], ..., Xr(x)[n])

LetD1 denote the distribution ofX1, and let A := {x ∈ R;x > V (Xr[2], ..., Xr[n];X1 = x)}
and Ā = R\A. By backward induction and the first lemma above, it follows that

V (r,X ) = max(Xr[1], V (r, {Xr[2], ..., X[n]}|Xr[1])) by backwards induction

= max(Xr[1], V (r, {Xr(Xr[1])[2], ..., X[n]})) by Lemma 3.5 of Hill

≤ max(X1, V (X2, ..., Xn)) by assumption A2

= V ({X1, ..., Xn}) by definition of V (·)
= V (X )
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It is necessary that the theorem above requires independence as an assumption: Take the
following example from [7], for instance. Let X1, X2, X3 be drawn from a joint distribution
and take values (0, 3, 2), (0, 3, 4), (1, 2, 3), (1, 4, 3) each with uniform probability. One computes
that V (Yπ) =

13
4
for all offline orderings but for an online ordering r ∈ R(3) we can set r[1] =

1, r(0, x2, x3)[2] = 3, r(1, x2, x3)[2] = 2. Then V (r, {X1, X2, X3}) = 14
4
≤ V ({X1, X2, X3}).

3.2 NP-hardness of computing an optimal ordering.

Since we showed previously that a predetermined offline ordering is just as good as a
dynamically determined online ordering, our goal will be to choose an optimal permutation
π∗ ∈ P(n) such that for any sequence of n independent random variable arrivals X =
(X1, ..., Xn) ∼ (D1, ...,Dn), π

∗ = argmaxπ∈P(n) (V (π,X )). We show that this problem is
NP-hard, by first analyzing this problem in the more restricted context where each Di is a
k-point distribution (as defined below). We will then show that the even case when every Di

is a 3-point distribution is NP-hard, via a reduction from a problem called subset product
to optimal ordering for 3-point distributions; hence showing the general problem of optimal
ordering is NP-hard. To get started, we first define the subset product problem, which is an
analogue of subset sum but with multiplication, and show that it is NP-complete.

Problem 6 (Subset product). In the subset product problem, we are given a set A :=
{a1, ..., an} ⊂ Z (with ai > 1 for all i), and a target B. The subset product question asks if
there exists a set T ⊂ A such that

∏
t∈T t = B.

Proof that subset product is NP-Complete. We first recal the following problem,
X3C (Exact Cover by 3-Sets), which is known to be NP-Complete:

Problem 7 (X3C). Given a finite set X with |X| a multiple of 3, and a collection of 3-
element subsets C of X, decide if C contains an exact cover C ′ for X such that C ′ ⊆ C and
every element in X occurs exactly once in C ′.

To reduce an X3C instance to a subset product instance, we do the following:

1. Establish a bijective map f between the members ofX and the first |X| prime numbers.
WLOG, we will henceforth denote the members of X and the subsets of X in C with
the prime numbers by their mapped prime numbers.

2. For each subset c in C we multiply its mapped prime elements together to form a list of
numbers that are prime products L. We feed this list into the subset product instance,
and multiply every (mapped prime) element in X together to form the value B in the
subset product instance.

3. Because prime numbers are used for the mapping, two subsets are equal if and only if
their prime products are equal, as guaranteed by the unique factorization theorem.

The prime factors of B are exactly the elements in X, and the prime factors of the number in
L correspond to the elements of the subsets in C. Hence, any solution to the subset product
instance gives a solution to exact cover by 3 sets. All operations used above are polytime in
|X|, hence this is a polytime reduction.
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Definition 8 (k-point distributions). A random variableXi drawn from a k-point distribution

is defined by 2k − 1 parameters {p(1)i , ..., p
(k)
i , q

(1)
i , ..., q

(k−1)
i } where Xi ∈ {p(1)i , ..., p

(k)
i } and

Pr(Xi = p
(j)
i } =

{
q
(j−1)
i j ̸= 1

1−
∑k−1

l=1 q
(l)
i j = 1

. We call the set {p(1)i , ..., p
(k)
i } the support of the

k-point distribution.

We will start by stating some properties of the optimal ordering for 3-point distributions,
as proved in [2]. First, for a 3-point distribution, let its support be {0,mi, 1} where mi ∈
(0, 1). Let the 3-point distribution be defined by qi = Pr(X

(3)
i = 1) and pi = Pr(X

(3)
i = mi)

and Pr(X
(3)
i = 0) = 1 − (pi + qi), for 0 < qi, pi < 1 and qi + pi < 1. Hence, every element

in the support can be realized with some positive probability, and no element is realized, or
never realized, almost surely.

Observe at step i in our optimal policy given an ordering π, either V (π, i + 1) > mπ[i]

meaning that Xπ[i] attains value 1, and is accepted; or else Xπ(i) fails to attain 1. We may
hence partition the input sequence X := (X1, ..., Xn) into two sets: Sπ := {Xπ[i];Vπ(i+1) >
mπ(i)} and T π = X\Sπ.

Proposition 9 (Claim 3.1 of [2]). In an arbitrary optimal ordering π ∈ P(n), the following
holds:

1. Elements in Sπ appear before elements in T π.
2. Elements in Sπ are ordered arbitrarily in π.
3. Elements in T π are ordered in nonincreasing order of Ei where Ei := E[Xi|X > 0] =

mipi+qi
pi+qi

.

We can now define a closely related problem called optimal partitioning. We call a
sequence (S, T ) = X = (X1, ..., Xn) of n random variables and ordered partition if (1) T is
nonempty, (2) variables in S are ordered arbitrarily and (3) variables in T are arranged in
nonincreasing order according to Ei. In the optimal partitioning problem, we seek to find an
ordered partition (S, T ) such that V (S, T ) is maximized. As a corollary of Claim 3.1 of [2],
in the case of 3-point distributions, optimal partitioning is equivalent to optimal ordering.

We now prove the following theorem:

Theorem 10. Optimal ordering is NP-hard in the case where Xi ∼ Di where Di is a 3-point
distribution with support {0,mi, 1} for some mi ∈ (0, 1), and corresponding probabilities
{1− pi − qi, pi, qi} obeying 0 < pi, qi < 1 and pi + qi < 1 for all i ∈ [n].

Proof. We assume that an instance of subset product is given as a set A := {a1, ..., an} ⊂ Z
(with ai > 1 for all i), and a target B. Recall the subset product question asks if there exists
a set T ⊂ A such that

∏
t∈T t = B. We consider the following valuation of random variables:

Let Xi = 0 w.p. 1
a2i
, Xi = mi =

B2−ai
B2+1

w.p. ai−1
a2i

, and Xi = 1 w.p. ai−1
ai

. In addition

Ei = E[Xi|Xi > 0] =

B2−ai
B2+1

· ai−1
a2i

+ ai−1
ai

1− 1
a2i

=
B2

B2 + 1
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which means Ei = Ej for all i, j since Ei does not depend on i hence the order within Sπ

and T π are irrelevant. Let iS and iT denote an ordered partition of the index set {1, 2, ..., n}
that correspond to the ordered partition (Sπ, T π). Then the expected reward V (Sπ, T π) is
written according to definition as

V (Sπ, T π) = 1−
∏
i∈iS

(1− qi) +
B2

B2 + 1

(∏
i∈iS

1− qi

)(
1−

∏
j∈iT

(1− pj − qj)

)

= 1−
∏
i∈iS

[1− (1− 1

ai
)] +

B2

B2 + 1

(∏
i∈iS

[1− (1− 1

ai
)]

)(
1−

∏
j∈iT

(1− (1− 1

ai
)− (

1

a2i
− 1

ai
))

)

= 1−
∏
i∈iS

1

ai
+

B2

B2 + 1

(∏
i∈iS

1

ai

)(
1−

∏
j∈iT

1

a2i

)

If we let γ =
∏n

i=1 ai, γS =
∏

i∈iS ai and γT =
∏

i∈iT ai then
1
γS

= γT
γ

and

V (Sπ, T π) = 1− γT
γ

+
B2

B2 + 1
· γT
γ

(
1− 1

γ2
T

)
Hence V (Sπ, T π) may be written as a function of γT . We call this function f(γT ) =

V (Sπ, T π). We claim that f is strictly concave in γT and achieves its maximum when
γT = B; this can be shown using elementary calculus. Hence, the optimal partition (Sπ, T π)
has γT = B if and only if the given instance of subset product is feasible, i.e. a subset of
S sums to B. Otherwise if the subset product instance is infeasible, the function f(γT ) will
always attain some value strictly less than its maximum.

4 Random Order: i.i.d. Case

In the i.i.d. prophet inequality, the n random variables (X1, X2, ..., Xn) are all sampled from
the same distribution D independently identically at random.

Early approaches to the i.i.d prophet inequality are mostly mathematical, non-algorithmic
approaches aimed at proving impossibility results instead of giving algorithms that lower
bound the best achievable gambler-to-prophet ratio. The pioneering work by Hill and Kertz
[8] showed that the gambler can obtain at least 1− 1

e
of the prophet. They also constructed

a sequence of samples αn, for the which no algorithm can obtain an approximation ratio
better than β = 1

1.342
≈ 0.745, where β is governed by the Kertz Equation, given as follows.∫ 1

0

[(β−1 − 1)]− y(log y − 1)]−1 dy = 1 (1)

The proof for this upper bound utilizes conjugate duality theory, probabilistic convexity
arguments, and functional equation analysis, and is hence omitted. We refer the readers
to [8] and [9] for details. Both problems of beating the 1 − 1

e
approximation and trying to

achieve a β-approximation remained open for 3 decades until 2017 when Abolhassani et al.
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[1] and Correa et al. [4] beat the 1− 1
e
approximation. [1] give a 0.738 approximation when

n is larger than a chosen large constant n0. Simultaneously and independently, [4] show
a 0.745 approximation for this problem, thereby completely closing the gap between upper
and lower bounds for the i.i.d. case. We first present the algorithm due to Abolhassani et.
al, and then discuss the work of Correa et. al.

4.1 A 0.738 Approximation

In order to achieve a 0.738 Approximation, we consider Algorithm 1 from [1]. We will focus on
providing some intuition as to why this algorithm works. For a given sequence of thresholds,

Algorithm 1

Input: n i.i.d items with distribution function D
1. Set a to 1.306 (root of cos(a)− sin(a)/(a− 1))

2. Set θi = D−1(cos(ai/n)/ cos(a(i− 1)/n))

3. Pick the first item i for which Xi ≥ θi

let q0, q1...qn denote the probability of the algorithm not choosing any of the first items.
More specifically, let qi = Pr [θ > i] for every 0 ≤ i ≤ n. Knowing the thresholds θ1, ...θnone
can find this sequence by starting from q0 = 1 and computing the rest using qi = qi−1D(θi)
Inversely, one can simply find the thresholds from q0, q1...qn using θi = D−1(q−i/qi−1) Hence,
the design of the algorithm focuses on finding the sequence q1, .., qn. To this end, we need to
find a continuous function h : [0, 1] → [0, 1] with h(0)= 1 such that by setting qi = h(i/n)
we can achieve our desired set of thresholds. In order for Algorithm 1 to work, h needs to
be α−strong.

Definition 11. A function h is α−strong is it has the following properties:

1. h(1) ≤ 1− α

2.
∫ 1

0
h(r)dr ≥ α

3. ∀ 0 ≤ s ≤ 1 : 1− h(s)− h′(s)/h(s)
∫ 1

0
h(r)dr ≥ α(1− exp(h′(s)/h(s)

Theorem 12. If h is an α-strong function, then for every ϵ > 0 there exists an nϵ such that
for every n ≥ nϵ the threshold algorithm that acts based on h is at least (1−ϵ)α-approximation
on n iid items

Proof. We now give a sketch of a proof presented by Abolhassani et al. We can write the
expected reward acquired by the optimal stopping time algorithm OPT (i.e. the prophet) as

E[OPT] =
∫ ∞

0

Pr[maxXi ≥ x]dx (2)

We can, similarly, write the expected reward of our approximation algorithm ALG as

E[ALG] =
∫ ∞

0

Pr[maxXθi ≥ x]dx (3)
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The proof proceeds by showing that, for every ϵ there exists some nϵ such that for every
n ≥ nϵ, the second integrand is at (1 − ϵ)α times the first integrand and this proves the
theorem. We get the 0.738 approximation by showing cos(as) is ≈ 0.7388− strong.

4.2 Achieving Optimality

Now, we turn to the work of [4] which provides a 0.745 approximation for this problem. This
matches the upper bound given by [9], closing the gap between the lower and upper bounds.
It is interesting to note that [4] was originally considering this problem in the context of
posted price mechanisms. In particular, they give an adaptive posted price mechanism that
achieves 0.745 of the Myerson Optimal Auction, which simultaneously yields an algorithm
for random-order prophet inequalities. The intuition behind the algorithm is that in an
auction, as fewer customers are left, the price should decrease. The second key insight is to
draw the threshold from a well-chosen distribution that mimics the optimal scheme. Below,
we only consider their algorithm modified for the i.i.d prophet inequality setting.

Algorithm 2

Input: n i.i.d items with distribution function D
1. Partition the interval [0, 1] into intervals Ai = [ϵi−1, ϵi], s.t 0 < ϵ0 < ϵ1... < ϵn < 1

2. Draw qi from interval Ai according to the probability density, fi(q) =
(n−1)(1−qi)

n−2

αi
,

where αi is a normalization parameter computed by integration of the numerator.

3. Set threshold θi = D−1(1− qi) for the r.v at step i

Theorem 13. Given n non-negative i.i.d. random variables, X1, ..., Xn, with Xi ∼ X for
all i, there exist thresholds, θ1, .., θn, such that for a sequence σ, drawn uniformly at random,
the expected value of the first variable that exceeds its threshold according to that sequence,
Xσ(i) ≥ θi, is at least a 1/β fraction of the expected value of max{X1, ..., Xn}.

Proof. We give a brief sketch of the proof of this theorem, omitting many details and
computations. When D is continuous and strictly increasing, we express the expected value
of the maximum as follows:

E(maxXi) = n

∫ 1

0

tDn−1d(D(t) = n

∫ q

0

(n− 1)(1− q)n−2R(q)qdq

where t is the solution to a differential equation similar to Kertz equation and R(q) =
E(X|X > D−1(1− q)) is the expected value of a random variable given that the probability
that that variable attains a larger value is at most q. We once again omit the details about
the differential equation. Since R(q) corresponds to the expected value we get when setting
the threshold D−1(1− q), one can prove the expected revenue of this strategy is equal to

n∑
i=1

ρi

∫ ϵi

ϵi−1

(n− 1)(1− q)n−2R(q)qdq

11



where ρi =
1
α1

and ρi+1 =
ρi
αi

∫ q

0
(n− 1)(1− q)n−1dq. Setting ϵi such that ρi = ...ρn, gives that

n∑
i=1

ρi

∫ ϵi

ϵi−1

(n− 1)(1− q)n−2R(q)qdq ≥ 1

β
E(maxXi)

where β ≈ 1.342

Both [1] and [4] present a strategy that uses adaptive thresholds. Both papers, define
ideal properties for threshold functions to obtain a good ratio and work towards finding such
function. It is interesting that in this problem, the lower bound is given by an algorithmic
construction, and the upper bound is given by a theoretical construction, as usually in such
types of problems the reverse is true. Since [4] were motivated by a different question, they
were able to build on a different line of work and apply their result to the i.i.d prophet
inequality setting. Resolving the i.i.d prophet inequalities is a huge success for algorithm
design.

5 Random Order: Non i.i.d. Case

In the non i.i.d. case, the random variables X1, ..., Xn draw from n distributions D1, ...,Dn

that are independent but not necessarily distinct; their arrival ordering is then permuted
uniformly at random. [5] recently proved that the optimal approximation is bounded above
by 0.732 and bounded below by 0.669. In this section we outline an algorithm which
guarantees the gambler a factor of roughly 1 − 1

e
+ 1

27
of the optimal reward. At the end,

we provide an example which shows that no algorithm achieves the gambler better than a
factor of

√
3− 1 of the optimal reward. The work by Correa is an expansion of other recent

works by [6] and [3].

5.1 Time Threshold Algorithm

Recall the statement of the prophet secretary problem. We aim to find the largest possible
constant c, where max{E(Xσ(T )|T ∈ Tn} ≥ cE(maxXi), where Tn is the set of stopping times.
In the paper developed by [6], which inspired [5], a single threshold strategy is implemented.
They choose their threshold τ , such that Pr(max{E(Xi)} ≤ τ) = 1

e
, which then allows for

an algorithmic performance of 1− 1
e
.

For this paper, we consider multiple threshold strategies, denoted as blind strategies, where
the thresholds are determined by a non-increasing continuous function. Specifically, we
take our non-increasing function α:[0, 1] → [0, 1], and we select ui from [0, 1] uniformly and
independently, and then select thresholds τi where Pr(maxi∈[n]{E(Xi)} ≤ τi) = α(mini∈[n]{ui}).
In implementing this algorithm, the gambler stops at the first time they encounter a value
which exceeds a threshold. The formalization of this algorithm is listed below. For clarity’s
sake, please note that Xσi

is the ith randomly chosen variable.
Note that the above algorithm gives an expected payoff of Xσ(T ), where T is the stopping

time of the function. Also, from here forward please consider Di to be the distribution
corresponding to the variable Xi.

12



Algorithm 3

Time Threshold Algorithm (TTA)
1. For each time instance i = 1, 2, ...n check if Xσi

is greater than the selected threshold
τi.

2. If Xσi
is greater than the selected threshold τi, then we select the variable Xσi

.
Otherwise, we continue the algorithm from step 1.

5.2 Existence of a Suitable Threshold Function

First, we aim to show that there exists a non-increasing function α:[0, 1] → [0, 1] that meets
our desired properties, as stated in the theorem statement below.

Theorem 14. There exists a non-increasing function α: [0, 1] → [0, 1] such that

E(XT ) ≥ 0.665E(max
i∈[n]

{Xi})

where T is the stopping time of the blind strategy α.
In order to show the existence of this function, we must first expand our consideration of

strategies to deterministic blind strategies, which are essentially the limits of blind strategies
when n tends to infinity. We formally define non-deterministic blind strategies as follows.

Definition 15 (Deterministic blind strategy). For a sequence of random variables Xi,
thresholds τi, and a non-increasing function α : [0, 1] → [0, 1], a deterministic blind strategy
is one that obeys the following condition:

∀j ∈ [n] : Pr(max
i∈[n]

{Xi}) = α(
j

n
)

We can convert a deterministic blind strategy into a blind strategy as follows. Consider the
sequence D1, ..., Dn of distributions corresponding to the n variables Xi. We then add to
this distribution an additional m deterministic variables, Xn+i for i ≤ m, and set them equal
to 0 with probability 1. In other words, the variables Xn+i for i ≤ m have distributions
Dn+i = 0, with probability 1. Letting Tm denote the stopping time here, it is easy to see
that limm→∞ E(Xσ(Tm)) = E(Xσ(T )). It can be seen that the blind strategy of choosing the
random variables u1, ...un uniformly from {1, ...., 1

m+n
} instead of from [0, 1] is analogous to

the deterministic blind strategy proposed above, when m → ∞.

We next show some properties of deterministic blind strategies from [6]. They follow from
standard computations.

Lemma 7. Given independent random variables X = (X1, ..., Xi, ..., Xn) and non-increasing
thresholds τi with stopping time T given by the TTA, we then have, for all j ∈ [n+1] and t
∈ [τj, τj−1):

Pr(Xσ(T ) > t) = Pr(T ≤ j − 1) +
∑
i∈[n]

Pr(Xi > t)(
n∑

k>j−1

Pr(T ≥ k|σk = i)

n
)

13



This proof follows from the fact that Pr(Xσ(T ) > t) = Pr(T ≤ j−1)+Pr(Xσ(T ) > t, T ≥ j)
because thresholds are non-increasing. From standard computation using independence, we
have Pr(Xσ(T ) > t, T ≥ j) =

∑
i∈[n] Pr(Xi > t)(

∑n
k>j−1 Pr(σk = i, T ≥ k)) =

∑
i∈[n] Pr(Xi >

t)(
∑n

k>j−1
Pr(T≥k|σk=i)

n
).

Lower bounding the last term by using Pr(T ≥ k|σk = i) ≥ Pr(T > k). we have, Pr(Xσ(T ) >

t) ≥
∑

i∈[n] Pr(Xi > t)(
∑n

k>j−1
Pr(T>k)

n
). Taking the j ∈ [n+1], which minimizes this, and

noting that 1− α( j
n
) = Pr(maxi∈[n]{Xi} > τk) ≥ Pr(maxi∈[n]{Xi} > t), the result of Lemma

8, listed below, holds.

Lemma 8. Under the conditions of Lemma 7, for j ∈ [n+1], t > 0, and deterministic blind
stopping time T where α is non-increasing with α(n+1

n
) = 0:

Pr(Xσ(T ) > t) ≥ min
j∈[n+1]

{Pr(T ≤ j − 1)

1− α( j
n
)

+
1

n

n∑
k=j

Pr(T > k)}Pr(max
i∈[n]

{Xi})

We then use the result of Lemma 8, to find a bound on Pr(T ≤ k). Let αi denote α( i
n
)

for the remainder of the proof. We omit the proof of Lemma 9 here, however the majority
of the argument comes down to utilizing the symmetric properties induced by the random
ordering σ to bound Pr(T ≥ k)

Lemma 9. Choose and fix α1, ..., αn ∈ [0, 1]. For the distributions D1, ...,Dn of the variables
Xi, choose thresholds τi where Pr(maxi∈[n]{Xi} ≤ τi) = αi. We then have for all k ∈ [n]:

1

n

∑
j∈[k]

1− αj ≤ Pr(T ≤ k) ≤ 1− (
k∏

j=1

αj)
1
n

Using Lemmas 8 and 9, and selecting the values αi from Lemma 9 to fit a specific non-
increasing function α achieves the desired result of Lemma 10, listed below.

Lemma 10. Let α:[0, 1] → [0, 1] be a continuous non-increasing function and stopping time
T for a deterministic blind stopping time. For Xi with distributions Fi, for any t > 0 we
have:

Pr(Xσ(T ) > t) ≥ min
j∈[n+1]

{fj(α)}Pr(max
i∈[n]

{Xi})

where for all j ∈ [n+ 1] :

fj(α) =

j−1∑
k=1

1− α( k
n
)

n(1− α( j
n
)
+

1

n

n∑
k=j

(
k∏

l=1

α(
l

n
))

1
n

Using a Riemann-sum analysis to approximate the expressions for fj(α), and numerically
minimizing these sums yields a minimal value of 0.665 as n → ∞. Recalling that as n → ∞,
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the deterministic blind strategies approximate the blind strategy, it is evident that the lower
bound is achieved. This finally proves Theorem 5.

In order to improve the lower bound to 0.669, as opposed to 0.665 above, [5] proved the
sharper inequality listed below and used this, inspired by a paper by Esfandiari et al., in lieu
of Pr(T ≥ k|σk = i) ≥ Pr(T > k) in bounding the result of Lemma 7.

Lemma 11. Given independent random variables Xi and non-increasing thresholds τi with
stopping time T , we then have, for all i, j ∈ [n] :

Pr(T ≥ k|σk = i) ≥ Pr(T > k)

1− k
n
+ 1

n

∑
l∈[k] Pr(Xi ≤ τl)

In addition, as an alternative to
∑

i∈[n] Pr(Xi > t) ≥ Pr(maxi∈[n]{Xi} > t) in the proof of
Theorem 5, to instead achieve the bound of 0.669, the following lemma is also used.

Lemma 12. Given independent random variables Xi and non-increasing thresholds τi, we
then have, for all t < τ1, k ≤ n

2
:∑

i∈[n]

Pr(Xi > t)

1− 1
n

∑
l∈[k] Pr(Xi ≤ τl)

≥
Pr(maxi∈[n]{Xi} > t)

1− k
n

∑
l∈[k] Pr(maxi∈[n]{Xi} ≤ τ1)

Using these following two optimizations, leads the proof in a similar direction. The final
steps, however, require solving an integral formulated as a Mayer optimal control problem,
and so we omit the details of this proof here.

5.3 Example Showing the Upper Bound

In this section, we provide a simple example which shows that has an upper bound of
√
3−1

performance ratio for any strategy. We choose a ∈ [0, 1] and we consider n+1 randomly
distributed variables where

Xi ∼

{
1
n

p = 1
n2

0 p = 1− 1
n2

for i < n, and Xn+1 is identically a. This gives an expectation of E(Xσ(T )|σ(i) = n + 1) of
n[1− (1− 1

n2 )
n], where a is not considered (at times n or earlier), and E(Xσ(T )|σ(i) = n+1)

= n[1− (1− 1
n2 )

i−1] + (1− 1
n2 )

i−1a, when a is considered (at times n+1 or later). Summing

over all possibilities of i, where σ(i) = n + 1, we have E(Xσ(T )) = j−1
n+1

n[1 − (1 − 1
n2 )

n] +
1

n+1

∑n+1
i=j n[1−(1− 1

n2 )
i−1]+(1− 1

n2 )
i−1a. We get algebraically, that E(Xσ(T )) ≤ 1+ a2

2
+O( 1

n
).

Meanwhile, E(maxi∈[n]{Xi}) = n[1− (1− 1
n2 )

n] + (1− 1
n2 )

na, which tends to 1+ a as n tends

to infinity. We then choose a =
√
3− 1, and get an asymptotic upper bound as desired:

lim
n→∞

sup
E(Xσ(T ))

E(maxi∈[n]{Xi})
≤ 1 + a2/2

1 + a
≈

√
3− 1
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