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Abstract
Everyone agrees that web pages should load more
quickly. However, a good definition for “page load time”
is elusive. We argue that, in a modern web page, load
times should be defined with respect to interactivity: a
page is “loaded” when above-the-fold content is visi-
ble and the associated JavaScript event handling state
is functional. We define a new load time metric, called
Ready Index, which explicitly captures our proposed no-
tion of load time. Defining the metric is straightforward,
but actually measuring it is not, since web developers
do not explicitly annotate the JavaScript state and the
DOM elements which support interactivity. To solve this
problem, we introduce Vesper, a tool which rewrites a
page’s JavaScript and HTML to automatically discover
the page’s interactive state. Armed with Vesper, we com-
pare Ready Index to prior load time metrics like Speed
Index; we find that, across a variety of network con-
ditions, prior metrics underestimate or overestimate the
true load time for a page by 24%–64%. We also introduce
a tool that optimizes a page for Ready Index, decreasing
the median time to page interactivity by 29%–32%.

1 INTRODUCTION

Users want web pages to load quickly [34, 42, 44]. Thus,
a vast array of techniques have been invented to de-
crease load times. For example, browser caches try to
satisfy network requests using local storage. CDNs [13,
29, 38] push servers near clients, so that cache misses
can be handled with minimal network latency. Cloud
browsers [5, 31, 36, 40] resolve a page’s dependency
graph on a proxy that has low-latency links to the core
Internet; this allows a client to download all objects in a
page using a single HTTP round-trip to the proxy.

All of these approaches try to reduce page load time.
However, an inconvenient truth remains: none of these
techniques directly optimize the speed with which a page
becomes interactive. Modern web pages have sophis-
ticated, dynamic GUIs which contain both visual and
programmatic aspects. For example, many sites provide
a search feature via a text input with autocompletion
support. From a user’s perspective, such a text input is
worthless if the associated HTML tags have not been
rendered; however, the text input is also crippled if the
JavaScript code which implements autocompletion has
not been fetched and evaluated. JavaScript code can also
implement animations or other visual effects which do
not receive GUI inputs directly, but which are still neces-
sary for a page to be ready for user interaction. As shown

Figure 1: For the Alexa US Top 500 sites, we observed
the median number of GUI event handlers to be 182.

in Figure 1, pages often contain hundreds of event han-
dlers that drive interactivity.

In this paper, we propose a new definition for load time
that directly captures page interactivity. We define a page
to be fully loaded when:
(1) the visual content in the initial browser viewport1

has completely rendered, and
(2) for each interactive element in the initial view-

port, the browser has fetched and evaluated the
JavaScript and DOM state which supports the ele-
ment’s interactive functionality.

Prior definitions for page load time overdetermine or un-
derdetermine one or both of those conditions (§2), lead-
ing to inaccurate measurements of page interactivity. For
example, the traditional definition of a page load, as rep-
resented by the JavaScript onload event, captures when
all of a page’s HTML, JavaScript, CSS, and images have
been fetched and evaluated; however, that definition is
overly conservative, since only a subset of that state may
be needed to allow a user to properly interact with the
content in the initial viewport. Newer metrics like above-
the-fold time [8] and Speed Index [14] measure the time
that a page needs to render the initial viewport. How-
ever, these metrics do not capture whether the page has
loaded critical JavaScript state (e.g., event handlers that
respond to GUI interactions, or timers that implement an-
imations).

To accurately measure page interactivity, we must de-
termine when conditions (1) and (2) are satisfied. Deter-
mining when condition (1) has been satisfied is relatively
straightforward, since rendering progress can be mea-
sured using screenshots, or the paint events that are emit-
ted by the browser’s debugger interface. However, deter-
mining when condition (2) has been satisfied is challeng-
ing. How does one precisely enumerate the JavaScript
state that supports interactivity? How does one determine
when this state is ready? To answer these questions, we

1The viewport is the rectangular area of a page that the browser
is currently displaying. Content in the initial viewport is often called
“above-the-fold” content.
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(a) Loading the normal version of the page.

(b) Loading a version of the page which optimizes for above-
the-fold time.

(c) Loading a version of the page which optimizes for Ready
Time.
Figure 2: Timelines for loading amazon.com, indicat-
ing when critical interactive components become fully
interactive. The client used a 12 Mbits/s link with a 100
ms RTT (see Section 5.1 for a full description of our
methodology).

RTT PLT RT AFT

25 ms 1.5 (3.9) 1.1 (2.9) 0.8 (1.9)
50 ms 3.4 (7.2) 2.5 (5.8) 1.9 (4.7)
100 ms 6.1 (12.5) 3.9 (9.1) 2.9 (7.0)
200 ms 9.2 (20.6) 5.6 (12.8) 3.8 (8.9)

Figure 3: Median (95th percentile) load time estimates
in units of seconds. Each page in our 350 site corpus was
loaded over a 12 Mbits/s link.

introduce a new measurement framework called Vesper.
Vesper rewrites a page’s JavaScript and HTML; when the
rewritten page loads, the page automatically logs paint
events as well as reads and writes to individual JavaScript
variables and DOM elements.2 By analyzing these logs,
Vesper generates a progressive load metric, called Ready
Index, which quantifies the fraction of the initial view-
port that is interactive (i.e., visible and functional) at
a given moment. Vesper also outputs a derived metric,
called Ready Time, which represents the exact time at
which all of the above-the-fold state is interactive.

Using a test corpus of 350 popular sites, we compared
our new load metrics to traditional ones. Figure 2(a) pro-

2Each HTML tag in a web page has a corresponding DOM element.
The DOM element is a special JavaScript object which JavaScript code
can use to manipulate the properties of the underlying HTML tag.

vides a concrete example of the results, showing the dif-
ferences between page load time (PLT), above-the-fold
time (AFT), and Ready Time (RT) for the amazon.com
homepage when loaded over a 12 Mbits/s link with a 100
ms RTT. AFT underestimates time-to-full-interactivity
by 2.56 seconds; PLT overestimates the time-to-full-
interactivity by 2.72 seconds. Web developers celebrate
the elimination of milliseconds of “load time,” claim-
ing that a slight decrease can result in millions of dol-
lars of extra income for a large site [7, 11, 43]. How-
ever, our results suggest that developers may be optimiz-
ing for the wrong definition of load time. As shown in
Figure 3, prior metrics inaccurately forecast time-to-full-
interactivity under a variety of network conditions, with
median inaccuracies of 24%–39%; as shown in our user
study (§6), users with interactive goals prefer websites
that actually prioritize the loading of interactive content.

The differences between load metrics are particularly
stark if a page’s dependency graph [27, 39] is deep, or
if a page’s clients are stuck behind high-latency links. In
these scenarios, the incremental interactivity of a slowly-
loading page is important: as the page trickles down
the wire, interactive HTML tags should become visible
and functional as soon as possible. This allows users to
meaningfully engage with the site, even if some content
is missing; incremental interactivity also minimizes the
time window for race conditions in which user inputs are
generated at the same time that JavaScript event handling
state is being loaded [33]. To enable developers to build
incrementally-interactive pages with low Ready Indices,
we extended Polaris [27], a JavaScript framework that
allows a page to explicitly schedule the order in which
objects are fetched and evaluated. We created a new Po-
laris scheduler which is Ready Index-aware; the result-
ing scheduler improves RI by a median of 29%, and RT
by a median of 32%. Figure 2(c) demonstrates the sched-
uler’s performance on the amazon.com homepage. Im-
portantly, Figure 2(b) shows that optimizing for above-
the-fold time does not optimize for time-to-interactivity.

Of course, not all sites have interactive content, and
even interactive sites can be loaded by users who only
look at the content. In these situations, pages should op-
timize for the rendering speed of above-the-fold content.
Fortunately, our user study shows that pages which op-
timize for Ready Index will substantially reduce user-
perceived rendering delays too (§6). Importantly, Vesper
also enables developers to automatically optimize their
pages solely for rendering speed instead of Ready Index.

In summary, this paper has four contributions. First,
we define a new load metric called Ready Index which
considers a page’s interactive status (§3). Determining
how interactivity evolves over time is challenging. Thus,
our second contribution is a tool called Vesper which au-
tomates the measurement of Ready Index (§4). Our third
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contribution is a study of Ready Index in 350 real pages.
By loading those pages in a variety of network condi-
tions, we explain the page characteristics that lead to
faster interactivity times (§5). Our fourth contribution is
an automated framework for optimizing a page’s Ready
Index or pure rendering speed; both optimizations are en-
abled by Vesper-collected data. User studies demonstrate
that pages which optimize for Ready Index provide better
support for immediate interactivity (§6).

2 BACKGROUND

In this section, we describe prior attempts to define “page
load time.” Each metric tracks a different set of page be-
haviors; thus, for a given page load, different metrics may
provide radically different estimates of the load time.

The Original Definition: The oldest metric is defined
with respect to the JavaScript onload event. A browser
fires that event when all of the external content in a
page’s static HTML file has been fetched and evalu-
ated. All image data must be present and rendered; all
JavaScript must be parsed and executed; all style files
must be processed and applied to the relevant HTML
tags; and so on. The load time for a page is defined as the
elapsed time between the navigationStart event
and the onload event. In the rest of the paper, we re-
fer to this load metric as PLT (“page load time”).

PLT was a useful metric in the early days of the web,
but modern web pages often dynamically fetch content
after the onload event has fired [23, 24]. PLT also pe-
nalizes web pages that have large amounts of statically-
declared below-the-fold content. Below-the-fold content
resides beneath the initial browser viewport, and can only
be revealed by user scrolling. PLT requires static below-
the-fold content to be fetched and evaluated before a
page load is considered done. However, from a user’s
perspective, a page can be ready even if its below-the-
fold content is initially missing: the interactivity of the
initial viewport content is the primary desideratum.

Time to First Paint: Time to First Paint (TTFP) mea-
sures when the browser has received enough page data to
render the first pixels in the viewport. Thus, TTFP rep-
resents the earliest time that a user could meaningfully
interact with a page. For a given PLT, a lower TTFP is
better. However, decreasing a page’s PLT is not guar-
anteed to lower its TTFP, and vice versa [1]. For ex-
ample, when the HTML parser (which feeds input to
the rendering pipeline) hits a <script> tag, the parser
must synchronously fetch and evaluate the JavaScript
code before continuing the HTML parse [27]. By push-
ing <script> tags to the end of a page’s HTML, render
times may improve, but the browser loses opportunities
to fetch JavaScript code early and keep the client’s net-
work pipe fully utilized. Careless deferral of JavaScript

evaluation may also hurt interactivity, since event han-
dlers will be registered later, animation callbacks will
start firing later, etc.

Above-the-fold Time: This metric represents the time
that the browser needs to render the final state of all pix-
els in the initial browser viewport. Like TTFP, above-the-
fold time (AFT) is not guaranteed to move in lockstep
with PLT. Measuring AFT and TTFP requires a mech-
anism for tracking on-screen events. WebKit-derived
browsers like Chrome and Opera expose paint events via
their debugging interfaces. Rendering progress can also
be tracked using screenshots [2, 10].

If a web page contains animations, or videos that au-
tomatically start playing, a naı̈ve measurement of AFT
would conclude that the page never fully loaded. Thus,
AFT algorithms must distinguish between static pixels
that are expected to change a few times at most, and
dynamic pixels that are expected to change frequently,
even once the page has fully loaded. To differentiate be-
tween static and dynamic pixels, AFT algorithms use a
threshold number of pixel updates; a pixel which is up-
dated more than the threshold is considered to be dy-
namic. AFT is defined as the time that elapses until the
last change to a static pixel.

Speed Index: AFT fails to capture the progressive na-
ture of the rendering process. Consider two hypothetical
pages which have the same AFT, but different rendering
behavior: the first page updates the screen incrementally,
while the second page displays nothing until the very end
of the page load. Most users will prefer the first page,
even though both pages have the same AFT.

Speed Index [14] captures this preference by explic-
itly logging the progressive nature of page rendering. In-
tuitively speaking, Speed Index tracks the fraction of a
page which has not been rendered at any given time. By
integrating that function over time, Speed Index can pe-
nalize sites that leave large portions of the screen unren-
dered for long periods of time. More formally, a page’s
Speed Index is

∫ end
0 1− VC(t)

100 dt, where end is the AFT
time, and VC(t) is the percentage of static pixels at time
t that are set to their final value. A lower Speed Index is
better than a higher one.

Strictly speaking, a page’s Speed Index has units of
“percentage-of-visual-content-that-is-not-displayed mil-
liseconds.” For brevity, we abuse nomenclature and re-
port Speed Index results in units of just “milliseconds.”
However, a Speed Index cannot be directly compared to a
metric like AFT that is actually measured in units of time.
Also note that TTFP, AFT, and Speed Index do not con-
sider the load status of JavaScript state. As a result, these
metrics cannot determine (for example) when a button
that has been rendered has actually gone live as result of
the associated event handlers being registered.
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User-perceived PLT: This metric captures when a user
believes that a page render has finished [21, 37]. Un-
like Speed Index, User-perceived PLT is not defined
programmatically; instead, it is defined via user stud-
ies which empirically observe when humans think that
enough of a page has rendered for the page load to be
“finished.” Like Speed Index, User-perceived PLT ig-
nores page functionality (and thus page interactivity).
User-perceived PLT also cannot be automatically mea-
sured, which prevents developers from easily optimizing
for the metric.

TTI: Several commercial products claim to measure
a page’s time-to-interactivity (TTI) [30, 35]; however,
these products do not explicitly state how interactivity
is defined or measured. In contrast, Google is currently
working on an open standard for defining TTI [18]. The
standard’s definition of TTI is still in flux. The current
definition expresses interactivity in terms of time-to-first-
paint, the number of in-flight network requests, and the
utilization of the browser’s main thread (which is used to
dispatch GUI events, execute JavaScript event handlers,
and render content). TTI defines an “interactive window”
as a five second period in which the main thread runs
no rendering or JavaScript tasks that require more than
50 ms; in other words, during an interactive window, the
browser can respond to user input in at most 50 ms. A
page’s TTI is the maximum of:
(1) the time-to-first-paint, and
(2) the time to the first interactive window that has at

most two network requests in flight.
This definition for load time has several problems. First,
it could declare a page to be loaded even if the page has
not rendered all of the content in the initial viewport. Sec-
ond, this definition does not distinguish between network
requests for above-the-fold content and below-the-fold
content; as a result, condition (2) might be governed by
the time needed to fetch below-the-fold content that is
unnecessary from the perspective of a human user who
initially only cares about above-the-fold content. Sim-
ilarly, this TTI definition does not distinguish between
JavaScript state that supports above-the-fold event han-
dlers, and JavaScript state that does not. User-perceived
interactivity requires the former state to be loaded, but
not the latter. A third problem is that TTI’s notion of an
interactive window is too conservative. Modern browsers
prioritize the execution of event handers [22], and those
handlers typically run for only a few milliseconds [32].
Using intelligent redraw algorithms and GPU offload-
ing [19], modern browsers also minimize the rendering
activity that executes on the main thread. So, it is un-
likely that the browser’s main thread will be executing
a long-running, high-priority task if GUI handlers also
wish to run.

Summary: Traditional metrics for load time fail to
capture important aspects of user-perceived page readi-
ness. PLT does not explicitly track rendering behavior,
and implicitly assumes that all JavaScript state is neces-
sary to make above-the-fold content usable. AFT, Speed
Index, and User-perceived PLT consider visual content,
but are largely oblivious to the status of JavaScript
code—the code is important only to the extent that it
might update a pixel using DOM methods [26]. However,
AFT, Speed Index, and User-perceived PLT completely
ignore event handlers (and the program state that event
handlers manipulate). Consequently, these metrics fail
to capture the interactive component of page usability.
Google’s TTI also imprecisely captures above-the-fold,
interactive state, resulting in load time estimates that are
not tight.

3 READY INDEX

In this section, we formally define Ready Index (RI).
Like Speed Index, RI is a progressive metric that captures
incremental rendering updates. Unlike Speed Index, RI
also captures the progressive loading of JavaScript state
which supports interactivity.

Defining Functionality: Let T be an upper-bound on
the time that a browser needs to load a page’s above-the-
fold state, and make that state interactive. This upper-
bound does not need to be tight; in practice (§5), we use
a static value of 30 seconds.

Let E be the set of DOM elements that are visible in
the viewport at T . For each e∈ E, let h(e) be the set of all
event handlers that are attached to e at or before T . Let te
be the earliest time at which, for all handlers h∈ h(e), h’s
JavaScript function has been declared, and all JavaScript
state and DOM state that would be accessed by h’s execu-
tion has been loaded. Given those definitions, we express
the functionality progress of e as

F(e, t) = I(t > te) (1)

where the step-function I() is 1 if its argument is true,
and 0 otherwise. Intuitively speaking, Equation 1 states
that a DOM node is not functional until all of the neces-
sary event handlers have been attached to the node, and
the browser has loaded all of the state that the handlers
would touch if executed.

Defining Visibility: An element e may be the target of
multiple paint events, e.g., as the browser parses addi-
tional HTML and recalculates e’s position in the layout.
We assume that e is not fully visible until its last paint
completes. So, if P(e) is the set of paint events that up-
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date e, the visibility progress of e is

V (e, t) =
1
|P(e)| ∑

p∈P(e)
I(t > tp) (2)

where tp is the timestamp of paint event p. Similar to
how Speed Index computes progressive rendering scores
for pixels [14], Equation 2 assumes that each paint of e
contributes equally to e’s visibility score. Note that 0 ≤
V (e, t)≤ 1.

Defining Readiness: Given the preceding definitions
for functionality and visibility, we define the readiness
of an element e as

R(e, t) =
1
2

F(e, t)+
1
2

V (e, t) (3)

such that the functionality and visibility of e are equally
weighed, and 0≤ R(e, t)≤ 1. The readiness of the entire
page is then defined as

R(t) = ∑
e∈E

A(e)R(e, t) (4)

where A(e) is the area (in pixels) that e has at time T .

Putting It All Together: An element e is fully ready
at time t if R(e, t) = 1, i.e., if e is both fully visible and
fully functional. A page’s Ready Time (RT) is thus the
smallest time at which all of the above-the-fold elements
are ready. A page’s Ready Index (RI) is the area above
the curve of the readiness progress function. Thus, RI is
equal to

RI =
∫ T

0
1− R(t)

R(T )
dt (5)

4 VESPER

Vesper is a tool which allows a web developer to deter-
mine the RI and RT for a specific page. Vesper must sat-
isfy three design goals. First, Vesper must produce high
coverage, i.e., Vesper must identify all of a page’s in-
teractive, above-the-fold state. Second, Vesper’s instru-
mentation must have minimal overhead, such that instru-
mented pages have RI and RT scores that are close to
those of unmodified pages. Ideally, Vesper would also
be browser-agnostic, i.e., capable of measuring a page’s
RI and RT without requiring changes to the underlying
browser.

These design goals are in tension. To make Ves-
per browser-agnostic, Vesper should be implemented by
rewriting a page’s JavaScript code and HTML files, not
through modification of a browser’s JavaScript engine
and rendering pipeline; unfortunately, the most direct
way to track interactive state is via heavyweight instru-
mentation of all reads and writes that a page makes to
the JavaScript heap, the DOM, and the rendering bitmap.

Vesper resolves the design tension by splitting instru-
mentation and log analysis across two separate page
loads. Each load uses a differently-rewritten version of
a page, with the first version using heavyweight instru-
mentation, and the second version using lightweight in-
strumentation. As a result, the second page load injects
minimal timing distortion into the page’s true RI and RT
scores. Figure 4 provides an overview of Vesper’s two-
phase workflow. We provide more details in the remain-
der of this section.

4.1 Phase 1
The goal of this phase is to identify the subset of DOM
nodes and JavaScript state which support above-the-fold
interactivity.

Element Visibility: For most pages, only a subset of
all DOM nodes will have bounding boxes that overlap
with the initial viewport. Even if a node is above-the-
fold, it may not be visible, e.g., due to CSS styling which
hides the node. Vesper injects a JavaScript timer into the
page which runs at time T . When the timer function exe-
cutes, it traverses the DOM tree and records which nodes
are visible. In the rest of the section, we refer to this timer
as the Vesper timer.

Event Handlers: Developers make a DOM element
interactive by attaching one or more event handlers to
that element. For example, a <button> element does
nothing in response to clicks until JavaScript code regis-
ters onclick handlers for the element. To detect when
such handlers are added, Vesper shims the event registra-
tion interfaces [25]. There are two types of registration
mechanisms:
• DOM elements define JavaScript-accessible

properties and methods which support
event handler registration. For example, as-
signing a function f to a property like
DOMnode.onclick will make f an event
handler for clicks on that DOM node. Invoking
DOMnode.addEventListener("click",
f) has similar semantics. Vesper interposes on reg-
istration mechanisms by injecting new JavaScript
into a page which modifies the DOM proto-
types [25]; the modified prototypes insert logging
code into the registration interfaces, such that each
registered handler is added to a Vesper-maintained,
in-memory list of the page’s handlers.
• Event handlers can also be defined via HTML, e.g.,
<img src=... onload=handler()/>. At
T , the Vesper timer iterates through the page’s
DOM tree, identifying event handlers that were
not registered via a JavaScript-level interface, and
adding those handlers to Vesper’s list.
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Figure 4: Vesper’s two-phase approach for measuring RI and RT. Shaded boxes indicate steps that occur during a page
load. Clear boxes represent pre- and post-processing steps.

The Vesper timer only adds a handler if the handler is
attached to a visible DOM element that resides within
the initial viewport.

Event Handler State: When a handler fires, it issues
reads and writes to program state. That state may belong
to JavaScript variables, or to DOM state like the con-
tents of a <b> tag. As the handler executes, it may invoke
other functions, each of which may touch an additional
set of state. The aggregate set of state that the call chain
may touch is the functional state for the handler. Given
a DOM element e, we define e’s functional state as the
union of the functional state that belongs to each of e’s
event handlers.

If e resides within the initial viewport, then e is not
functional until two conditions have been satisfied:

1. all of e’s event handlers must be registered, and
2. all of e’s functional state must be loaded.

At any given moment during the page load, none, either,
or both of these conditions may be satisfied. For exam-
ple, if e’s event handlers are defined in a <script>
tag, but key functional state is defined by downstream
HTML or <script> tags, then after evaluation of the
first <script> tag, condition (1) is true, but condition
(2) is not.

To identify a page’s functional state, Vesper instru-
ments the HTML and JavaScript in a page, such that,
when the instrumented page loads, the page will log
all reads and writes to JavaScript variables and DOM
state. When the Vesper timer runs, it actively invokes the
event handlers that were captured by event registration
shimming. As those handlers fire, their call chains touch
functional state. By post-processing the page’s Scout
logs, and looking for reads and writes that occurred af-
ter the Vesper timer began execution, Vesper can iden-
tify a page’s functional state. In particular, Vesper can
associate each handler with its functional state, and each
DOM element with the union of the functional states of
its handlers.

To fire the handlers for a specific event type like
click, the Vesper timer determines the minimally-
sized DOM subtree which contains all handlers

for the click event. Vesper then constructs a
synthetic click event, and invokes the built-in
DOMnode.dispatchEvent() method for each leaf
of the subtree. This approach ensures that synthetic
events follow the same dispatch path used by real events.

Some event types are logically related to a sin-
gle, high-level user interaction. For example, when
a user clicks a mouse button, her browser generates
mousedown, click, and mouseup events, in that or-
der. Vesper is aware of these semantic relationships, and
uses them to guide the generation of synthetic events, en-
suring a realistic sequence of handler firings.

Implementation: To instrument a page, Vesper could
modify the browser’s renderer and JavaScript engine to
track reads and writes to DOM objects and JavaScript
variables. However, our Vesper prototype leverages
Scout [27] instead. Scout is a browser-agnostic rewrit-
ing framework that instruments a page’s JavaScript and
HTML to log reads and writes. A browser-agnostic ap-
proach is useful because it allows Vesper to compare a
page’s Ready Index across different browser types (§5.4).

The instrumentation which tracks element visibility
and handler registration adds negligible overhead to the
page load process. However, tracking all reads and writes
to page state is more costly. Across the 350 pages in our
test corpus, we measured a Scout-induced load time in-
crease of 4.5% at the median, and 7.6% at the 95th per-
centile. Thus, trying to calculate RI and RT directly in
Phase 1 would lead to inflated estimates. To avoid this
problem, we use the outputs of Phase 1 as the inputs to
a second phase of instrumentation. This second phase is
more lightweight, and directly calculates RI and RT.

4.2 Phase 2

In Phase 2, Vesper tracks the rendering progress of the
above-the-fold DOM elements that were identified in
Phase 1. Vesper also tracks the rate at which functional
JavaScript state and DOM state is created. This informa-
tion is sufficient to derive RI and RT.
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4.2.1 Measuring Functionality Progress
A DOM element becomes functional when all of its
event handlers have been registered, and all of the func-
tional state for those handlers has been created. An el-
ement’s functional state may span both the JavaScript
heap and the DOM. Vesper uses different techniques to
detect when the two types of state become ready.

JavaScript state: By analyzing Scout logs from Phase
1, Vesper can determine when the last write to each
JavaScript variable occurs. The “last write” is defined as
a source code line and an execution count for that line.
The execution count represents the fact that a source code
line can be run multiple times, e.g., if it resides within a
loop body.

At the beginning of Phase 2, Vesper rewrites a page’s
original JavaScript code, injecting a logging statement
after each source code line that generates a final write
to functional JavaScript state. The logging statement up-
dates the execution count for the line, and only outputs a
log entry if the final write has been generated.

DOM state: An event handler’s functional state may
also contain DOM nodes. For example, a keypress
handler may assume the existence of a specific DOM
node whose properties will be modified by the handler.
At the beginning of Phase 2, Vesper rewrites a page’s
original HTML to output the creation time for each
DOM node. The rewriting is complicated by the fact
that, when a browser parses HTML, it does not trigger a
synchronous, JavaScript-visible event upon the creation
of a DOM node. Thus, Vesper rewrites a page’s HTML
to include a new <script> tag after every original
HTML tag. The new <script> tag logs two things:
the creation of the preceding DOM node, and the bound-
ing boxes of all DOM nodes that exist at that moment
in the HTML parse. The <script> tag then removes
itself from the DOM tree (so that at any point in the
HTML parse, non-Vesper code which inspects the DOM
tree will see the original DOM tree which does not con-
tain Vesper’s self-destructing tags). DOM snapshots us-
ing self-destructing JavaScript tags are by far the most
expensive part of the Phase 2 instrumentation; however,
they only increase page load times by 1.9% at the me-
dian, and 3.9% at the 95th percentile. Thus, we believe
that the overhead is acceptable.

After the initial HTML parse, DOM nodes may
be created by asynchronous event handlers. Vesper
logs such creations by interposing on DOM methods
like DOMnode.appendChild(). This interposition-
ing has negligible overhead and ensures that Vesper has
DOM snapshots after the initial HTML parse.

4.2.2 Measuring Visibility Progress
DOM snapshots allow Vesper to detect when elements
are created. However, a newly-created element will not
become visible until some point in the future, because the
construction of the DOM tree is earlier in the rendering
pipeline than the paint engine. Browsers do not expose
layout or paint events to JavaScript code. Fortunately,
Vesper can extract those events from the browser’s de-
bugging output [15]. Each layout or paint message con-
tains the bounding box and timestamp for the activity.
Unfortunately, the message does not include which DOM
nodes were affected by the paint; thus, Vesper must de-
rive the identities of those nodes.

After the Phase 2 page load is complete, Vesper col-
lates the DOM snapshots and the layout+paint debug-
ging events, using the following algorithm to determine
the layout and paint events that rendered a specific DOM
element e:

1. Vesper finds the first DOM snapshot which con-
tains a bounding box for e. Let that snapshot have
a timestamp of td . Vesper searches for the layout
event which immediately precedes td and has a
bounding box that contains e’s bounding box. Ves-
per defines that layout event L f irst to be the one
which added e to the layout tree.

2. Vesper then rolls forward through the log of paint
and layout events, starting at L f irst , and tracking all
paint events to e’s bounding box. That bounding box
may change during the page load process, but any
changes will be captured in the page’s DOM snap-
shots. Thus, Vesper can determine the appropriate
bounding box for e at any given time.

As described in Equation 2, each paint event contributes
equally towards e’s visibility score. For example, if e is
updated by four different paints, then e is 25% visible
after the first one, 50% visible after the second one, etc.

In summary, the output of the Phase 2 page load is
a trace of a page’s functionality progress and visibility
progress. Using that trace, and Equations 4 and 5, Vesper
determines the page’s RT and RI.

4.3 Discussion
The PLT metric is natively supported by commodity
browsers, meaning that a page can measure its own
PLT simply by registering a handler for the onload
event. Newer metrics that lack native browser support re-
quire 1) browsers to install a special plugin (the SI ap-
proach [17]), or 2) page developers to rewrite content
(the approach used by our Vesper prototype). Vesper is
amenable to implementation via plugins or native sup-
port; either option would enable lower instrumentation
overhead, possibly allowing Vesper to collapse its two
phases into one.

As a practical concern, a rewriting-based implementa-
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tion of Vesper must deal with the fact that a single page
often links to objects from multiple origins. For exam-
ple, a developer for foo.com will lack control over the
bytes in linked objects from bar.com. As described in
Section 5, our Vesper prototype uses Mahimahi [28], a
web replay tool, to record all of the content in a page;
Vesper rewrites the recorded content, and then replays
the modified content to a browser that runs on a machine
controlled by the foo.com developer. In this manner, as
with the browser plugin approach, a developer can mea-
sure RI and RT for any page, regardless of whether the
developer owns all, some, or none of the page content.

If a page contains nondeterminism, then the page
may have different functional state across different page
loads. For example, an event handler which branches on
the return value of Math.random() might access five
different DOM nodes across five different loads of the
page. Even if a page’s functional state is deterministic,
Vesper’s synthetic event generation (§4.1) is not guaran-
teed to exhaustively explore all possible event handler
code paths. Vesper could use symbolic execution [9] to
increase path coverage, but we find that Vesper’s current
level of coverage is sufficiently high. Note that prior load
metrics like Speed Index are also subject to inaccuracy
due to nondeterminism.

5 EVALUATION

In this section, we compare RI and RT to three prior met-
rics for page load time (PLT, AFT, and Speed Index). We
do not evaluate Google’s TTI because the metric’s defini-
tion is still evolving; also, at the time of this paper’s writ-
ing, the browser plugin which measures TTI [16] does
not work for most pages in our test corpus.

Across a variety of network conditions, we find that
PLT overestimates the time that a page requires to be-
come interactive; in contrast, AFT and Speed Index un-
derestimate the time-to-interactivity (§5.2 and A.1.1).
These biases persist when browser caches are warm
(§A.1.2). Furthermore, the discrepancies between prior
metrics and our interactive metrics are large, with me-
dian and 95th percentile load time estimates often differ-
ing by multiple seconds (Figures 3 and 6). Thus, Ready
Index and Ready Time provide a fundamentally new way
of understanding how pages load.

5.1 Methodology
We evaluated the various load metrics using a test corpus
of 350 pages. The pages were selected from the Alexa
US Top 500 list [3]. We filtered sites which used dep-
recated JavaScript statements that Scout [27] does not
rewrite. We also filtered sites which caused errors with
Speedline [10], a preexisting tool for capturing SI.

To measure PLT, we recorded the time between the
JavaScript navigationStart and onload events

(§2). RT and RI were measured with Vesper, which in-
strumented each recorded page using the two-phase ap-
proach described in Figure 4; we set T equal to 30 sec-
onds. We also used Vesper to measure AFT and SI.3 Cali-
bration experiments showed that Vesper’s estimates of SI
were within 2.1% of Speedline’s estimates at the median,
and within 3.9% at the 95th percentile.

Measuring PLT is non-invasive, since unmodified
pages will naturally fire the navigationStart and
onload events. Capturing the other metrics requires
new instrumentation, like DOM snapshots (§4.2.1). To
avoid measurement biases due to varying instrumenta-
tion overheads, each experimental trial loaded each page
five times, and in each of the five loads, we enabled all
of Vesper’s Phase 2 instrumentation, such that each load
metric could be calculated. Enabling all of the instrumen-
tation increased PLT by 1.9% at the median, and 3.9% at
the 95th percentile.

We used Mahimahi [28] to record the content in each
test page, and later replay the content via emulated net-
work links. With the exception of the mobile experiments
(§A.1.1), all experiments were performed on Amazon
EC2 instances running Ubuntu 14.04. Unless otherwise
specified, each page load used Google Chrome (v52)
with a cold browser cache and remote debugging enabled
so that we could track layout and paint events.

5.2 Cross-metric Comparisons
On computationally-powerful devices like desktops and
laptops, network latency (not bandwidth) is the primary
determinant of how quickly a page loads [1, 6, 27, 36].
So, our first set of tests used a t2.large EC2 VM which
had a fixed bandwidth of 12 Mbits/s, but a round-trip la-
tency that was drawn from the set {25 ms, 50 ms, 100
ms, 200 ms}. These emulated network conditions were
enforced by the Mahimahi web replay tool.

Figure 3 summarizes the results for PLT, RT, and AFT.
Recall that these metrics are non-progressive, i.e., they
express a page’s load time as a single number that repre-
sents when the browser has “completely” loaded the page
(for some definition of “completely”). As expected, PLT
is higher than RT because PLT requires all page state, in-
cluding below-the-fold state, to be loaded before a page
load is finished. Also as expected, AFT is lower than RT,
because AFT ignores the load status of JavaScript code
that is necessary to make visible elements functional.

The surprising aspect of the results is that the differ-
ences between the metrics are so noticeable. As shown in
Figures 2(a) and 3, the differences are large in terms of
percentage (24.0%–64.3%); more importantly, the differ-
ences are large in terms of absolute magnitude, equating
to hundreds or thousands of milliseconds. For example,

3To compute SI, Vesper only considers element visibility, assigning
zero weight to functionality.
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(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT

Figure 5: Comparing RT, PLT, and AFT. Results used emulated links with a bandwidth of 12 Mbits/s.

RTT Ready Index Speed Index

25 ms 714 (1522) 568 (1027)
50 ms 1759 (3846) 1325 (3183)

100 ms 2737 (6174) 2054 (4549)
200 ms 4252 (9719) 3071 (6913)

Figure 6: Median (95th percentile) load time estimates
(see Section 2 for a discussion of the units). Results used
our entire 350 page corpus. Content was loaded over a
12 Mbits/s link. See Section 5.1 for a full description of
our methodology.

with a round-trip latency of 50 ms, RT and PLT differ by
roughly 900 ms at the median, and by 1.4 seconds at the
95th percentile. For the same round-trip latency, RT and
AFT differ by approximately 600 ms at the median, and
by 1.1 seconds at the 95th percentile.

The discrepancies increase as RTTs increase. This ob-
servation is important, because cellular and residential
networks often have RTTs that exceed 100 ms [4, 20].
For example, in our emulated network with an RTT of
100 ms, RT differed from PLT by 2.2 seconds at the me-
dian; RT differed from AFT by 1 second at the median.
From the perspective of a web developer, the differences
between RT and AFT are particularly important. Users
frequently assume that a visible element is also func-
tional. However, visibility does not necessarily imply
functionality, and interactions with partially-functional
elements can lead to race conditions and broken page be-
havior [33]. In Section 6, we describe how developers
can create incrementally-interactive pages that minimize
the window in which a visual element is not interactive.

Figure 5 compares the RT, PLT, and AFT values for
each page in our 350 site corpus. Pages are sorted along
the x-axis in ascending AFT order. Figure 5 vividly
demonstrates that PLT is an overly conservative defini-
tion for user-perceived notions of page readiness. The
spikiness of the RT line also demonstrates that pages
with similar AFT values often have very different RT
scores. For example, consider an emulated link with a
100 ms round-trip time. Sites 200 (mashable.com)
and 201 (overdrive.com) have AFT values of 3099
ms and 3129 ms, respectively. However, the sites have
RT values of 4418 ms and 3970 ms, a difference of over
400 ms. In Section 5.3, we explain how the relationships

between a page’s HTML, CSS, and JavaScript cause di-
vergences in RT and AFT.

Figures 6 and 7 compare the two progressive metrics.
The results mirror those for the non-progressive metrics.
A page’s SI is lower than its RI, because SI does not
consider the load status of JavaScript code that supports
interactivity. Furthermore, pages with similar SIs often
have much different RIs.

5.3 Case Studies
Figure 8 uses two randomly-selected pages to demon-
strate how interactivity evolves. Figure 8(a) describes the
homepage for Bank of America, whereas Figure 8(b) de-
scribes the homepage for WebMD. Using the terminol-
ogy from Section 3, each graph plots the visual progres-
sion of the page (∑e∈E V (e, t)A(e)) and the readiness pro-
gression of the page (R(t)); in the graphs, each data point
is normalized to the range [0.0,1.0]. At any given mo-
ment, a page’s readiness progression is less than or equal
to its visual progression, since visual progression does
not consider the status of functional state.

The gaps between the red and blue curves indicate
the existence of visible, interactive DOM elements that
are not yet functional. If users try to interact with such
elements, then at best, nothing will happen; at worst,
an incomplete set of event handlers will interact with
incomplete JavaScript and DOM state, leading to erro-
neous page behavior. For example, the Bank of America
site contains a text input which supports autocompletion.
With RTTs of 100 ms and above, we encountered scenar-
ios in which the input was visible but not functional. In
these situations, we manually verified that a human user
could type into the text box, have no autosuggestions ap-
pear, and then experience the text disappear and reappear
with autosuggestions as the page load completed.

Both the red and blue curves contain stalls, i.e., time
periods in which no progress is made. For example, both
pages exhibit a lengthy stall in their visual progression—
for roughly a second, neither page updates the screen.
Both pages also contain stretches which lack visual
progress or readiness progress. During these windows, a
page is not executing any JavaScript code which creates
interactive state.
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(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT

Figure 7: Comparing the progressive metrics (Ready Index versus Speed Index). Results used emulated links with a
bandwidth of 12 Mbits/s.

Speed Index: 1342 ms
Ready Index: 1967 ms

(a) https://www.bankofamerica.com

Speed Index: 1736 ms
Ready Index: 2093 ms

(b) http://www.webmd.com

Figure 8: Exploring how visibility and functionality evolve for two different pages. The client had a 12 Mbits/s link
with an RTT of 100 ms. Remember that a progressive metric like Ready Index is calculated by examining the area that
is above a curve.

Functionality progression stalls when the <script>
tags supporting functionality have not been fetched, or
have been fetched but not evaluated. Visual progres-
sion may stall for a variety of reasons. For example, the
browser might be blocked on network fetches, waiting on
HTML data so that new tags can be parsed and rendered.
Browsers also use a single thread for HTML parsing,
DOM node rendering, and JavaScript execution; thus, ex-
ecuting a <script> tag blocks parsing and rendering
of downstream HTML. As described in Section 6, devel-
opers can use automated tools to minimize these stalls
and improve a page’s Ready Time and Ready Index.

5.4 Other Page Load Scenarios
In Section A.1, we analyze how Ready Index evolves in
three additional scenarios: mobile page loads, page loads
that use a warm browser cache, and page loads on two
different browsers (namely, Chrome versus Opera). Due
to space restrictions, we merely provide a summary here:

Mobile page loads: Mobile page loads exhibit the
same trends that we observed on more powerful client
devices. For example, on a Nexus 5 phone running on
an emulated Verizon LTE cellular link, the median PLT
is 35.2% larger than the median RT; the median RI is
29.7% larger than the median Speed Index.
Warm cache loads: The results from earlier in this
section used cold caches. However, clients sometimes
have a warm cache for objects in a page to load. As ex-
pected, pages load faster (for all metrics) when caches

are warm. However, the general trends from Section 5.2
still hold. For example, on a desktop browser with a 12
Mbits/s, 100 ms RTT link, the median warm-cache PLT
is 38.2% larger than the median RT. The median RT is
26.0% larger than the median AFT.

Chrome vs. Opera: Since our Vesper implementation
is browser-agnostic, it can measure a single page’s load
metrics across different browser types. For example, we
compared RI on Chrome and Opera. With cold browser
caches and a 12 Mbits/s, 100 ms RTT link, Chrome’s RI
values were 6.5% lower at the median, and 11.9% lower
at the 95th percentile. Since Vesper’s logs contain low-
level information about reads and writes to interactive
state, browser vendors can use these logs to help optimize
the internal browser code that handles page loading.

6 OPTIMIZING FOR INTERACTIVITY

To minimize a page’s Ready Time and Ready Index,
browsers must fetch and evaluate objects in a way that
prioritizes interactivity. In particular, a browser should:

1. maximize utilization of the client’s network connec-
tion;

2. prioritize the fetching and evaluating of HTML files
which define above-the-fold DOM elements;

3. prioritize the fetching and evaluating of <script>
tags which generate interactive, above-the-fold
state; and

4. respect the semantic dependencies between a page’s
objects.
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Figure 9: The dependency graph for priceline.com.
OPT-PLT assigns equal weights to all nodes. OPT-SI pri-
oritizes the shaded objects. OPT-RI prioritizes the ob-
jects with dashed outlines.

By maximizing network utilization (Goal (1)), a browser
minimizes the number of CPU stalls which occur due to
synchronous network fetches; ideally, a browser would
fetch each piece of content before that content is de-
sired by a parsing/evaluation engine. Goals (2) and (3)
directly follow from the definitions for page readiness in
Section 3. However, Goal (4) is in tension with the oth-
ers: fetching and evaluating objects in a way that satis-
fies Goals (1), (2), and (3) may break page functionality.
For example, two JavaScript libraries may have shared
state, like a variable that is written by the first library
and read by the second. Invalid reads and other prob-
lems will arise if a browser evaluates the two libraries
“out-of-order” with respect to the lexical order of their
<script> tags in the page’s HTML.

Web pages contain a variety of additional dependen-
cies which constrain the order in which objects can be
fetched and evaluated. Polaris [27] is a load optimizer
which uses Scout to extract all of these dependencies and
generate an explicit dependency graph (i.e., a partial or-
dering that specifies how certain objects must be loaded
before others). Polaris then rewrites the page so that the
page is self-assembling. The rewritten page uses a cus-
tom JavaScript library to schedule the fetching and eval-
uating of objects in a way that satisfies Goals (1) and (4).

At any given moment in a page load, the dynamic crit-
ical path is the path in the dependency graph which has
the largest number of unfetched objects. The default Po-
laris scheduler prioritizes the fetching of objects along
the dynamic critical path. This policy minimizes PLT, but
may increase or decrease RT, depending on whether in-
teractive, above-the-fold state is created by objects along
the dynamic critical path.

We created a new scheduling policy, called OPT-RI
(“optimize RI”), which prioritizes the loading of interac-
tive content. Let Ointeractive be the objects (e.g., HTML
files, JavaScript files) which Vesper identifies as gener-
ating interactive, above-the-fold state. Given Ointeractive
and the dependency graph from Scout, OPT-RI assigns
node weights of zero to nodes that do not reside in
Ointeractive; for a node in Ointeractive, OPT-RI finds all of
the above-the-fold elements which the node affects, and

then weights the node by the fraction of the initial view-
port area which those elements cover. During the actual
page load, the OPT-RI scheduler prioritizes objects along
the weighted dynamic critical path.

We also define OPT-SI, which only considers visual
progress. Nodes which do not lead to the creation of vis-
ible, above-the-fold DOM elements receive a weight of
zero. For each remaining node, OPT-SI finds the DOM
elements which the node influences, and assigns a node
weight which is proportional to the fraction of the view-
port which the elements cover. OPT-SI will not prioritize
JavaScript files that only define event handler state; how-
ever, OPT-SI will prioritize JavaScript files that dynam-
ically create above-the-fold content via DOM methods
like document.appendChild(). Figure 9 provides
an example of a real dependency graph, and the nodes
which are prioritized by the various schedulers.

Figure 10 compares the performance of the sched-
ulers. OPT-RI and OPT-SI reduce all load metrics, but
the targeted metrics decrease the most. Thus, sites that
want to decrease time-to-interactivity must explicitly tar-
get RI and RT, not preexisting metrics like SI and PLT.
For example, consider the search button in Figures 2(b)
and 2(c). OPT-RI makes the button interactive one and
a half seconds earlier than OPT-SI. Differences of that
magnitude have significant effects on user satisfaction
and site revenue [7, 11, 43].

As shown in Figure 10, OPT-RI reduces RI by a me-
dian of 29%, and RT by a median of 32%; PLT, AFT, and
SI also drop, but not as much (by 23%, 15%, and 12%,
respectively). Interestingly, the default Polaris scheduler
(OPT-PLT) improves PLT, RT, and RI, but actually hurts
AFT and SI by -4% and -7% at the median. The rea-
son is that JavaScript files often form long dependency
chains; evaluating one JavaScript file in the chain leads
to the fetching and evaluation of additional JavaScript
files. These long dependency chains tend to lie along the
dynamic critical paths which are preferentially explored
by OPT-PLT. By focusing on those chains, OPT-PLT in-
creases the speed at which event handling state is loaded.
However, this approach defers the loading of content in
short chains. Short chains often contain images, since im-
ages (unlike HTML, CSS, and JavaScript) cannot trigger
new object fetches. Deferring image loading hurts AFT
and SI, though RT and RI improve, and the likelihood of
broken user interactions (§5.2 and §5.3) decreases.

User Study 1: Do User-perceived Rendering Times
Actually Change? The results from Figure 10 pro-
grammatically compare OPT-PLT, OPT-SI, and OPT-RI.
We now evaluate how the differences between these op-
timization strategies are perceived by real users. We per-
formed a user study in which 73 people judged the load
times of 15 randomly-selected sites from our corpus,
each of which had three versions (one for each opti-
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Weights PLT RT AFT SI RI
OPT-PLT 36% (51%) 13% (22%) -4% (5%) -7% (4%) 8% (17%)
OPT-RI 23% (34%) 32% (48%) 15% (26%) 12% (20%) 29% (35%)
OPT-SI 10% (19%) 18% (31%) 27% (39%) 18% (28%) 14% (23%)

Figure 10: Median (95th percentile) load time improvements using our custom Polaris schedulers and the default one
(OPT-PLT). Results used our entire 350-page corpus. Loads were performed on a desktop Chrome browser which had
a 12 Mbits/s link with an RTT of 100 ms; the performance baseline was a regular (i.e., non-Polaris) page load. The
best scheduler for each load metric is highlighted.

mization strategy). We used a common methodology for
evaluating user-perceived load times [21, 37]. We pre-
sented each user with 10 randomly-selected pages that
used a randomly-selected optimization target; we in-
jected a JavaScript keypress handler into each page, so
users could press a key to log the time when they believed
the page to be fully loaded. In all of the user studies, con-
tent was served from Mahimahi on a Macbook Pro, using
an emulated 12 Mbits/s link with a 100 ms RTT.

Unsurprisingly, users believed that OPT-PLT resulted
in the slowest loads for all 15 pages. However, OPT-SI
did not categorically produce the lowest user-perceived
rendering times; users thought that OPT-RI was the
fastest for 4 pages, and OPT-SI was the fastest for
11. Across the study, median (95th percentile) user-
perceived rendering times with OPT-RI were within
4.7% (10.9%) of those with OPT-SI. Furthermore, the
performance of OPT-RI and OPT-SI were closer to each
other than to that of OPT-PLT. At the median (95th per-
centile), OPT-RI was 14.3% (25.3%) faster than OPT-
PLT, whereas OPT-SI was 17.4% (32.9%) faster.

These results indicate that a page which only wants to
decrease rendering delays should optimize for SI. How-
ever, optimizing for RI results in comparable decreases
in rendering time. Our next user study shows that op-
timizing for RI also decreases user-perceived time-to-
interactivity.
User Study 2: Does OPT-RI Help Interactive Sites?
Unlike the first user study, our second one asked users
to interact with five well-known landing pages: Ama-
zon, Macy’s, Food Network, Zillow, and Walmart. For
each site, users completed a site-specific task that nor-
mal users would be likely to perform. For example, on
the Macy’s page, users were asked to hover over the
“shopping bag” icon until the page displayed a pop-up
icon which listed the items in the shopping bag. On the
Walmart site, users were asked to search for “towels” us-
ing the autocompleting text input at the top of the page;
they then had to select the autocompleted suggestion. To
avoid orientation delays, users were shown all five pages
and the location of the relevant interactive elements at the
beginning of the study. This setup emulated users who
were returning to frequently-visited sites.

The study had 85 users interact with three different
versions of each page: a default page load, a load that

Load method Preference %
OPT-RI 83%
OPT-SI 4%

Default load 7%
None 6%

Figure 11: The results of our second user study. OPT-RI
leads to human-perceived reductions in the completion
times for interactive tasks.

was optimized with OPT-SI, and one that was optimized
with OPT-RI. For each page, users were presented with
the three variations in a random order and were unaware
of which variant they were seeing. Users were asked to
select the variant that enabled them to complete the given
task the fastest; if users felt that there was no perceivable
difference between the loads, users could report “none.”

As shown in Figure 11, OPT-RI was overwhelmingly
preferred, with 83% of users believing that OPT-RI
led to the fastest time-to-interactivity. For example,
on the Macy’s page, OPT-RI made the shopping bag
icon fully interactive 1.6 seconds faster than the default
page load, and 2.1 seconds faster than the OPT-SI load.
Time-to-interactivity differences of these magnitudes
are easily perceived by humans. Thus, for pages which
contain interactive, high-priority content, OPT-RI is a
valuable tool for reducing time-to-interactivity (as well
as the time needed to fully render the page).

7 CONCLUSION

A web page is not usable until its above-the-fold con-
tent is both visible and functional. In this paper, we de-
fine Ready Index, the first load time metric that explicitly
quantifies page interactivity. We introduce a new tool,
called Vesper, that automates the measurement of Ready
Index. Using a test corpus of 350 pages, we show that
Ready Index better captures interactivity than prior met-
rics like PLT and SI. Finally, we introduce an automated
page-rewriting framework which leverages Vesper data
to optimize a page for Ready Index or for pure render-
ing speed. User studies show that optimizing for Ready
Index allows pages to support more immediate user in-
teractions with less user frustration.
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A APPENDIX (PAPER #285)
A.1 Additional Evaluation Results
In this section, we elaborate on the experimental results
from Section 5.4, discussing how Ready Index applies
to mobile page loads (§A.1.1), warm cache page loads
(§A.1.2), and loads on different browser types (§A.1.3).

A.1.1 Mobile Page Loads
Mobile browsers run on devices with limited computa-
tional resources. As a result, mobile page loads are typi-
cally compute-bound, with less sensitivity to network la-
tency [6, 36]. To explore RI and RT on mobile devices,
we USB-tethered a Nexus 5 phone running Android
5.1.1 to a Linux desktop machine that ran Mahimahi.
Mahimahi emulated a Verizon LTE cellular link [41]
with a 100 ms RTT. The phone used Google Chrome
v53 to load pages from a test corpus. The corpus had the
same 350 sites from our standard corpus, but used the
mobile version of each site if such a version was avail-
able. Mobile sites are reformatted to fit within smaller
screens, and to contain fewer bytes to avoid expensive
fetches over cellular networks.

As shown in Figure 12, mobile page loads exhibit the
same trends that we observed on more powerful client
devices. For example, the median PLT is 35.2% larger
than the median RT; the median RI is 29.7% larger than
the median Speed Index. These differences persist even
when considering only the mobile-optimized pages in
our corpus. For that subset of pages, the median PLT is
27.4% larger than the median RT, and the median RI is
25.3% larger than the median Speed Index.

A.1.2 Browser Caching
Our prior experiments used cold browser caches, mean-
ing that, to load a particular site, a browser had to fetch
each of the constituent objects over the network. How-
ever, users often visit the same page multiple times; dif-
ferent sites also share objects. Thus, in practice, browsers
often have warm caches that allow some object fetches to
be satisfied locally.
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(a) RT vs. PLT vs. AFT (b) RI vs. SI
Figure 12: Comparing the load metrics for mobile pages loaded on a Nexus 5 phone. The network used an emulated
Verizon LTE link with a 100 ms RTT.

(a) RT vs. PLT vs. AFT (b) RI vs. SI
Figure 13: Page loads with warm browser caches. The desktop browser used a 12 Mbits/s link with a 100 ms RTT.

Figure 14: The Ready Index for each page in our cor-
pus, as measured on different desktop browsers (Chrome
and Opera). Pages are sorted on the x-axis by increasing
Ready Index on Chrome. The results were collected us-
ing cold browser caches and a 12 Mbits/s link with an
RTT of 100 ms.

To determine how warm caches affect page loads, we
examined the HTTP caching headers [12] for each ob-
ject in our corpus. For each object that was marked as
cacheable, we rewrote the headers to indicate that the
object would be cacheable forever. We then loaded each
page in our corpus twice, back to back; the first load pop-
ulated the cache, and the second one leveraged the pre-
warmed cache. Figure 13 shows the results for a desktop
browser which used a 12 Mbits/s link with a 100 ms RTT.

As expected, pages load faster when caches are warm.
However, the general trends from Section 5.2 still hold.
For example, the median PLT is 38.2% larger than the
median RT, which is 26.0% larger than the median AFT.
The correlations between various metrics also continue
to be noisy. For example, SI increases from 1147 ms to
1168 ms between sites 134 (duckduckgo.com) and
135 (nexusmods.com); however, RI decreases from
1601 ms to 1228 ms.

A.1.3 Cross-Browser Comparisons
Different browsers are built in different ways. As shown
in Figure 14, those architectural variations impact page
load times. Figure 14 compares Ready Index on Chrome
v53 and Opera v42. Chrome and Opera share non-trivial
amounts of code; in particular, both browsers use the We-
bKit rendering engine and the V8 JavaScript runtime.
However, the browsers have sufficiently heterogeneous
code to produce a noticeable bias in RI values: Chrome’s
RI values are 6.5% lower at the median, and 11.9% lower
at the 95th percentile.

To understand the causes for such discrepancies, de-
velopers must analyze the steps that a browser takes
to load a page. Tools like WProf [39] and the built-in
Chrome debugger allow developers to examine coarse-
grained interactions between high-level activities like
HTML parsing, screen painting, and JavaScript execu-
tion. However, Vesper’s logs describe how interactive
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state loads at the granularity of individual JavaScript
variables and DOM nodes. For example, Vesper allows
a developer to associate a dynamically-created text input
with the specific code that creates the input and regis-
ters event handlers for the input; Vesper also tracks the
JavaScript variables that are manipulated by the execu-
tion of the event handlers. None of this information is
explicitly annotated by developers, nor should it be: for

a large, frequently-changing site, humans should focus
on the correct implementation of desired features, not
the construction of low-level bookkeeping details about
data and code dependencies. Thus, automatic extraction
of these dependencies is crucial, since, as we demon-
strate in Section 6, a fine-grained understanding of those
dependencies is necessary to minimize a page’s time-to-
interactivity.
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