Publications

« Home

☑ represents peer-reviewed papers

Book AI Snake Oil: What Artificial Intelligence Can Do, What It Can't, and How to Tell the Difference
Arvind Narayanan, Sayash Kapoor
Princeton University Press (2024)
Featured in Nature's list of the 10 best books of 2024
Preprint International AI Safety Report
Yoshua Bengio, ..., Sayash Kapoor et al.
Preprint (2025)
A report on the state of advanced AI capabilities and risks written by 100 AI experts
Preprint AI Agents That Matter · Blog post
Sayash Kapoor*, Benedikt Stroebl*, Zachary S. Siegel, Nitya Nadgir, Arvind Narayanan
Preprint (2024)
Preprint Inference Scaling fLaws: The Limits of LLM Resampling with Imperfect Verifiers
Benedikt Stroebl, Sayash Kapoor, Arvind Narayanan
Preprint (2024)
Preprint The Reality of AI and Biorisk
Aidan Peppin, Anka Reuel, Stephen Casper, Elliot Jones, Andrew Strait, Usman Anwar, Anurag Agrawal, Sayash Kapoor, Sanmi Koyejo, Marie Pellat, Rishi Bommasani, Nick Frosst, Sara Hooker
Preprint (2024)
Journal Considerations for governing open foundation models
Rishi Bommasani, Sayash Kapoor, Kevin Klyman, Shayne Longpre, Ashwin Ramaswami, Daniel Zhang, Marietje Schaake, Daniel E. Ho, Arvind Narayanan, Percy Liang
Science (2024)
Journal REFORMS: Consensus-based Recommendations for Machine-learning-based Science · Blog post
Sayash Kapoor, Emily Cantrell, Kenny Peng, Thanh Hien (Hien) Pham, Christopher A. Bail, Odd Erik Gundersen, Jake M. Hofman, Jessica Hullman, Michael A. Lones, Momin M. Malik, Priyanka Nanayakkara, Russell A. Poldrack, Inioluwa Deborah Raji, Michael Roberts, Matthew J. Salganik, Marta Serra-Garcia, Brandon M. Stewart, Gilles Vandewiele, Arvind Narayanan
Science Advances (2024)
Conference On the Societal Impact of Open Foundation Models · Blog post
Sayash Kapoor*, Rishi Bommasani*, Kevin Klyman, Shayne Longpre, Ashwin Ramaswami, Peter Cihon, Aspen Hopkins, Kevin Bankston, Stella Biderman, Miranda Bogen, Rumman Chowdhury, Alex Engler, Peter Henderson, Yacine Jernite, Seth Lazar, Stefano Maffulli, Alondra Nelson, Joelle Pineau, Aviya Skowron, Dawn Song, Victor Storchan, Daniel Zhang, Daniel E. Ho, Percy Liang, Arvind Narayanan
International Conference on Machine Learning (ICML 2024 Oral)
Conference A Safe Harbor for AI Evaluation and Red Teaming · Blog post
Shayne Longpre, Sayash Kapoor, Kevin Klyman, Ashwin Ramaswami, Rishi Bommasani, Borhane Blili-Hamelin, Yangsibo Huang, Aviya Skowron, Zheng-Xin Yong, Suhas Kotha, Yi Zeng, Weiyan Shi, Xianjun Yang, Reid Southen Alexander Robey, Patrick Chao, Diyi Yang, Ruoxi Jia, Daniel Kang, Sandy Pentland, Arvind Narayanan, Percy Liang, Peter Henderson
International Conference on Machine Learning (ICML 2024 Oral)
Our open letter to AI companies calling for a safe harbor was signed by over 350 academics, researchers, and civil society members.
Journal How large language models can reshape collective intelligence
Jason W. Burton, Ezequiel Lopez-Lopez, Shahar Hechtlinger, Zoe Rahwan, Samuel Aeschbach, Michiel A. Bakker, Joshua A. Becker, Aleks Berditchevskaia, Julian Berger, Levin Brinkmann, Lucie Flek, Stefan M. Herzog, Saffron Huang, Sayash Kapoor, Arvind Narayanan et al.
Nature Human Behaviour (2024)
Journal The 2024 Foundation Model Transparency Index
Rishi Bommasani, Kevin Klyman, Sayash Kapoor, Shayne Longpre, Betty Xiong, Nestor Maslej, Percy Liang
Transactions on Machine Learning Research (TMLR 2025)
Journal CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark
Zachary S. Siegel, Sayash Kapoor, Nitya Nadgir, Benedikt Stroebl, Arvind Narayanan
Transactions on Machine Learning Research (TMLR 2025)
Journal The 2023 Foundation Model Transparency Index
Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Daniel Zhang, Percy Liang
Transactions on Machine Learning Research (TMLR 2025 Featured certification)
Journal The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Shayne Longpre, Stella Biderman, Alon Albalak, Gabriel Ilharco, Sayash Kapoor, Kevin Klyman, Kyle Lo, Maribeth Rauh, Nay San, Hailey Schoelkopf, Aviya Skowron, Bertie Vidgen, Laura Weidinger, Arvind Narayanan, Victor Sanh, David Adelani, Percy Liang, Rishi Bommasani, Peter Henderson, Sasha Luccioni, Yacine Jernite, Luca Soldaini
Transactions on Machine Learning Research (TMLR 2024 Survey certification)
Preprint Towards a Framework for Openness in Foundation Models: Proceedings from the Columbia Convening on Openness in Artificial Intelligence
Adrien Basdevant, Camille François, Victor Storchan, Kevin Bankston, Ayah Bdeir, Brian Behlendorf, Merouane Debbah, Sayash Kapoor, Yann LeCun, Mark Surman, Helen King-Turvey, Nathan Lambert, Stefano Maffulli, Nik Marda, Govind Shivkumar, Justine Tunney
Preprint (2024)
Journal Promises and pitfalls of artificial intelligence for legal applications · Blog post
Sayash Kapoor, Peter Henderson, Arvind Narayanan
Journal of Cross-disciplinary Research in Computational Law (CRCL 2024)
Journal Against Predictive Optimization: On the Legitimacy of Decision-Making Algorithms that Optimize Predictive Accuracy · Blog post
Angelina Wang*, Sayash Kapoor*, Solon Barocas, Arvind Narayanan
ACM Journal on Responsible Computing (JCR 2024)
Also presented at: Philosophy, AI, and Society (2023); Data (Re)Makes the World (2023), ACM FAccT (2023)
Conference Foundation Model Transparency Reports · Blog post
Rishi Bommasani, Kevin Klyman, Shayne Longpre, Betty Xiong, Sayash Kapoor, Nestor Maslej, Arvind Narayanan, Percy Liang
AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES 2024)
Journal Leakage and the reproducibility crisis in ML-based science
Sayash Kapoor, Arvind Narayanan
Patterns (2023)
Policy brief Considerations for Governing Open Foundation Models · Blog post
Rishi Bommasani, Sayash Kapoor, Kevin Klyman, Shayne Longpre, Ashwin Ramaswami, Daniel Zhang, Marietje Schaake, Daniel E. Ho, Arvind Narayanan, Percy Liang
Stanford HAI Issue Brief (2023)
Journal The limitations of machine learning models for predicting scientific replicability
M. J. Crockett, Xuechunzi Bai, Sayash Kapoor, Lisa Messeri, and Arvind Narayanan
Proceedings of the National Academy of Sciences (PNAS 2023)
Online essay How to Prepare for the Deluge of Generative AI on Social Media
Sayash Kapoor, Arvind Narayanan
Knight First Amendment Institute (2023)
Conference Weaving Privacy and Power: On the Privacy Practices of Labor Organizers in the U.S. Technology Industry
Sayash Kapoor*, Matthew Sun*, Mona Wang*, Klaudia Jaźwińska*, Elizabeth Anne Watkins*
ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2022)
🏆 Impact Recognition Award
Conference The worst of both worlds: A comparative analysis of errors in learning from data in psychology and machine learning
Jessica Hullman, Sayash Kapoor, Priyanka Nanayakkara, Andrew Gelman, Arvind Narayanan
ACM Conference on AI, Ethics, and Society (AIES 2022)
Conference Controlling polarization in personalization: an algorithmic framework
L. Elisa Celis, Sayash Kapoor, Farnood Salehi, and Nisheeth K. Vishnoi
ACM Conference on Fairness, Accountability, and Transparency (FAccT) 2019
🏆 Best Paper Award
Journal Corruption-tolerant bandit learning
Sayash Kapoor, Kumar Kshitij Patel, and Purushottam Kar
Machine Learning (2019)
Journal A dashboard for controlling polarization in personalization
L. Elisa Celis, Sayash Kapoor, Vijay Keswani, Farnood Salehi, and Nisheeth K. Vishnoi
AI Communications (2019)
Conference Balanced news using constrained bandit-based personalization
Sayash Kapoor, Vijay Keswani, Nisheeth K. Vishnoi, and L. Elisa Celis
IJCAI Demos Track (2018)