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ABSTRACT
Users in developing regions still suffer from poor web performance,
mainly due to their unique landscape of low-end devices. In this
paper, we uncover a root cause of this suboptimal performance by
cross-analyzing longitudinal resource (in particular, memory) profiles
from a large social network, and the memory consumption of modern
webpages in five regions. We discover that the primary culprit for
hitting memory constraints is JavaScript execution which existing
optimizations are ill-suited to alleviate. To handle this, we propose
WebMedic, an approach that trades-off less critical functionality of
a webpage to directly address memory and performance problems.

CCS CONCEPTS
• Information systems→Browsers; • Networks→Network perfor-
mance modeling.
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1 INTRODUCTION
The mobile web is crucial for enabling upward social mobility within
developing (e.g., Africa) [25] and transitioning (e.g., Asia) regions [19].
Yet despite the growing importance of the mobile web, anecdotal evi-
dence suggests that memory constraints of low-end devices, which are
popular within these regions, limit both the performance and usability
of web pages. Surprisingly, few details are known about the memory
profiles of mobile devices in these regions, and their interactions with
their local, region-specific websites.

The focus of this paper is on understanding the regional charac-
teristics of mobile devices and mobile web performance. However,
unlike prior studies which have focused on understanding the net-
work [1, 30] or CPU limitations [12, 26] of low-end phones, our focus
is primarily on memory (RAM) resources and constraints. Further, in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448652

contrast to recent small-scale explorations of mobile characteristics
in developing regions [12], our study is performed at a global scale
and over 4.3 years. Our findings are that:
• Our study of the data collected from a global social network from

2015-2019 shows that the prevailing assumption of shrinking mem-
ory gap between devices in developing and developed regions due
to the influx of cheap but resource-rich devices, does not hold true.
In fact, the gap is widening, with a 2× difference at the median
currently.

• Despite the disparity in resources, websites specific to developing
regions consume more memory than those in developed regions.
The corresponding memory requirements exceed the capabilities
of devices in developing regions, resulting in poor performance
and browser crashes.

• Current mobile web optimizations are limited in their ability to
alleviate memory constraints, either due to adoption challenges
(e.g., custom OSes [5], page rewriting strategies [20]) or an inabil-
ity to effectively balance memory consumption and page utility
(e.g., offload proxies [30]).

• Our analysis of 250 websites from 5 geographic regions shows
that JavaScript (JS) execution (and the cascading effects, e.g., ren-
dering) are the primary contributors to high memory usage. We
further highlight the key aspects of JS and browsers that contribute
to memory.

• We show that semantic content alteration is crucial towards alle-
viating memory overheads, but obvious strategies, e.g., removing
ads or trackers, are not effective (no memory improvement at the
median, ∼10% at the p75). Removing non-origin JS is more effec-
tive (12% at the median, 35% at the p75) but removes up to 61%
of the interact-able elements.
Focusing on the intricate relationship between a website’s JS, mem-

ory and user-centered utility (page functionality and appearance), we
investigate the design points for automatically transforming websites
to alleviate memory constraints. In particular, we focus on designs
that free the website developers from having to explicitly reason about
and tackle the nuances and implications of the variations between
different classes of low-end phones and their memory constraints.
Our work is orthogonal to existing efforts, e.g., AMP [20], which
tackle an identical problem by forcing web developers to rewrite
their websites within the AMP context. We argue that this places a
burden on developers and propose an alternative approach for an auto-
mated, on-the-fly transformation of webpages. We present a strawman
approach, WebMedic, that addresses memory constraints by intelli-
gently removing JS function(s) — called a surgery — while ensuring
that the impact to crucial user-desired functionality is minimized:
in short, WebMedic trades off functionality for stability and perfor-
mance. WebMedic acts as a web-server extension and leverages user
device information, captured through User-Agent and JS APIs [39],
to determine the optimal transformations that maximize utility while
minimizing memory usage. Our evaluation shows that the surgery
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impact is very website-specific and JS-memory can be reduced by up
to 80%, while giving up only 20% of the functionality, for a number
of developing region news websites.

Our contributions are:
• We present, to the best of our knowledge, the largest longitudinal

study of Android phone RAM resources across four years and four
months (2015-April 2019) across the globe.

• We present a methodology for analyzing and dissecting the mem-
ory footprint of JS and analyze 250 regional pages across devel-
oping and developed regions to understand the critical aspects of
sites concerning memory usage.

• We explore the feasibility of multiple optimization techniques
and discuss their scope and limitations for alleviating memory
overheads.

• We propose a data-driven system for optimizing memory usage
and explore the trade-off between memory and functionality using
the proposed approach.

2 BACKGROUND
In this section, we provide a brief overview of Android’s memory
management and pageload process in a browser.

Android Memory Management: Unlike traditional Linux, An-
droid does not use virtual memory techniques (e.g., swapping) to
ease memory pressure, and instead relies on Garbage Collection (GC)
and, in extreme situations, terminating processes. GC operations have
two broad implications on the page load performance: (i) GC incurs
compute overhead and thus reduces CPU cycles available to page
loading process, (ii) GC may momentarily pause applications, e.g.,
browser, to reclaim space and thus inflates page load time. When GC
fails to reclaim required memory, Android’s Out-of-Memory (OOM)
killer process free up memory by identifying and killing a process,
based on pre-configured priorities.

Browser: Chrome loads a webpage by parsing the HTML, fetch-
ing additional objects (e.g., images, CSS or JS), parsing the objects,
updating the Document Object Model (DOM) [10], and rendering
the DOM. DOM is an object-oriented representation of a webpage,
containing its structure, content and styles, and JS interacts with DOM
to modify the internal structure.

3 UNDERSTANDING
THE MEMORY-WEB RELATIONSHIP

In this section, we measure the evolution of device RAM over the
2015-2019 period, highlight the resource constraints and their impli-
cations on the web, and conclude by exploring the efficacy of several
existing and conventional optimizations.

3.1 Large Scale Study of Device Memory Gap
We begin by analyzing the memory resources of mobile devices used
to access BigContent, one of the largest online social networks in the
world. BigContent runs a website and mobile applications that provide
users with the ability to post content on a “wall”, interact with other
users’ content, and send messages. Our dataset covers BigContent’s
Android application users from the 5 most populous continents and
spans from January 2015 to April 2019, with the total unique user de-
vices in the order of 100s of millions in each year; taken together, the
dataset presents a microcosm of the global mobile Internet users. The

dataset consists of Android device characteristics, e.g., device model,
total device memory, captured by BigContent’s mobile application
using standard Android OS APIs [13, 14]. The users in the dataset
explicitly agreed to share their location and the logs do not report any
private (or identity-revealing) information about a user or their activi-
ties within the application. Based on classification from [36], we clus-
ter all countries into Developing (primarily African, Latin American,
and Asian countries), Transitioning Regions (Eastern and Central
Europe, and some Asian countries), and Developed (North America,
Western Europe, Australia, Japan, New Zealand) regions. In addition,
we classify devices based on their 2019 RAM resources: (i) low-end
(0.5-1 GB), (ii) middle-end (1.5-3 GB), and (iii) high-end (4-8 GB).

Figure 1 presents the evolution of device RAM between 2015 and
2019, with each box representing the distribution for the given region.
Although overall we observe a consistent increase in RAM over this
timespan, the rate of increase is not uniform across regions. More
specifically, the divergence in memory resources across regions has
steadily increased over time. Median RAM values were comparable
(around 1 GB) across regions in 2015 but the landscape is quite differ-
ent in 2019: devices in developing regions have 1-2 GB less RAM than
their counterparts in developed regions at the median and p75. Even
in 2019, low-end devices have 3× more market share in developing
regions (57% are low-end) than in developed regions (20% are low-
end). Comparing the 10 most popular devices per region highlights
an economic factor behind these trends. High-end Samsung Galaxy
variants (e.g., Note 9, S9) with 4-6 GB RAM and $500-900 price take
nine of the top 10 places in North America. Whereas in Africa, a mix
of far cheaper phones ($100-250) from Samsung, Huawei, Infinix,
Condor, and OPPO with 0.5-3 GB RAM make up the top 10.

Digging deeper into the datasets reveals that there is a clear distinc-
tion in the life-cycle of 512MB devices. The market share for these
devices has reduced at a far slower rate in developing regions (38%
reduction over the 4.3 years) compared to transitioning (57%) and de-
veloped (83%) regions. For context, these devices still account for 20%
of the market share in developing regions (<2% in developed regions).

3.2 Implications on the Mobile Web
Reports suggest that Internet users in developing regions use mo-
bile phones as the primary gateway to the web [7]. A user-study
from Nielsen Norman Group shows that due to storage and data cost
concerns, users in India prefer accessing web through the browser,
provided that the quality of the web service is good [17]. This in-
dicates that there is an incentive for content providers to optimize
the web experience for low-end devices. Next, we present results for
memory utilization of 250 popular websites across multiple regions
to understand the implications on web.

Experiment setup: Our testbed comprises of three phones: LG
G5 (high-end, 4GB RAM, 2x2.15, 2x1.6 GHz CPU, 5.3in screen),
QMobile Q Infinity B (low-end, 1GB RAM, Quad-core 4x1.2 GHz
CPU, 4.95in screen), and Nokia 2 (low-end, 4x1.3 GHz, 5in screen).
The devices run the vendor’s Android OS distribution and ADB is
used to automate any activity (e.g., loading website). Chrome v69.0
is used for the measurements, with no background applications or
tabs. Each measurement is repeated thrice, and Chrome is terminated
and its application cache is cleared before each trial. To ensure re-
producibility, we use mitmproxy [11](a popular record-and-replay
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Figure 1: Device memory evolution.
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Figure 2: Memory usage of 250 websites.
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Figure 3: JS memory for regional websites.

tool) to record regional webpages and later replay them to devices.
The last-mile link (i.e., the device access link) is set to 100Mbps,
20ms RTT during replay. We measure Alexa top 50 websites from
5 countries: Egypt, Nigeria, Pakistan, U.S., and U.K. (250 websites
in total). The five countries provide coverage for websites exclusive
to developing regions (31% of the 250 websites unique to Egypt,
Nigeria, Pakistan), as well as globally popular ones. We use a VPN
while recording websites to ensure that the correct regional version
is recorded (e.g., google.com vs. google.com.pk may be different).

Measuring memory: We quantify the memory footprint of a web-
site by measuring the increase in device’s memory usage, captured
through dumpsys [15] which measures memory usage as the differ-
ence of MemAvailable from TotalMemory. We take three snapshots:
first, before loading Chrome; second, after opening an empty tab;
and the third is the peak memory usage in the next 60 seconds1. The
memory footprint of a website is calculated as the difference between
the third and the first snapshot2. We calculate JS’s contribution to
the memory by measuring the memory footprint of a website running
with and without the JS code, and taking a difference between the
two. For removing the js code, a custom Python script at mitmproxy
empties the .js file and <script> code from the response. We also
classify a webpage’s JS code based on their iFrame source URL and
classify them as origin, non-origin, advertisement or tracker (using
publicly available lists).

Measuring utility: We measure two user-centric utility metrics
for the webpage’s JS: (i) functionality, e.g., event listener attached
to a button by JS, and (ii) appearance. The number of event listeners
added by JS to the DOM quantifies the former (measured using Time-
line Profile [21]), while taking a screen-shot of the initial view-port
of a fully rendered page and generating a fingerprint – Perceptual
Hash or pHash [24] – measures the latter. Comparing the two met-
rics for the original vs modified webpage (i.e., all or a subset of JS
removed), quantifies the loss of functionality and the change in page’s
appearance3 respectively, i.e., the utility impact of removing the cor-
responding JS. We selected pHash over alternative visual hashing
algorithms because of its computational simplicity and success in
web use cases [4].

Measurement results: Figure 2 plots memory breakdown for the
250 websites. While the median website uses 100MB, websites take
as much as 250MB at the tail. Most of the memory-heavy (>150MB)
websites are news; elwatannews.com, elbalad.news, youm7.com,

1Tail onLoad time is 31.5s and 60s gives room for JS execution to finish.
2The difference of 3rd and 2nd underestimates the total footprint as it ignores memory
allocated to the empty tab beforehand.
3hamming distance [23] computes how much similar two pHashes are.

dailymail.co.uk, premiumtimesng.com, to name a few. One key obser-
vation is that JavaScript (JS) by far dominates the “other” objects (e.g.,
HTML, CSS) on a page (up to 128MB of memory at the tail). It is
important to note that this memory may not be altogether allocated di-
rectly by JS (e.g., allocations by the V8 engine), but other components
of the browser, e.g., when a JS modifies the CSS style of a DOM node,
it leads the browser to recalculate styles for DOM, render the changes,
store the rasterized resources etc., and these operations have mem-
ory consequences of their own. This complexity also makes pinning
down the actual cause of JS memory quite challenging, e.g., tradi-
tional tools [6, 21] focus on JS-heap (responsible for storing JS arrays,
strings etc) to investigate the memory problems and we observe the
JS-heap to significantly underestimate the total JS memory: overall JS
memory is 3X the JS-heap for the median (over 6X for tail website).

Figure 3 breaks-down the JS’s memory footprint on a regional
basis. We consistently observe a higher footprint for the websites
in developing regions. Though developing regions abundantly carry
memory-constrained devices, we do not observe this trend to reflect
in their websites’ memory footprints, indicating a lack of focus on
optimizing memory and catering for their unique device landscape.
We observe developing region websites to contain heavier DOM at
median and tail (higher number of nodes) and a higher number of
ads/tracker iFrames (2 vs 5 for the tail website in both regions), though
we do observe that ads/tracker are not the sole reason for the memory
usage discrepancy (§ 3.3).

Memory-intensive attributes of JS: Next, we perform a brute-
force search for each website (cut each JS file and <script> one
by one as further explained in § 5) and perform the Pearson’s Cor-
relation Test [3] between JS file’s memory and interactions with
DOM/browser to understand the dynamics on an individual JS file
level. The test reports a coefficient between -1 to 1, with ≥0.6 value
indicating moderate to strong positive correlation [3].
• We observe that the number of event listeners and nodes contributed
by a JS to the DOM correlates moderately to strongly with its mem-
ory footprint (Pearson coefficient of 0.6 and 0.54 respectively with
p<0.000). This indicates that the more functionality or elements (e.g.,
“div”) that a JS adds to the page, the more likely the JS is to have a
heavier memory footprint.
• We further analyze the JS’s interactions with the browser through
the use of Timeline Profile that captures the internal Chrome events
triggered as a result of executing a JS. We observe that the memory-
heavy JS are more likely to trigger frequent updates to the visual ap-
pearance of the webpage, with the top 3 events being blink.animations,
updateLayoutTree, styleRecalculation (Pearson coefficient of 0.62,
0.57, 0.57 respectively with p<0.000). We observe a similar trend
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Figure 4: Current and custom optimizations.

when analyzing HTML DOM API calls, with the CSS style related
API calls among the top contributors.

Implications: In the context of the developing regions where de-
vices with 512 MB are common, we observe that these extreme
websites are significantly problematic. Up to 48% of the available
memory is allocated to the native OS (measured for Android 7.1), i.e.,
without any foreground or background apps. These memory-heavy
websites (and the OS together) can force the device to use over 90%
memory. In the best case, the page load performance is poor [12]. One
reason is the added stalls for more frequent garbage collection. We
measure that at the median, GC paused the browser for a 2.6× longer
duration (472ms vs 181ms) on a low-end vs mid-end device for the
Alexa top 50 US pages (measured through logcat). Total reported
GC time (pause plus background GC) differed by 4.8s at the median.
In the worst case, page loads can overwhelm the available memory
and such contention can crash the browser/tab itself via OOM killer.
We found the browser to consistently crash when more than 90%
of the available device memory was consumed. We also observed
that loading heavy (regional) news pages led to crashing all of the
background tabs; even for a device with 1 GB of RAM.

Takeaway: The widening memory gap between the regions poses
a challenge, motivating web optimizations for low-end devices. In
essence, we expect a bifurcation of the web ecosystem, evident from
efforts by Uber, Facebook, and Google to redesign their mobile plat-
forms [5, 16, 18].

3.3 Web Optimizations and Memory Impact
Next, we evaluate the efficacy of several currently deployed, as well
as, some conventional content-alteration optimizations.

OS Optimizations: Android Go [5] is designed for low-end phones
and consumes fewer resources than default Android distributions.
Leveraging our testbed, we loaded the same set of regional pages on
two Nokia devices with the same RAM and screen size; one using
Android 7.1 and the other Android Go. We measured their eventual
memory footprint to be nearly the same on both devices – the median
ratio of memory with and without Android Go was 0.96. Though An-
droid Go does free memory resources for mobile web browsing (due
to smaller OS footprint), relying on OS updates to tackle memory con-
straints is practically challenging due to network costs (hindering the
download of updates) [17, 35] and out-of-date device configurations
(complicating the application of updates).

Browser and Proxy-Based Optimizations: We focus on two sys-
tems: 1) Lite Mode in Chrome that compresses web objects using
Google’s Flywheel proxy [1], and 2) Opera Mini [30] that offloads the

page load and JS execution to a proxy and requires clients to only ren-
der a simplified version. We use both live systems to load pages in our
testbed and compare pageloads with and without the optimizations.

Figure 4 plots the memory savings. We do not observe any signif-
icant memory impact of Lite Mode optimization’s (e.g., compression,
minification) across the websites. In contrast, Opera Mini’s offload
does result in significant savings, with up to 35-37% improvement at
median across both regions. However, they come at a cost: JS offload
can degrade the webpage’s interactivity. We also observe the web-
page’s appearance to significantly degrade. Across all webpages, we
observe median, p75 and p95 pHash score differences of 24, 30, and
36 units, respectively. For reference, these numbers for back-to-back
loads of our pages without a proxy are 0, 8, and 26, suggesting that
Opera’s proxies significantly alter visual page content beyond inten-
tional variance (e.g., different ads). We further observe more severe
cases with 7% of African websites resulted in missing content or page
formatting errors that made the pages nearly unusable. Interestingly,
several websites prompted the user to use a proxy-less browser or
refused to load due to built-in AdBlock.

Specialized solutions: A number of solutions have been proposed
in the recent years. Accelerated Mobile Pages (AMP) [20], a recent
initiative by Google, aims to address CPU, bandwidth, and memory
constraints by providing web developers with an alternative ecosys-
tem for developing lightweight pages. In AMP, pages are developed
using an alternative and lightweight image format and JS is forbid-
den. Taken together, the constraints ensure that the webpages are
lightweight. Similarly, Adaptive Loading [31] provides a framework
to optimize memory for React applications by selectively loading
website functionality based on device resources. Client Hints [38]
provides an interface through which browsers can communicate their
resource limitations with the servers as an indicator to optimize the
content. [34] discusses heuristics for optimizing pageloads for low-
end devices. While these solutions have potential, they are either too
specialized for specific frameworks (e.g., React) and assume that the
developing region websites are using these frameworks, or expect
the developer to rewrite/redesign their websites in a specific way
(e.g., AMP). These limitations can introduce barriers for adoption
and the ideal solution should optimize the existing websites without
any additional work/changes to the website from the developer.

Custom solution #1: Remove ads/trackers The most apparent
content-altering transformation is to eliminate ads and trackers re-
lated JS, both of which have proven time and time again to reduce
performance [33]. In Figure 4, we dissect JS-memory footprint for
websites to highlight the memory used by ads and trackers. We
observe that across both regions, ads and trackers consume an in-
significant amount of memory for most websites: in fact, there’s no
benefit to using eliminating ads/trackers at the median.

Custom solution #2: Remove cross-origin content Next, we fo-
cus on the impact of cutting cross-origin content, assuming that crucial
content is hosted on the origin, and the auxiliary, non-critical content
is hosted on non-origin sites. In Figure 4, we observe that cutting
cross-origin content does provide significant reductions. However,
we note that these changes significantly impact the utility or usability
of the webpage (8% functionality loss at the median, 61% at the tail).
One of the key reasons why the memory reductions translate into a
loss of utility is because many websites host content on third-party
CDNs, e.g., fonts and third-party JS libraries (e.g., JQuery).
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Takeaway: While existing optimizations show potential for some
websites; they are too specialized, force the developers to use specific
frameworks or re-implement the website, or suffer from utility degra-
dation. The ideal solution should free the developers from curating a
specialized version and also preserve the useful utility of the website.

4 WEBMEDIC
Given the potential of semantic content alteration, we present WebMedic,
a data-driven framework that optimizes page loads for low-end mobile
phones by judiciously removing JS functions — performing surgery
on web pages — to ensure that page load does not crash the browser
and has minimal memory footprint. Intuitively, WebMedic trades-off
functionality for performance and, in making this trade-off, aims to
minimize the impact of lost functionality on end-users by removing
“less-useful” functionality. We believe that a stripped version of the
webpage is preferable to one that loads slow or crashes on low-end
phones (i.e., no functionality at all).

Figure 5 presents the high-level workflow of WebMedic. Working
as a server extension, WebMedic creates an abstract representation
of the page (i.e., a DAG to capture object dependencies), performs
“surgery” on this abstract representation, applies changes from the ab-
stract representation to the concrete webpage, and returns the webpage
to the user. The design of WebMedic introduces several interesting
research questions:

(i) Who performs the surgery? The surgery can be performed ei-
ther at the server or the client side. Though client-side transformation
preserves privacy, it requires additional client resources – a feat that
may be impossible for low-end phones. Our system adopts a server-
side approach, thus freeing the client of such burdens, improving
network traffic as the cut JS is not sent over the network, and enabling
large-scale learning. Server-side is the perfect venue for the surgery,
given that the servers today can capture unique client-side character-
istics through User-Agent and JS APIs [39], and current CDNs have
visibility into their HTTPS traffic since they are configured with the
required SSL/TLS certificates.

(ii) What is a surgery? Given a website, WebMedic needs to de-
termine the minimal subset of memory-heavy JS functions that can
be removed without drastically impacting the functionality and ap-
pearance. This requires profiling the memory and utility aspects of
JS for each website, as well as the complex interdependencies within
the web objects. Naively cutting JS can break the webpage, e.g., re-
moving a JS block may remove the state (e.g., shared array) that a
subsequent function may use and thus raise errors. Fortunately, exist-
ing works [27] capture data-flow dependencies between web objects

in form of dependency DAG (G). Our key contribution is to enrich
existing work with annotations expressing memory and utility impli-
cations of each JS function (node), thus enabling a dependency graph
to incorporate both utility and performance.

(iii) How is a surgery evaluated? The annotations inG serve as
the weights within the graph and allow WebMedic to analytically
reason about the impact of surgeries on both performance and func-
tionality, while freeing WebMedic from having to reason about the
webpage’s complexity. However, evaluating the impact on memory
is challenging at scale: device memory usage is not accessible to JS
scope (recall that memory usage is measured from OS). We advocate
for a hybrid approach: (i) an offline phase measures the JS impact on
memory and models it based on a set of predictable features that are
accessible to JS (§ 3) and thus can be communicated to the server-side,
(ii) an online phase where WebMedic on the server-side groups similar
devices together based on their hardware resources, builds a distinct
G for each website and device group, and uses the predictable features
for assigning memory toG’s nodes. Though the online phase can mea-
sure high-level functionality (event listeners) for the webpage, captur-
ing important user-desired functionality is a challenge. Fortunately,
existing works [22, 29] rank the importance of webpage aspects (e.g.,
above-the-fold event listeners and objects) from the user’s perspective
and we plan to leverage these works for assigning weights to utility in
G. We further plan to incorporate developer-defined heuristics (e.g.,
higher weights to forms) to further enrich annotations.

We plan to investigate the design of a contextual-multi-armed ban-
dit which uses the device class as the context to determine the types
of surgeries to explore or exploit. To capture user preferences and
rewards, we further plan to create a link that allows a user to visit the
original version, if the transformed version is inadequate – similar to
the desktop version option in mobile browsers.

(iv) How are surgeries performed? Given the dependency graph
G, deciding the appropriate JS to cut can be formulated as a linear pro-
gramming problem that determines the minimal cut across theG that
maximizes utility and usability (i.e., minimizes the probability that the
user will opt for the original version) and while ensuring that the web-
site fits within the device’s memory constraints. Such an optimization
problem is akin to the set-covering problem which is NP-complete.
We plan to investigate the design of an algorithm which leverages
a unique feature of the domain, namely that the dependency graph
captures page load order and cutting a non-leave node automatically
cuts all its children. Thus, we explore cutting in a bottom-up fashion.
The formulation can be solved directly with a bin packing heuristic.
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5 PRELIMINARY EVALUATION
Next, we present a preliminary evaluation of our approach. We per-
form brute-force surgeries for the 250 websites where starting from
the bottom ofG for each website, JS node (and its children) are cut
and the memory and utility impact is measured (following the method-
ology in § 3). The process is repeated until all the nodes (i.e., all the JS
code) are cut. As websites can have 100s of JS functions or files, this
brute-force exploration can be painstakingly slow (8 hours for a web-
site with 35 JS files). To speed up the process, we limit 10 cuts to each
website by greedily grouping the JS neighboring nodes and cutting
them at once, such that each cut removes an equivalent size of code.

Figures 6 and 7 plot the impact on functionality and appearance,
respectively, for a cut that leads to a specific percentage saving in JS
memory footprint. We observe that for a subset of websites (∼18%),
there exists a cut that improves JS-memory by 80%, without a sig-
nificant loss of functionality (<20%). We observe that these websites
comprise mostly news websites from developing regions, e.g., ex-
press.pk, premiumtimesng, elbalad, elwatannews, worldometers etc.,
and have multiple JS with 10-15% memory contributions. However
for a majority of the sites, only 20% of the memory can be saved if
there is a desire to maintain usability (i.e., preserve 80% of the func-
tionality). Similarly, Figure 7 plots that impact on visual appearance
and we observe little to no change in appearance for these websites.
Producing these results involved a manual step where a human subject
analyzed the screen-shots to define a threshold on pHash distance
for the three categories in Figure 7. Following the guidelines for set-
ting thresholds through empirical analysis [24], we identified <0.19,
<0.27 and ≥0.27 as the threshold bounds for the categories respec-
tively, with low false positives and false negatives (<0.05). Taken
together, we observe that the functionality aspect of utility is more
sensitive to JS cuts, with up to 60% of the websites showing no or
moderate change in appearance for cuts saving up to 50% of memory.

6 RELATED WORK
Mobile Web Optimizations: Prior approaches on improving mobile
web page loads have mostly focused on alleviating 1) network bot-
tlenecks by reducing the number of serial round trips [1, 27, 35] or
shifting costly round trips to proxy servers [30], and 2) computation
bottlenecks by preprocessing pages [28] or rewriting them to use
restricted HTML, JS, and CSS [20]. In contrast, our goal is to un-
derstand how device memory (not network and CPU) varies across
global regions, and how page loads in these regions consume memory
resources. More recently, JSCleaner [9] removes non-critical JS from
web pages to improve performance. Our results suggest that removing
non-critical JS from the webpage is not enough to tackle memory
constraints in developing regions. Further, as JSCleaner [9] aims to
keep the page structure/functionality the same, we expect the memory
overheads associated with Chrome events to persist.
Measurement Studies: Recent work [2, 12, 26] explored energy
usage and the impact of (low-end) device and network resources on
QoE. Our work differs from these studies in two key ways. First, our
study is the first (to our knowledge) large-scale analysis of device char-
acteristics across multiple regions in the world. Second, we focus on
memory availability and constraints, with an emphasis on web brows-
ing. The focus on region-specific experiments on mobile differentiates

us from prior work [2, 12], and enables us to make region-specific
observations about the implications of device memory constraints.

7 DISCUSSION AND FUTURE WORK
Below, we briefly discuss some open challenges:

User-centric Metrics: Our metrics currently treat all visual and
interactive elements equally; however, fundamentally, users place
different utility on different parts of the page. As part of future work,
we plan to decompose the webpage into several regions and assign dif-
ferent weights to different regions based on user preferences extracted
via user studies. Building on existing approaches that capture human
perception, either through crowd-sourced experiments [37] or user
eye-tracking [22, 32], we plan to design user studies for understanding
web pages and tailor them to our domain.

Incorporating User Preferences Our system assumes that every
user is willing to make the tradeoff between performance and correct-
ness. However, in specific scenarios, a user may be unwilling to make
this tradeoff either because our metric inaccurately captures their
internal preferences or because our system’s performance savings
may be too minimal. We plan to address this by providing the user
with a method to load the full version of the page, i.e., via a link, or by
providing users with a means to specify a minimum memory savings
threshold for WebMedic and altering WebMedic to only transform a
page if this threshold is met.

Tackling Additional Resource Constraints: This paper currently
focuses on memory; however, JavaScript also imposes non-trivial
CPU, energy, and networking overheads. As part of future work, we
plan to extend WebMedic’s philosophy to optimize these dimensions
by extending on recent works [8, 26] and designing new tools to cap-
ture each dimension’s resource overheads accurately. Extending the
set of target metrics is expected to spring new research challenges,
particularly related to the representativeness of the offline profiles for
the host of diverse user devices, and root-cause analysis of the aspects
of JavaScript that contributes to a specific resource.

8 CONCLUSION
There has been a significant effort to improve mobile web perfor-
mance for users in developing regions. However, as a community, we
lack holistic studies on the user device characteristics in those regions
and the set of optimizations available to them. In this work, we address
this void by leveraging a dataset of mobile phone resource profiles
from BigContent, a global social network, to study the memory usage
of regional web pages. Overall, we find significant discrepancies in
the memory resources for the devices present in the different global re-
gions, and discover the negative impacts of the memory constraints for
the page loads common in those regions. Motivated by the ineffective-
ness of existing memory optimizations, we present WebMedic, a sys-
tem that carefully cuts page content in a way that balances page func-
tionality with memory usage. Our work motivates content providers
to tailor their services to fit the needs of the next billion users by
presenting an approach to automatically address memory constraints.
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