
– Independent Work Report Spring 2024 –

hoagieplan | Dashboard
Princeton’s Comprehensive Academic Planner

George Chiriac
Adviser: Robert M. Dondero

Abstract

The hoagieplan project12 represents a comprehensive approach to academic planning at Prince-

ton University, aimed at consolidating multiple functionalities into a single, user-friendly application.

This report details the development and implementation of the Dashboard tab within hoagieplan,

which allows users to plan their academic curriculums over four years. Developed in response to

identified limitations in existing academic planning tools, hoagieplan integrates and enhances the

features of its predecessors—TigerPath, Princeton Courses, and ReCal—providing comprehensive

support for degree, major, and minor planning. The Dashboard caters to semester planning by

providing course and requirements information and checking which requirements a student fulfills.

This report outlines Dashboard’s architecture, functionalities, and user feedback, highlighting its

successful deployment and potential for future enhancements. Through hoagieplan, Princeton

students receive streamlined and effective support, reducing the complexity and time associated

with academic planning.

1hoagieplan link.
2GitHub repository link.

https://plan.hoagie.io
https://github.com/ggchiriac/compass

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Related Applications . 4

1.3 Goal . 8

2 Functionality 9

2.1 User Scenario . 9

2.2 Selected Features . 13

3 Implementation 16

3.1 Overview . 16

3.2 Architecture . 17

3.3 Code Structure . 18

3.4 Challenges . 20

4 Evaluations 23

4.1 Feedback Form . 23

4.2 Live Testing . 24

5 Summary 24

5.1 Conclusions . 24

5.2 Limitations . 25

5.3 Future Work . 25

6 Appendix 25

6.1 User Scenarios . 25

6.2 Database Schema . 27

2

6.3 YAML Encodings . 29

6.4 Live Testing Notes . 30

1. Introduction

1.1. Motivation

Major and Degree Planning

Academic planning at Princeton University is hard. Students must parallel plan their coursework

in order to satisfy their major and degree requirements. Bachelor of Arts (AB) students must take

a writing seminar, complete one to four terms of foreign language, and take courses that fall into

each of the following distribution areas: Culture and Difference, Epistemology and Cognition,

Ethical Thought and Moral Values, Historical Analysis, Literature and the Arts, Quantitative and

Computational Reasoning, Science and Engineering, and Social Analysis3.

Bachelor of Science and Engineering (BSE) students must take four terms of mathematics, two

terms of physics, and one term each of chemistry and computer science. They must also take a

writing seminar and a minimum of seven courses distributed among the humanities and social

sciences distribution areas.

In addition to degree requirements, students must fulfill their major requirements, which typically

present themselves as lists of required courses within their department and lists of elective courses.

These can be very difficult to keep track of since there often are multiple pathways through a major.

Additionally, restrictions exist such as deadlines for fulfilling requirements and constraints on the

grading bases of the courses taken.

Minor and Certificates Planning

Princeton undergraduates can supplement their diploma with one or more certificate programs.

The University also introduced minor programs for the Class of 2025 and beyond. Minor and

certificates requirements are similar to major requirements but fewer in number. Currently, there is

no application to help students plan their minor and certificate programs.

3Adapted from Princeton’s Undergraduate Announcement

3

https://ua.princeton.edu/policies-resources/general-education-requirements

Resolving Conflicts

Students must also pay attention to the classes’ time schedule in order to avoid conflicts between

the classes they pick. Thus, students must survey at least five different websites to decide which

courses to pick each semester: the Undergraduate Announcement for the degree requirements; the

major department’s website or handbook for major requirements; the minor department’s website

for minor requirements; the registrar’s website to see available courses; and TigerHub’s course

planner to manage time conflicts. These websites are old and hard to navigate. Princeton students

have created applications that circumvent this issue.

1.2. Related Applications

TigerPath

Released in 2018, TigerPath4 is a four-year course planner designed to help students navigate

their major and degree requirements. The layout of the application is shown in 1. Students can

search for courses, drag and drop them into their semester schedule, then see which major and

degree requirements they do and do not satisfy.

TigerPath’s last major update was in 2021 so as of the time of writing this report, its requirements

data is outdated. Furthermore, it does not have minor and certificates support. Lastly, the UI / UX

of the application does not look modern.

4TigerPath link.

4

https://www.tigerpath.io

Figure 1: TigerPath layout. Left: course search. Middle: semester schedule.
Right: requirements menu.

Princeton Courses

Released in 2017, Princeton Courses5 displays the information offered by the registrar’s website

in a more intuitive and compressed manner. The layout of the application is shown in 2. Users can

search for courses by title, course code, or department, and see the description, distribution area,

instructors, and reviews of the selected courses on one page.

Princeton Courses is used by 45% of undergraduates, making it the most popular academic

planning application at Princeton. Similarly to TigerPath, however, the UI / UX of the application is

dated.
5Princeton Courses link.

5

https://www.princetoncourses.com

Figure 2: Princeton Courses layout. Left: course search. Middle: ratings and
reviews. Right: course information.

ReCal

ReCal6, released in 2014, is a semester planning app that allows students to visualize the times

at which their courses take place and resolve potential conflicts. The layout of the application is

shown in 3.

Figure 3: ReCal layout. Left: course search. Middle: calendar view.

ReCal+7, released in 2023 as part of the TigerJunction project, is an updated version of ReCal

6ReCal link.
7ReCal+ link.

6

https://recal.io
https://junction.tigerapps.org/recalplus

that introduces different color themes and advanced filters such as “Days” (that allows users to

search for courses that have classes during the selected days) and “No Conflicts” (that allows users

to search for classes that do not conflict with their current schedule). The layout of the application

is very similar to ReCal and is shown in 4.

Figure 4: ReCal+ layout. Left: course search. Middle: calendar view.

Both of these applications look modern and are utilized by a large fraction of undergraduates.

Compass

In Fall 2023, I sent Princeton undergraduates an interest form for an application that helps users

plan their minor requirements. It received 257 affirmative responses, confirming that Princeton

students struggle planning out their minor programs. Furthermore, respondents expressed frustration

regarding the need for multiple academic planning applications.

As a solution, I, Windsor Nguyen, Kaan Odabas, Ijay Narang, and Julia Kashimura set out to

create an all-in-one academic planning app as our project for COS 333 – Advanced Programming

Techniques in Fall 2023. We named it Compass8. Given the time constraints, we managed to

implement most of TigerPath’s functionality, as well as Princeton Courses’ functionality through

course information modals. The layout of the application is shown in 5. Compass had many

limitations:
8Compass link.

7

https://princetoncompass.com

• No support for cross-listed courses.

• Only had support for 6 majors, 30 minors, and no degrees or certificates.

• Did not check double-counting restrictions and requirement deadlines.

• No search filters, no delineation of course information and reviews by semester.

• Drag and drop behavior was slow and unstable.

Figure 5: Compass layout. Left: course search. Middle: semester schedule. Right:
requirements menu. Top right: account settings

1.3. Goal

hoagieplan is a continuation of Compass. Its name comes from hoagie.io, the application platform

that hosts it. hoagieplan aims to modernize and integrate the functionalities of TigerPath, Princeton

Courses, and ReCal. It is divided in two tabs, Calendar and Dashboard. Calendar, developed by

Windsor Nguyen, is the tab where users visualize class times and manage conflicts. Dashboard,

developed by me, is the object of this report, and it is the tab where users can plan their four-year

schedule. The layout of Dashboard is shown in 6. The course information modals are the same as

for Compass.

The goal of Dashboard is to resolve the limitations of Compass listed above. Specifically, users

should be able to plan out any of the 2 degrees, 38 majors, and 38 minors. Furthermore, users

should be able to refine their search using filters, see course crosslistings, and be informed about the

8

courses that satisfy each requirement. Certificate programs will be withdrawn starting with Class of

2027 so, in the interest of time, I decided against certificate planning support.

Figure 6: hoagieplan Dashboard layout. Left: course search. Middle: semester
schedule. Right: requirements menu. Top right: account settings.

2. Functionality

2.1. User Scenario

I will demonstrate hoagieplan’s functionality by walking through a scenario users may find

themselves in. Two more scenarios are listed in Appendix 6.

User Scenario – Alex

Alex is a freshman interested in machine learning and robotics. He is deciding between majoring

in Computer Science (COS-BSE) or Electrical and Computer Engineering (ECE). He needs to make

a decision and pick his courses for freshman spring.

• He clicks on his name on the top right section of the screen to open the Account Settings menu

(7). He selects 2028 as his class year and first chooses COS-BSE as his major (8).

9

Figure 7

Figure 8

• He scrolls through the COS-BSE requirements on the right of the screen. He clicks on the

Artificial Intelligence and Machine Learning requirement (9) and presses the “Search Courses”

button (10) to populate the search results with the courses that satisfy this requirement. He then

clicks on the course cards on the left of the screen (11) to show more course information (12). He

decides he wants to take COS 424 / SML 302, COS 429, and COS 484.

Figure 9

10

Figure 10

Figure 11

Figure 12

• He clicks on the Electives requirement and sees that at most 2 ECE courses can count as COS

electives (13).

Figure 13

• Then, Alex returns to Account Settings and chooses ECE as his major (14).

11

Figure 14

• He inspects the ECE requirements. The “Robotics and Cyberphysical Systems” is the track he

finds most fit. He realizes he can take robotics classes for this requirement and can count COS

424 / SML 302, COS 429, and COS 484 toward the Balance and Completeness requirement (15).

Figure 15

• Alex decides to major in ECE, as it is more flexible to his interests.

• He scrolls through the BSE requirements. He has AP Credits in Mathematics, so he clicks on

the First- and Second Term Math requirements and marks them as satisfied (16, 17). This leaves

room for ECE classes in his spring semester.

Figure 16

12

Figure 17

2.2. Selected Features

In this section, I list some features of hoagieplan Dashboard that I implemented this spring.

Comprehensive Requirements Checking

Degree, major, and minor requirements may present themselves as course lists (“Students must

take one of these courses”), department lists (“Students must take a course from one of these

departments”), distribution areas or course counts (“Students must take at least this number of

courses”). Some requirements have deadlines:

“Computer proficiency is a requirement for the B.S.E. degree fulfilled by taking COS 126 General

Computer Science or ECE 115 Introduction to Computing: Programming Autonomous Vehicles.

This requirement must be satisfied before the beginning of the junior year.”9

Others have double-counting restrictions. In other words, if a requirement has multiple subrequire-

ments, a course may only count toward one of them:

“Courses must come from 3 out of 4 subject areas. No double counting. You can only use NEU

courses and electives one time (in one category)”10

To complicate things, requirements may be in interdependence relationships with one another:

“A student majoring in a department other than East Asian studies must take six language courses,

two or more of which must be beyond the second-year level.”11

9Computer Science requirement for the BSE degree.
10Electives requirement for Neuroscience.
11Language requirement for the Chinese minor.

13

hoagieplan navigates these complexities and tracks which requirements are satisfied by a student’s

courses. Some courses may satisfy multiple requirements. In this case, the user has to pick which

requirement a course is settled into, so the unsettled course shows up as a grayed out button under

the potential requirements (18, 19).

Figure 18: COS 426 can be settled either into Breadth
pr into Upper Level Departmentals.

Figure 19: The user settled COS 426 into Breadth, so it
no longer appears under Upper Level Departmentals.

Course Crosslistings

Princeton courses may be listed under multiple departments. For example, THR 203 / AAS 204 /

DAN 203 / GSS 378 is listed under the Theatre, African American Studies, Dance, and Gender and

Sexuality Studies departments. We say that this course is “crosslisted.” Theatre (THR), the first

14

crosslisting in the course code, is the primary department. hoagieplan displays all the crosslistings

in the course cards. In the case of courses whose crosslistings changed over time (e.g. AAS 230 /

ENG 231 to AAS 230 / AMS 231), only the most recent crosslisting is shown on search. However,

if the user filters the search results to a previous semester, the crosslisting pertinent to that semester

is shown. Search results are sorted by the catalog number of the crosslisting that is matched by the

search query. 20 illustrates this.

Figure 20: Search results are in ascending order of the
catalog number corresponding to the “EGR” crosslist-
ing.

Search Filters

Users can filter their search by semester, distribution area, course level, and allowed grading

bases, as shown in 21.

15

Figure 21: Search filters modal.

Search for Requirement’s Course List

After opening a requirement modal, users can click on the “Search Courses” button to close

the modal and populate the search results with the courses that satisfy the requirement. If the

requirement is satisfied by any course from one or multiple departments, then the search results are

populated with samples of 4-5 courses from each of these departments.

Mark Requirement as Satisfied

A student may have satisfied a requirement through AP credit, placement tests, or course substi-

tutes that are not listed on the department website. In this case, users can open that requirement’s

modal and click the “Mark Satisfied” button to manually mark the requirement as satisfied. The

satisfaction mark that appears next to the requirement’s name will be gray instead of the usual green

to indicate that it was manually marked as satisfied.

3. Implementation

3.1. Overview

By the numbers, hoagieplan contains:

• 14,248 lines of code across 179 files.

• 47.8% Python code, 46.7% TypeScript code, 5.3% in SCSS, and 0.2% other languages.

• 18,017 lines of manually collected requirements data across 108 YAML files.

16

• 419,216 database entries across 33 tables.

• 147 early testing users.

3.2. Architecture

hoagieplan has a frontend and a backend server. The frontend server routes user commands to

the backend for processing. The backend server handles database operations such as course search,

requirement checking, and updating account states.

Frontend

hoagieplan uses React-based Next.js as its UI library. This has important performance benefits.

First, Next.js allows React components to be rendered on the server and sent as HTML to the

browser, which significantly improves the load times of pages. Second, Next.js splits the code

into smaller bundles at build time, which can be loaded on demand. Only the necessary code is

loaded initially, again improving performance. Finally, Next.js’ Fast Refresh feature speeds up the

debugging process; the UI is updated after code changes without me having to restart the servers or

refresh the page. It is an industry-grade framework used by TikTok, Twitch, Nike, and others.

The prevalent programming language in the frontend is TypeScript with embedded JSX (.tsx),

which is standard for Next.js applications. It has the powerful web development features of

JavaScript with significantly improved type safety, as it checks type correctness at compile time.

hoagieplan mainly uses Tailwind CSS for styling, as it provides beautiful inline style presets. For

style sheets, it uses SCSS, which is a superset of CSS with support for variables and mathematical

functions. This proved to be very useful for course card resizing and drag and drop animations.

The frontend is deployed on Vercel. It is the owner and maintainer of Next.js, so it is optimized

for the framework hoagieplan uses. It also provides GitHub integration and analytics. Customers of

Vercel include The Washington Post, Stripe, and TripAdvisor, which speaks to its quality.

Backend

The backend code is written in Python with Django as the web development framework. It is a

high-level framework that is less flexible but better suited for large scale applications than Flask.

17

It handles database operations through models, which are easy-to-use Python objects that mirror

database tables. Django’s migrations functionality allows for updating the structure of a table in a

few lines of code by updating its respective model. Django allows for easy manipulation of foreign

key and many-to-many table relations, as well as serialization of table data into JSON format, which

is how backend data is sent to the frontend.

For the database, hoagieplan uses PostgreSQL. The relational structure provides the speed

required for fast requirement checking. The schema of the database is attached in 23 and 24 in

Appendix 6.2. I used JetBrains’ DataGrip software to manage, monitor, and debug the database.

Authentication is done using Princeton’s Central Authentication System (CAS). This allows

hoagieplan to prepopulate students’ accounts with their names and class years.

3.3. Code Structure

A simplified directory structure is given in 22. The two main directories, frontend and backend,

contain the code for their respective servers.

Figure 22: Simplified directory structure of hoagieplan.

18

Frontend

The core of the functionality resides in frontend/app/dashboard/Canvas.tsx. This

is the file that renders the Dashboard page. It generates the search results container and the semester

containers. It handles the rendering of the search results and the drag-and-drop functionality.

It makes API calls to the backend for fetching a user’s courses from the database, checking

requirements, and updating the user’s courses in the database as they are moved from one container

to another.

The frontend/components directory contains the TypeScript–JSX code (.tsx) and style

sheets (.scss) for the various components of the application. The following files and directories are

important:

• frontend/components/Container contains the implementation of the semester contain-

ers and the search results container.

• frontend/components/Item contains the implementation of the draggable course cards.

• frontend/components/InfoComponent contains the implementation of the course in-

formation modal and the content on the course cards.

• frontend/components/RecursiveDropdown contains the implementation of the recur-

sive requirement menu.

• frontend/components/Search.tsx contains the code for the search functionality.

• frontend/components/UserSettings.tsx contains the code for the Account Settings,

including the functionality to update an account’s state in the database.

hoagieplan uses Zustand, a React-based library for state management. It allows for passing the

state of variables accross different files in the code, which is essential for persisting the state of

search results and user settings within a session. The TypeScript code (.ts) for Zustand is in the

frontend/store/ directory:

• frontend/store/userSlice.ts defines the state of the user and the functions that update

it.

19

• frontend/store/searchSlice.ts defines the state of the search results and the func-

tions that update it.

• frontend/store/filterSlice.ts defines the state of the search filters and the functions

that update it.

Backend

The URLs of the requests from the frontend are picked up by backend/config/urls.py,

which routes them to be handled by functions in backend/compass/views.py. This is

a standard Django setup. The directories backend/degrees, backend/majors, back-

end/minors contain data for degree, major, and minor requirements in YAML format. back-

end/data contains database-facing code:

• backend/data/fetch_data.py makes API calls to Princeton’s StudentApp and processes

the responses into CSV files, one per semester.

• backend/data/insert_data.py inserts the course data CSVs into the database.

• backend/data/fetch_evals.py scrapes course evaluations from the registrar’s website

and writes them to a CSV.

• backend/data/insert_evals.py inserts the course evaluations CSV into the database.

• backend/data/insert_yamls.py inserts the data from the degree, major, and minor

requirement YAMLs into the database.

• backend/data/check_reqs.py checks a user’s requirements against their courses.

3.4. Challenges

Data Collection

Manually collecting the data for 2 degrees, 38 majors, and 38 minors took over 200 hours of

work. A lot of time was spent finding the best format of the requirement YAML files to reduce

the work. The format I chose is described in the next section. It was also difficult to decide which

courses should satisfy some underspecified requirements:

“Focal points include, but are not limited to

20

• Greek Language, Literature, and Culture

• Latin Language, Literature and Roman Culture Classics and Reception

• Medicine, Science, and the Body”12

For this requirement, I read the description of all the courses in the Classics department to reason

whether they fall under one of the focal points or not.

Princeton’s StudentApp API, which I used to get course data, has a few broken endpoints and

often times out. This led to incomplete course data. The solution was to manually look for and

exclude the broken endpoints, as well as implement an "at-least-once" algorithm for API calls: on

failure, each call is retried up to 3 times.

Checking Requirements

As detailed in the Selected Features section, verifying a Princeton student’s degree, major, and

minor requirements is hard due to deadlines, double-counting restrictions, and interdependence

relationships. Inspired by TigerApps’ Departmental Data repository, hoagieplan’s approach is

encoding requirements in YAML format.

Requirements follow a tree structure. The root node is either a degree, a major, or a minor, and

its children are the respective requirements. Most requirements have their own subrequirements, so

they are internal nodes in the tree. Leaf nodes may be represented by a course list, a department list,

a distribution area, or a course count. Nodes have the following properties13:

• name: requirement’s name.

• max_counted: maximum units passed to the parent requirement.

• min_needed: minimum units demanded of children.

• explanation: human-readable explanation of the requirement.

• double_counting_allowed: whether courses may count for multiple subrequirements of

this requirement.

• completed_by_semester: semester by the end of which the requirement must be complete.

• course_list: (leaf nodes) list of courses that satisfy this requirement.
12Classical Studies with a Focal Point requirement for the Classics minor.
13Adapted from the Princeton Departmental Data Repository.

21

https://github.com/TigerAppsOrg/Princeton-Departmental-Data

• dept_list: (leaf nodes) list of departments from which any course satisfies this requirement.

• distribution_area: (leaf nodes) distribution area of the courses that satisfy this require-

ment.

• num_courses: (leaf nodes) number of courses required to satisfy this requirement.

25 and 26 in Appendix 6.3 illustrate how I encoded the information for two different requirements

into the YAML format.

The requirement checking code performs an inorder traversal of a user’s requirement tree and

compares their courses against each node.

A complication is that requirements may be satisfied with AP credits, and others are underspecified

or otherwise impossible to encode into the above format:

“One course, which may or may not be one of the nine courses taken for the major, must be

dedicated in its entirety to historical periods, literature or cultures before 1800 C.E.”14

To circumvent this, I implemented the “Mark Satisfied” button that allows users to manually mark a

requirement as satisfied. I also appended editor’s notes to the requirement explanations:

Editor’s Note: This requirement is too broad. Courses not in the list may satisfy the requirement

and hoagieplan does not check this.

This makes the application useful for bookkeeping purposes even for requirements that cannot be

automatically checked.

Another complication was that each user can have over 50 requirements to check, which is slow

due to the large number of database transactions involved. The solution was to cache each user’s

requirement tree in the database, so that it is not reconstructed each time a course is inserted into

their schedule. This significantly reduces the slow database transactions.

14Departmental Distribution Requirement for Comparative Literature

22

4. Evaluations

4.1. Feedback Form

A beta release of the application was conducted with 147 users. I sent out a feedback form which

received 60 responses. The responses indicate overall satisfaction with the application. With a few

exceptions, the users found the functionality intuitive.

A recurring piece of feedback is that users want to plan certificate programs as well. Although

certificates will be withdrawn in 2026, the responses indicate that a large number of undergraduates

still pursue them:

• “All the certificates are missing. I’m urban studies and I need to plan for that”

• “Missing legacy certificates like OQDS”

• “You can’t add certificates”

• “Have you guys added every minor/certificate or is that still to come? I don’t see Near Eastern

Studies in the selection dropdown.”

• “I’m wondering if you guys are planning to update the app with certificate requirements as well?

It would be super helpful for me as I’m planning to navigate 2 certificates.”

Furthermore, users found many requirement data mistakes. This was expected, as the data was

collected manually and was sometimes interpretable:

• “Correct me if I’m wrong, but it seems that you do not account for double counting with regard

to minors. For example, the finance minor allows you to double count a maximum of 2 courses,

although it double counts every course I enter (my major is econ).”

• “I input all of my classes, but the field "Seven Total Courses" under the ’BSE’ ’Distribution

Requirements’ tab reads 0/7 when I have actually completed almost all of them.”

• “In addition to my previous bug report about the distributions requirements being checked off, the

foreign language isn’t satisfied with my ASL track (four classes total)”

• “I put it my courses, and it missed counted the number electives I have completed from ’Other

Departments.’ My actual number of completed electives is 1, but it said 2/10”

23

• “the prereqs for math is wrong, doesnt have to be 215 and 217 or 217 and 218. its (215 or 216)

and (217 or 218)”

4.2. Live Testing

Three live tests were conducted. The testers were Robert M. Dondero, Jeanie Chang, Kyung Lee,

and a Princeton student chosen at random in the Firestone library, who I will call Alice. The task list

given to the testers and my notes during the tests are in Appendix 6.4. The points of improvement

identified during the tests are:

• Implement a short user guide that is displayed on first login.

• If settling one or more courses into a requirement would satisfy it, use a different color for the

satisfaction mark.

• Highlight the filters button when filters are active.

• Make course cards draggable from their entire surface, not just the drag handle.

5. Summary

5.1. Conclusions

This application was a much bigger undertaking than I initially expected, but it is close to being

done and hopefully it will have a large and stable user base for the next few years. I learned

that it is better to complement other applications before implementing features that are already

available. Specifically, the application would have been more useful to beta testers if certificates

support was implemented instead of, e.g, course information modals. Time is limited and constant

communication with the users is essential to determine which features to sacrifice. I also learned that

an application is much less intuitive to a user compared to a developer, which is also an argument

for constant communication with users. Finally, I learned that requirement tracking at Princeton is

intrinsically hard. Gathering all the requirements data should not be a one-person job, but should be

a collaboration between different departments to list their requirements in a common format that

24

students can use. A partial solution is having a dedicated team of people updating the requirements

each year and communicating with departments to ensure correctness.

5.2. Limitations

The application has a few technical limitations. First, and most importantly, there is no support

for certificates. Second, users cannot see the course titles in the search results and cannot search

courses by title. Third, the course information modals do not display as much information as

Princeton Courses does. Specifically, hoagieplan does not partition course reviews by semester and

does not display course instructors. These three limitations will be addressed in future versions of

hoagieplan.

A higher level limitation is that there is no way to automatically update requirements data when

departments make changes. This means that, in the absence of a team that maintains it, hoagieplan

will no longer be useful in a few years. I plan to consult with Princeton departments in the hope

of finding a long-term solution. In the meantime, requirements data will be maintained by the

hoagie.io team.

5.3. Future Work

I will first implement the points of improvement highlighted in the evaluations. Then, I will

address the rest of the limitations mentioned in the previous section. Finally, I will integrate the UI

of hoagieplan with that of other hoagie.io applications such as hoagiemail. I intend to release the

application to the public in August 2024.

6. Appendix

6.1. User Scenarios

User Scenario – Vanessa

Vanessa is a Comparative Literature (COM) major double-planning Creative Writing (CWR) and

25

Visual Arts (VIS) minors. She wants to optimize her junior fall course selection in order to satisfy

as many requirements as possible.

• She clicks on her name on the top right section of the screen to open the Account Settings menu.

She selects 2026 as her class year, COM as her major, and CWR and VIS as her minors.

• She clicks on the COM requirements one by one, clicks the “Search Courses” button for each of

them, and drags the CWR and VIS courses that she finds interesting into her schedule.

• Then, she looks at the VIS and CWR requirements to see which VIS and CWR courses in her

schedule satisfy them. She finds that CWR 305 / COM 355 / TRA 305 can count both toward the

Creative Arts requirement in COM and the Advanced Coursework requirement in CWR, so she

keeps it in her schedule. Similarly, she finds that VIS 301 can count both toward the Creative Arts

requirement in COM and the Studio Courses requirement in VIS, so she keeps it in her schedule.

User Scenario – Cole

Cole is a School of Politics and International Affairs (SPI) junior trying to decide on minors to

declare.

• First, he fills up his semesters with his past coursework. Based on his past courses, he guesses

that the History (HIS), History of Science, Technology, and Medicine (HSTM), and Quantitative

Economics (MQE) minors are a good fit for him.

• Cole selects 2026 as his class year, SPI as his major, and HIS, HSTM, and MQE as his minors.

• Browsing through the HIS, HSTM, and MQE requirements, he sees that he is 1 course away from

satisfying the HIS requirements, 5 courses away from satisfying the HSTM requirements, and 4

courses away from satisfying the MQE requirements. Based on this, Cole decides to minor in

History and Quantitative Economics.

• Looking at the AB requirements, he realizes he needs one more Social Analysis course. Cross-

checking with MQE requirements, he finds that ECO 327 is a Social Analysis course that also

counts toward the Elective Courses requirement in MQE, so he picks it for next semester.

26

6.2. Database Schema

Figure 23: Database schema section pertaining to courses.

27

Figure 24: Database schema section pertaining to requirements.

28

6.3. YAML Encodings

Figure 25: YAML encoding of the Introduction require-
ment for the Computer Science minor.

29

Figure 26: YAML encoding of the Classical Studies
with a focal point requirement for the Classics minor.

6.4. Live Testing Notes

Each tester was given the same task list, which is outlined below.

1. Log in, find the Account Settings.

2. Suppose you are a sophomore in the MAE department. Select 2026 as your class year, MAE as

your major, and MQE as your minor.

3. Inspect your major requirements by scrolling up and down the requirements menu and by clicking

on requirement titles.

4. Search for courses to satisfy the Engineering Design Courses requirement under the Mechanical

30

Track. Drag them into your semester schedule. If there are multiple courses that satisfy the same

subrequirement, click on them to see their ratings and pick the highest rated one.

5. Settle the courses into requirements so that they show up as satisfied.

6. Switch to the BSE tab of the requirements menu. Inspect your degree requirements.

7. Suppose you want to take a Drawing class next semester to satisfy the Literature and the

Arts distribution requirement. Go to search filters, select the Fall 2024 semester and the LA

distribution area. Then, search for the VIS department and look for a Drawing class. Drag it into

the Fall 2024 container and see the Literature and the Arts requirement satisfied.

8. Suppose you passed the Chemistry placement test. Mark the Chemistry requirement as satisfied.

The rough notes I took during each test are pasted below.

Robert M. Dondero

• Not sure whether to click on get started or log in, expected to click on get started.

• Correctly clicked on upper left hoagie to go back to home screen.

• Found the account settings. That was intuitive.

• Liked that you can type up minor name.

• Correctly saved.

• Figured out how the tabs work for the requirements menu.

• “What does x mean?” Thought the “x” mark for the requirements was a delete button.

• Liked that internal nodes of the requirement menu give explanations, child nodes give course lists.

• Figured out how to settle courses into requirements, but it is probably not obvious.

• Took a while to find the filters button.

• Would like a “Clear filters” button.

• Did not understand the difference between drop shadow versus no drop shadow in course settling.

Jeanie Chang

• The account settings were easy to find.

• The settings menu looks clean.

• The settings menu is very intuitive.

31

• It is easy to find majors and minors, likes how they are alphabetically listed.

• Likes that requirements have explanations. Likes the gray highlight on hover of requirement title.

• Likes that requirement menu is expanded by default.

• Missed “Search Courses” button.

• Likes the course information modal, stars for ratings at the top and distribution area are very

convenient.

• Figured out how to settle courses.

• Overall found the application very intuitive.

Kyung Lee

• Not enough distinction between different subrequirements, hard to figure out the parent-child

structure of requirements.

• Confused with the drag handle of course cards, would like to be able to drag from any point of

the course card.

• Confused how settling courses into requirements works.

• Confused about the way children requirements satisfy parents.

• Wants to see course titles displayed, functionality to search by title.

• Likes how the satisfaction mark is grey for manually satisfied requirements.

• Would like the dropdown button for requirements to be at the indent, not right side.

Alice

• Initial reaction was to drag from any point of the course card but she figured out the drag handle

quickly. She would like course cards to be draggable from any point.

• Did not understand settling courses into requirements. Suggested that the requirement marker is

different if the requirement could be satisfied by settling courses into it.

• Took her a while to find how to set her major.

• Wants to see the titles of courses on the course cards or on hover.

• Likes the design.

• Likes that the data is current.

32

• Did not notice the “Mark Satisfied” button.

• Did not notice that you can click on course cards, and requirement titles to see information.

• Likes TigerPath, still uses it.

33

	Introduction
	Motivation
	Related Applications
	Goal

	Functionality
	User Scenario
	Selected Features

	Implementation
	Overview
	Architecture
	Code Structure
	Challenges

	Evaluations
	Feedback Form
	Live Testing

	Summary
	Conclusions
	Limitations
	Future Work

	Appendix
	User Scenarios
	Database Schema
	YAML Encodings
	Live Testing Notes

