COS 445 - Strategy Design 2

Due online Friday February 25th at 11:59 pm

Instructions:

* You may not take late days on the Strategy Designs. If it helps, think of the Strategy
Designs as being due on Friday, except we have given everyone three free late days.

* You should aim to work in a team of two, but you are allowed to work alone or in a team of
three. Your team should submit a single writeup, using the team feature on codePost. You
should also submit a single code solution, using the team feature on TigerFile.

* You are allowed to engage with other teams over Ed or in person (but this is neither encour-
aged nor discouraged). If this is part of your strategy, you should discuss what you did and
why you did it in your writeup. You are allowed to coordinate with other teams, or trick other
teams. You are not allowed to promise other teams favors (e.g. monetary rewards) or threaten
punishment outside the scope of this assignment. For example, you are allowed to promise
“if your code does X, our code will do Y.” You are not allowed to promise “if your code does
X, I will buy you a cookie.” If this is part of your strategy, your justification should explain
why it will help you on this assignment.

* Please reference the course collaboration policy here: infosheet445sp22.pdf.

* Please reference the following document for further detail on how these assignments are
evaluated: GradesForStrategy.pdf.

» This assignment is open-ended, please ask questions on Ed to clarify expectations as
needed.

Reminder!

Please read the instructions at GradesForStrategy.pdf to better understand how the strategy design
assignments are graded (which in turn should clarify how to answer the prompts).

Strategic Gerrymandering (35 points)

In Candyland, all resources are allocated fairly, and all congressional districts are drawn via care-
ful protocols. Of course, Candyland still has a strong two-party system, and every ten years the
two parties participate in the I-cut-you-freeze protocol developed here (https://arxiv.org/
pdf/1710.08781.pdf, by Pegden, Procaccia, and Yu) to redistrict.! Your political party of
choice gerrymandered poorly last cycle, and is looking to up their game. They heard you were

'Note: You are not expected to read this paper — it’s just included as a reference. This assignment is self-contained,
and you only need to understand what’s written in the assignment.

1

http://www.cs.princeton.edu/~smattw/Teaching/infosheet445sp22.pdf
http://www.cs.princeton.edu/~smattw/Teaching/GradesForStrategy.pdf
http://www.cs.princeton.edu/~smattw/Teaching/GradesForStrategy.pdf
https://arxiv.org/pdf/1710.08781.pdf
https://arxiv.org/pdf/1710.08781.pdf

taking COS 445 and offered you a consulting gig to maximize the number of districts they win in
the upcoming election.

Your team will be playing the role of one political party, against one other team (at a time, you
will play all teams) in the following protocol.

Setup:

There are two teams, Alpha and Beta.

There are NV blocks of voters. A block cannot be further subdivided (think of this like a
neighborhood).

Each block ¢ has «; constituents who will vote for Alpha, and (; constituents who will vote
for Beta.

«* and (3* are drawn independently and uniformly at random from [T, 27].

Each «; is drawn independently and uniformly at random from [0, a*], and each f; is drawn
independently and uniformly at random from [0, 5*].

Both Alpha and Beta know N, &, 5 .

Districting:

A districting of the voters is a partition into d disjoint sets, each containing exactly N/d
blocks (/N will always be an integer multiple of d).

Alpha wins a district D if the number of voters in all blocks in D who prefer Alpha exceed
the number of voters in all blocks in D who prefer Beta. That is, Alpha wins iff) iep Qi >
>iep Bi.> Beta wins if Alpha does not.

I-Cut-You-Freeze:

Note: You are certainly welcome to visit the linked paper for any insight,? but our model is slightly
simpler than in the paper, so the formal algorithmic descriptions may not line up. The one in this
handout is what will be used.

1.

Initialize » = d. Initialize R = {1,..., N}. Initialize Districts = an empty list. Initialize
activePlayer = Alpha, otherPlayer = Beta.

. While » > 1 (while there are still districts left to make):

activePlayer proposes a partition of R into r disjoint districts X, ..., X,, each of size |R|/r
(activePlayer proposes a full districting of all remaining blocks into 7 districts of exactly
| R|/r blocks).

2We will set T large enough so that a tie is extremely unlikely in any possible district.
3This is another reminder that you are not expected to visit the linked paper, and that the assignment is self-
contained. If you choose to visit that paper and find any ideas helpful, you're certainly free to use them.

4. otherPlayer picks any X, and adds X; to Districts (otherPlayer picks a district to finalize, the
rest are reset).

5. Remove all blocks in X; from R (R is the remaining blocks, and all blocks in X; are now
districted).

6. Swap activePlayer and otherPlayer. Decrease r by one.
7. Go back to step 2.

In other words, Alpha and Beta alternate between proposing a districting of the remaining
blocks. Every time one of them proposes a districting, the other one picks one district to finalize.
Then they swap roles and repeat.

Payoffs:

* For one game, Alpha’s payoff is the number of districts they win. Beta’s payoft is the number
of districts they win.

* You will be matched against every other submission, and against each other submission you
will play multiple rounds to remove noise due to randomness.*

Your job is to design a strategy that plays I-Cut-You-Freeze, and your goal is to maximize your
payoff (number of districts won). Code it up according to the specifications below, and answer the
subsequent questions.

Specifications:

We provide a Block class which methods alpha () and beta () to get you the number of votes
for alpha and beta in that block.

You will implement the Party interface provided in Party . java, which requires the following
methods:

e public static Party New(bool isBeta, int numDistricts,
List<Block> blocks) mustconstruct and return a Party based on the provided blocks.
Do any initialization here.

e public List<List<Block>> cut (int numDistrictsRemaining,
List<Block> remaining) must partition the remaining blocks into numDistricts, each
with remaining.size () / numDistrictsRemaining elements. We will issue a
penalty if your strategy outputs the wrong number of districts, outputs districts with different
numbers of blocks, does not include all the remaining blocks, or includes any other blocks.

* public List<Block> choose (List<List<Block>> districts) mustchose
and return one of the provided districts. We will issue a penalty if your strategy does not re-
turn one of the provided lists.

* public void accept (List<Block> chosen) is used to inform the active party
of the choice made by the nonactive party.

“For instance, note that if a* > 3*, Alpha should do much better than Beta. So we will play multiple rounds to
level the field.

We guarantee that we will always call the methods in this order:
* New on the class of each of alpha and beta
* Repeating numDistricts times, with the active player initially alpha:

— cut on the active party
— choose on the nonactive party
— accept on the active party

— swap the active and nonactive parties
We provide the following sample strategies:

* Party_pack_cut_pack_choose: A strategy which makes the most uneven districts pos-
sible and always freezes the district with the most voters for the opponent.

* Party_even_cut_pack_choose: A strategy which uses the greedy algorithm to create
fair-ish districts (not the fairest, but as good as possible with the greedy algorithm) and always
freezes the district with the most voters for the opponent.

* Party_even_cut_even_choose: A strategy which uses the greedy algorithm to create
fair-ish districts (not the fairest, but as good as possible with the greedy algorithm) and always
freezes the district it wins by the smallest margin (if it wins no districts, freezing the district
it loses by the largest margin).

Your file must follow the naming convention Party netid. java, where netid is the
NetID of the primary submitter. Your class must also be named Party _netid, or else it will
not compile. Please follow the naming convention correctly so that we do not need to modify
your submission. Because filenames differ, we have to use the “Additional Files” zone on Tiger-
File. However, only upload one file (your Party). If you want to include other classes, declare them
as private inner classes within your Party.

Penalties may be issued if your submission does not precisely follow the API specifications.
Examples of violations include: does not compile, or throws exceptions, or violates invariants
documented above and in Party. java.

The Makefile allow you to test your strategy against the provided strategies and any other strate-
gies you consider. Edit parties.txt withalist of all the strategies to run, then use make test
to rebuild the testing code with those strategies and test your program.

Extra credit may be awarded for reporting substantive bugs in our testing code.

Also submit a single PDF file, containing answers to the following three prompts. Recall that
your grade for part ¢ is the maximum of your grade on the writeup and your grade for your strategy’s
performance.

Part a (10 points)

What should a good strategy (for Alpha) do when d = 2 and all &, 3 satisfy: oy + B; = 1, o, B; €
{0, 1} for all 7 (that is, exactly one of a; or 3; is one, and the other is zero)? Make sure to consider
the case where Alpha has more total votes than Beta, less total votes than Beta, and less than a
quarter of the total votes.

What makes this hard for general &, 5? (Hint: Google SUBSET-SUM or PARTITION).

Note: It is OK to be informal with calculations and to ignore off-by-one errors. It is also OK just
to write a few sentences explaining what makes this hard in general. The staff solutions are (much)
less than half a page.

Part b (10 points)

What should a good strategy do (for both Alpha and Beta) when d = 3 and all &, ﬁ satisfy:
a; + 6; = 1, ag, p; € {0,1} for all ¢ (that is, exactly one of «; or f3; is one, and the other is
zero)? You may want to first reason about what Beta should do, and then reason about what Alpha
should do conditioned on this.

Note: It is OK to be informal with calculations and to ignore off-by-one errors. It is OK to explicitly
consider casework for what you would do as Alpha. It is also OK to describe a clear and well-
defined optimization problem that you would solve (without going through all the cases to solve
it). The staff solutions are less than half a page.

Part c (15 points)

Provide a brief justification for your strategy. Focus on convincing the grader that it is a good
strategy, by explaining the main ideas and why you chose this strategy. You should aim to keep this
under one page. This will not be strictly enforced, but the grader may choose not to read beyond
one page. You should not think of this merely as a documentation explaining only what your code
does. Instead, try to imagine that its purpose is to convince your political party of choice why they
should adopt your strategy.

