
COS 445 - PSet 4

Due online Monday, April 4th at 11:59 pm.

Instructions:

• Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

• Submit your solution to each problem as a separate PDF to codePost. Please make sure
you’re uploading the correct PDFs!1 If you collaborated with other students, or consulted
an outside resource, submit a (very brief) collaboration statement as well. Please anonymize
your submission, although there are no repercussions if you forget.

• The cheatsheet gives problem solving tips, and tips for a “good proof” or “partial progress”:
http://www.cs.princeton.edu/˜smattw/Teaching/cheatsheet445.pdf.

• Please reference the course collaboration policy here: http://www.cs.princeton.
edu/˜smattw/Teaching/infosheet445sp22.pdf.

1We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.
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Problem 1: Combinatorial Auctions (20 points, no collaboration)
In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some valuation
function vi(·) which takes as input a set S of items and outputs that bidder’s value for that set (so
vi(S) = 5 means that bidder i gets value 5 for receiving exactly the set S). These functions will
always be monotone (vi(S ∪ T ) ≥ vi(S) for all S, T ), and satisfy vi(∅) = 0. But you should make
no other assumptions on vi(·). Each item can be awarded to at most one bidder.

The designer’s goal is to distribute the items to the bidders (in a way such that each item is
awarded to at most one bidder), and to do so in a way that maximizes the welfare (the sum over
all i of the value that bidder i has for the set they receive). Design an auction that is incentive
compatible and maximizes welfare. A complete solution should describe:

• On bids v1(·), . . . , vn(·), what set Si does bidder i get?

• On bids v1(·), . . . , vn(·), what price does bidder i pay?

You should give both answers as an explicit formula. For example, “bidder i should pay 5” is
an explicit formula. So is “bidder i should pay

∑
j 6=i vj({1}).” “Bidder i should pay the harm they

cause to bidder i − 1” is not an explicit formula. Similarly, “Bidder i should get set {1, 2}” is an
explicit formula. So is “Bidder i should get the set Si which maximizes v1(Si) + vi(Si).” “Bidder i
should get the set which they are awarded in the welfare-maximizing allocation” is not an explicit
formula.

Hint: The intention of this problem is for you to figure out how to mechanically instantiate the
VCG mechanism for this setting. You are allowed to use the VCG auction for guidance and provide
a complete proof that your auction is incentive compatible and maximizes welfare. You are also
allowed to design an auction and prove that your auction is a special case of VCG (this proof might
be pretty short).
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Problem 2: Some issues with Greedy (40 points)
In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some valuation
function vi(·) which takes as input a set S of items and outputs that bidder’s value for that set (so
vi(S) = 5 means that bidder i gets value 5 for receiving set S). These functions will always be
monotone (vi(S ∪ T ) ≥ vi(S) for all S, T ), and satisfy vi(∅) = 0. Unless otherwise specified, you
should not make any other assumptions on vi(·).

Consider the following mechanism for allocating items:

• Initialize Si = ∅ (each bidder i initially gets no items). Initialize pi = 0 (each bidder initially
pays 0).

• For j = 1 to m (for each item in order)

– Ask each bidder their marginal value for item j: bij(Si) = vi(Si ∪ {j}) − vi(Si) (how
much additional value would they get right now by adding j).

– Reveal all bids to all bidders (that is, for all i, reveal the marginal value that bidder i
reported for item j to all bidders).

– Award item j to the bidder i who reports the largest value (breaking ties lexicograph-
ically), add to their payment the second-highest report. That is, if i reports the largest
marginal value and i′ reports the second-largest, Update Si to Si ∪ {j}, and pi to
pi + bi′j(S

′
i).

• Award bidder i the set Si of items and charge them pi.

Part a (20 points)
Prove that if all valuation functions are additive (that is, vi(S) =

∑
j∈S vi({j}), for all S), then it is

a Nash equilibrium for all bidders to truthfully report bij(Si) := vi(Si∪{j})−vi(Si) in every round.

Hint: Remember that a list of strategies are a Nash equilibrium if every player i is best responding
to the other players.

Part b (10 points)
Prove that, even if all valuation functions are additive, and even if n = m = 2, it is not a dominant
strategy for bidders to truthfully report bij(Si) := vi(Si ∪ {j})− vi(Si) in every round.

Hint: It may help to explicitly think about what strategies a bidder can use in this auction. Recall
that a dominant strategy is a best response to every strategy the other player might use. So if you
want to show that something is not a dominant strategy,. . . .

Part c (10 points)
Provide one example of valuation functions v1(·) and v2(·), such that it is not a Nash equilibrium
for both bidders to bid their true marginal valuations. Specifically, prove (in your example) that if
bidder 2 tells the truth, then bidder 1 can do strictly better by lying.
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Problem 3: Revenue Equivalence (50 points)
Consider a single-item auction with two bidders whose values are drawn from the equal-revenue
curve ER, (F (x) = 1 − 1/x for all x ≥ 1, and f(x) = 1/x2 for all x ≥ 1). The following parts
will guide you through a proof to find a Bayes-Nash equilibrium of the first-price auction using
Revenue Equivalence. You should complete all parts and not provide an alternative proof.

Recall that a bidding strategy b1(·) is a best response to b2(·) if: for all v1, in expectation over
v2 ← ER, and bidder two bidding b2(v2), bidder 1’s payoff is (weakly) maximized by bidding
b1(v1). Recall also that your payoff from a first price auction is equal to v − b if you win and bid b,
and zero otherwise.

Part a (10 points)
What is the expected revenue of the second-price auction when two bidders with values indepen-
dently drawn from equal-revenue curves bid their true value? You should also prove that you
computed your answer correctly.

Part b (10 points)
In the second-price auction, what is the expected payment made by bidder one, conditioned on
bidding v1, and that bidder two truthfully reports v2 ← ER? You should also prove that you
computed your answer correctly.

Note that we are not conditioning on bidder 1 winning. To be extra formal, let P SPA
1 (v1) denote

the random variable that is equal to v2 if v1 > v2, and 0 otherwise (that is, Player One pays v2 when
they win, and 0 if they do not). What is Ev2←ER[P

SPA
1 (v1)]?

Part c (10 points)
For a given bidding strategy b(·), define P FPA

1 (v1, b) to be the random variable that is equal to b(v1)
if v1 > v2, and 0 otherwise. Find a bidding strategy b(·) such that:

• b(·) is strictly monotone increasing on [1,∞) (b(v) > b(v′)⇔ v > v′). That is, bidder 1 will
win the first price auction exactly when v1 > v2 if both bidders use strategy b(·).

• For all v1 ∈ [1,∞), Ev2←ER[P
FPA
1 (v1, b)] = Ev2←ER[P

SPA
1 (v1)]. That is, the expected

payment made by bidder 1, conditioned on v1, and v2 ← ER, is the same in both the first-
price auction (when both bidders use b(·)) and second-price auction (when both bidders tell
the truth).

You should also prove that your answer has these properties.

Part d (20 points)
Prove that the strategy you found in Part c is a Bayes-Nash Equilibrium of the first-price auction
for two bidders with values drawn from the equal-revenue curve. You will receive partial credit
for correctly setting up the necessary equations and verifying them with an online solver. For full
credit, you should also solve the necessary equations.

Hint: Proving this inevitably will require taking derivatives, but there is a clever trick that
avoids overly painful calculations. If you are dreading the calculus you’re about to do, try to be
creative with other ways you can work through the math.
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Extra Credit: Walrasian Equilibria
Recall that extra credit is not directly added to your PSet scores, but will contribute to your partici-
pation grade. Some extra credits are quite challenging and will contribute significantly.

For this problem, you may collaborate with any students and office hours. You may not consult
course resources or external resources, as this is a proof of a well-known result.2

In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some
valuation function vi(·) which takes as input a set S of items and outputs that bidder’s value for that
set (so vi(S) = 5 means that bidder i gets value 5 for receiving set S). These functions will always
be monotone (vi(S ∪ T ) ≥ vi(S) for all S, T ), and satisfy vi(∅) = 0. A Walrasian Equilibrium is a
non-negative price for each item ~p such that:

• Each buyer i selects to purchase a set Bi ∈ argmaxS{vi(S)−
∑

j∈S pj}.

• The sets Bi are disjoint, and ∪iBi = [m].

Prove that a Walrasian equilibrium exists for v1, . . . , vn if and only if the optimum of the LP
relaxation below (called the configuration LP) is achieved at an integral point (i.e. where each
xi,S ∈ {0, 1}).

max
∑
i

∑
S

vi(S) · xi,S

∀i,
∑
S

xi,S = 1

∀j,
∑
S3j

∑
i

xi,S ≤ 1

∀i, S, xi,S ≥ 0.

Finally, provide an example of two valuation functions v1, v2 over two items where a Walrasian
equilibrium doesn’t exist.

2You may consult course resources for general refreshers on Linear Programming, but not for anything specific to
this problem.
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