
Reverb: Speculative Debugging for Web Applications
Ravi Netravali

UCLA
James Mickens
Harvard University

ABSTRACT
Bugs are common in web pages. Unfortunately, traditional debug-
ging primitives like breakpoints are crude tools for understanding the
asynchronous, wide-area data flows that bind client-side JavaScript
code and server-side application logic. In this paper, we describe
Reverb, a powerful new debugger that makes data flows explicit
and queryable. Reverb provides three novel features. First, Reverb
tracks precise value provenance, allowing a developer to quickly
identify the reads and writes to JavaScript state that affected a par-
ticular variable’s value. Second, Reverb enables speculative bug
fix analysis. A developer can replay a program to a certain point,
change code or data in the program, and then resume the replay; Re-
verb uses the remaining log of nondeterministic events to influence
the post-edit replay, allowing the developer to investigate whether
the hypothesized bug fix would have helped the original execution
run. Third, Reverb supports wide-area debugging for applications
whose server-side components use event-driven architectures. By
tracking the data flows between clients and servers, Reverb enables
speculative replaying of the distributed application.

KEYWORDS
record-and-replay debugging, systems debugging

ACM Reference Format:
Ravi Netravali and James Mickens. 2019. Reverb: Speculative Debugging
for Web Applications. In SoCC ’19: ACM Symposium of Cloud Computing
conference, Nov 20–23, 2019, Santa Cruz, CA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3357223.3362733

1 INTRODUCTION
Debugging the client-side of a web application is hard. The DOM
interface [40], which specifies how JavaScript code interacts with the
rest of the browser, is sprawling and constantly accumulating new
features [27, 35]. Furthermore, the DOM interface is pervasively
asynchronous and event-driven, making it challenging for develop-
ers to track causality across event handlers [26, 36, 49, 72]. As a
result, JavaScript bugs are endemic, even on popular sites that are
maintained by professional developers [57, 59].

Commodity browsers include JavaScript debuggers that support
breakpoints and watchpoints. However, fixing bugs is still hard.
Breakpoints and watchpoints let developers inspect program state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20-23, Santa Cruz, CA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362733

at a moment in time; however, in an event-driven program with ex-
tensive network and GUI interactions, bug diagnosis often requires
complex temporal reasoning to reconstruct a buggy value’s prove-
nance across multiple asynchronous code paths. This provenance
data is not exposed by more advanced tools for replay debugging or
program slicing (§2).

In this paper, we introduce Reverb, a new debugger for web
applications. Reverb has three features which enable a fundamentally
more powerful debugging experience. First, Reverb tracks precise
value provenance, i.e., the exact set of reads and writes (and the
associated source code lines) that produce each program value. Like
a traditional replay debugger [13, 36, 62], Reverb records all of
the nondeterministic events from a program’s execution, allowing
Reverb to replay a buggy execution with perfect fidelity. Unlike a
traditional replay debugger, Reverb also records the deterministic
values that are manipulated by reads and writes of page state. Using
this extra information at replay time, Reverb enables developers to
query fine-grained data flow logs and quickly answer questions like
“Did variable x influence variable y?” or “Was variable z’s value
affected by a control flow that traversed function f()?” Reverb’s
logging of both nondeterministic and deterministic events is fast
enough to run in production: for the median web page in our 300
page test corpus, Reverb increases page load time by only 5.5%,
while producing logs that are only 45.4 KB in size.

Reverb’s second unique feature is support for speculative bug fix
analysis. At replay time, Reverb allows a developer to pause the
application being debugged, edit the code or data of the application,
and then resume the replay. Post-edit, Reverb replays the remaining
nondeterministic events in the log, using carefully-defined seman-
tics (§3.3) to determine how those events should be replayed in the
context of the edited program execution. Once the altered execu-
tion has finished replaying, Reverb identifies the control flows and
data flows which differ in the edited and original executions. These
analyses help developers to determine whether a hypothesized bug
fix would have helped the original program execution. Speculative
edit-and-replay is unsound, in the sense that a post-edit program can
misbehave in arbitrary ways, e.g., by attempting to read an undefined
variable. However, even without Reverb, the process of testing bug
fixes is unsound. A developer typically lacks a priori knowledge
about whether a hypothesized fix will work. The developer imple-
ments the hypothesized fix, and then runs tests and tries to determine
whether the fix actually worked; even if all of the tests pass, there is
no guarantee that the fix is completely correct, since the tests may
miss corner cases. However, Reverb provides the developer with an
important new weapon: the ability to compare the data flows and the
control flows in the original execution and the ostensibly bug-free
execution. As we demonstrate through case studies (§5.3), the ability
to diff program executions is a powerful debugging tool.

Reverb’s third novel feature is to support wide-area debug-
ging for applications whose server-side components use single-
threaded, event-driven architectures like Node [56], Redis [60], or

https://doi.org/10.1145/3357223.3362733
https://doi.org/10.1145/3357223.3362733

NGINX [53]. For these components, the event loop interface pro-
vides a narrow, semantically-well-defined abstraction layer at which
to log and replay the components. Thus, Reverb can use vector
clocks and a small assortment of additional tricks (§3.4) to track
wide-area causality. Reverb provides two levels of support for server-
side components:
• Node components execute JavaScript code. Thus, Reverb can ap-

ply its client-side framework to the server-side, and track variable-
level data flows and control flows between multiple browsers and
multiple server-side Node instances.

• Reverb treats an event-driven (but non-JavaScript) component
like Redis as a black box. Reverb logs and replays the component
at the level of the component’s externally-visible event interface,
tracking data flows emanating from, and terminating at, server-
side events.

Reverb supports speculative bug fix analysis for data stores and
JavaScript state on either side of the wide area. For example, a
developer can edit the value that server-side code receives from a
Redis database, and then explore how the edited value impacts the
remainder of the replaying application’s execution.

In summary, our contribution is the first distributed replay de-
bugger that provides fine-grained data flow tracking and speculative
bug fix analysis. Supporting this entire set of debugging capabilities
was previously intractable, because prior debuggers operated at the
wrong semantic level; Reverb’s insight is that web services using
managed runtimes and event-driven cross-server RPCs should be an-
alyzed at these levels of abstraction, instead of at the level of system
calls or hardware-level instruction traces. However, to fully leverage
this new insight, we must provide new debugging infrastructure that
prior work lacks. In particular, we introduce a new logic for rea-
soning about post-edit replays; this logic describes how editing an
application component mid-replay should affect the post-edit replay
of that component (§3.3) and remote ones which may see altered
output from the mutated component (§3.4). We also introduce new
diagnostic techniques for helping developers understand how edited
replays diverge from a program’s original executions. These tech-
niques, which explain divergences using diffs of data flow graphs
and control flow graphs (§3.2), allow Reverb to diagnose complex
bugs in real web applications (§5.3). A user study confirms that
Reverb is more helpful than traditional in-browser debuggers (§5.6).

2 BACKGROUND
Having used the debuggers in commodity browsers [18, 21, 39], and
having built several state-of-the-art debuggers ourselves [34, 36],
we often found ourselves wanting fine-grained data flow tracking
and speculative bug fix analysis. In this section, we explain why
prior debugging techniques are insufficient to realize the vision of
Figure 1.

2.1 Traditional debuggers

Standard debuggers focus on the abstraction of breakpoints [18, 21,
39]. Debuggers like Visual Studio [37] and Eclipse [14] also allow
developers to edit some types of program values at a breakpoint, and
then resume the program’s live execution. Breakpoints are undoubt-
edly useful, but they force a human developer to guess which source
code locations are buggy.

JavaScript code+heap

4
3
2
1

Browser Node

Redis

JavaScript code+heap JavaScript code+heap

1
1
1
1

Browser

Client 1 Client 2

Server

DOMDOM

Figure 1: EtherCalc [63] is a web-based, collaborative spread-
sheet. Multiple users can simultaneously issue edits to the same
spreadsheet, with a Node server broadcasting edits to all users,
and storing the spreadsheet data in Redis. Bug #314 in Ether-
Calc’s issue tracker involves a GUI-based edit from client 1 that
is not reflected to client 2’s DOM. Ideally, a debugging frame-
work could efficiently answer two questions. First, how is the
relevant DOM state and JavaScript heap state from client 1
being transmitted through the server-side components to the
DOM and JavaScript heap of client 2? Second, given recorded
state from a buggy execution run, as well as a hypothesized bug
fix that modifies code and/or data on clients or servers, would
the hypothesized fix remove the problematic behavior in the
recorded execution?

Some debuggers support watchpoints, which pause an application
when a specific memory location is read or written. Watchpoints
eliminate the need for a developer to guess when and where a par-
ticular buggy assignment will occur. However, watchpoints do not
capture temporal data flows throughout a program. So, developers
still have to manually reconstruct reverse temporal flows to deter-
mine how the value in a buggy write was generated. Our case studies
(§5.3) demonstrate that automated construction of value provenance
eliminates human-driven guess work about how program state is
created.

2.2 Deterministic replay

Traditional debuggers pause and inspect the state of live programs.
In contrast, replay debuggers [4, 13, 15, 19, 20, 29, 31, 36, 62] first
log the nondeterministic events in a live execution run, and then
replay the program in a controlled environment, using the log to
carefully recreate the original order and content of nondeterministic
events. Replaying the nondeterministic events is sufficient to induce
the remaining, deterministic program behavior, so there is no need
to log the values that are manipulated by deterministic reads and
writes.

The ability to reliably recreate a buggy execution makes it
easier to test fault hypotheses. Replay debugging is particularly
useful for studying heisenbugs that rarely occur and involve spe-
cific event orderings. Some replay debuggers support backwards-
stepping [15, 19, 31, 62], such that a developer can set a breakpoint
or a watchpoint, and then move execution forwards or backwards
in time. However, even backwards-stepping debuggers force human
developers to manually track value provenance. Thus, root cause
analysis is still difficult.

2.3 Program slicing
A program slice is a subset of program statements
that may have influenced the values that are accessed
by a specific line of source code [66, 69]. The tuple
<sourceCodeLine,variablesOfInterest> is called
the slicing criterion. Given a slicing criterion, a static slice is
derived purely from analysis of source code [10, 12, 16, 24, 55];
in contrast, a dynamic slice assumes a set of concrete values (e.g.,
at the slicing criterion) to narrow the set of potentially relevant
program statements [1, 2, 23, 30, 66].

Slicing algorithms lack a complete, concrete log of the reads and
writes made during a real execution; thus, slicing algorithms are
often imprecise, particularly for complex programs. Imprecision
hurts the use of slices for bug diagnosis, since developers must
consider source code lines that may not be causally related to the bug.
Imprecision compounds itself if slices are used to reconstruct wide-
area execution behavior. In contrast, Reverb provides guaranteed-
precise, provenance-annotated execution traces (§3.2). Similar to
an instruction trace, a Reverb trace provides a temporal log of the
source code statements that a program executed; however, the traces
also describe the values that the executed statements manipulated,
and the provenance of those values. For additional discussion of
program slicing, the interested reader can peruse Section A.4 in the
technical report [5].

2.4 Data Provenance
Provenance-aware file systems [48, 61] allow users to determine
which input files were read by a process during the production of
output files. Reverb deals with the provenance of application state
at the granularity of individual program variables that reside on
clients and servers. Thus, Reverb tracks how storage data spreads
throughout an application, but does so at the level of fine-grained,
variable-level flows.

Provenance-aware network platforms let operators discover the
route that a packet took [74], or the reason why network switches
have certain NDlog rules [70, 71, 73]. Reverb is agnostic about
network-level configuration state, but is compatible with systems
that track it.

2.5 Speculative edit-and-continue
Dora [67] is a single-machine replay debugger that records the OS-
level interactions that belong to a group of processes. Dora allows for
limited types of edits to occur during replay. If an edit causes a replay
to diverge, Dora explores multiple execution paths that are rooted at
this initial divergence. Dora executes each post-divergence path on a
live machine, recording the subsequent (and nondeterministic) OS-
level interactions. Like Reverb, Dora defines policies for handling
new calls to timekeeping functions or socket interfaces. After Dora
has explored several potential futures of the divergent replay, Dora
identifies the most plausible divergent execution using a metric akin
to string edit distance, comparing the system calls of each explored
path to those of the original execution.

Dora’s speculative power is highly restricted by two factors. First,
Dora’s vantage point is at the OS layer. In contrast, Reverb’s vantage
point is within the managed runtime of a JavaScript engine, or at the
event loop interface of a single-threaded program like Redis. This
difference is fundamental, and represents a key insight of Reverb: by

Log of
nondeterministic

events

Log of deterministic
reads and writes

HTML CSS

JavaScript
code

Web page

Reverb

JavaScript
engine

Reverb

JavaScript
engine

JavaScript code
Log of deterministic

reads and writes

Log of
nondeterministic

events

Web browser

Node server

HTTP request
+

vector clock

HTTP response
+

vector clock

Black box
server component

Event
loop

Reverb

Requests+responses
+

vector clocks

Log of
nondeterministic

eventsRequests+responses
+

vector clocks

Figure 2: An overview of Reverb’s architecture. Grey compo-
nents are added by Reverb.

introspecting on program execution at a higher level of abstraction,
Reverb can handle a wider variety of speculative edits, because the
side effects of an edit can be reasoned about with respect to a con-
strained set of events, instead of the much wider and messier POSIX
interface. For example, Dora cannot handle edits which modify
thread scheduling, e.g., to cause fewer threads to run, because Dora
cannot enumerate and model the ensuing avalanche of side effects
upon low-level POSIX state like pthread locks and shared memory
pages. In contrast, Reverb can handle a schedule-altering edit that
changes the number of client-side frames (the JavaScript equiva-
lent of processes). Reverb can tractably reason about such changes
because frames cannot share raw memory, are internally single-
threaded, and only communicate via pass-by-value postMessage
events. Thus, the only way that a newly created frame can impact
another frame is via the generation of new postMessage events.

Dora’s second restriction is that it does not track individual reads
and writes to raw memory, because doing so would be too expen-
sive [50]. Thus, Dora cannot provide variable-level value prove-
nance; another consequence is that Dora may incorrectly replay
post-edit memory accesses if the edit changes which memory page
contains an object. In contrast, Reverb introspects at the JavaScript
level, allowing Reverb to efficiently track all reads and writes to
application-visible state. This difference is fundamental. Logging all
reads and writes enables wide-area causality tracking, and is critical
for explaining divergences between a logged program run and a
speculatively-edited replay (§3.3).

3 DESIGN
Figure 2 provides an overview of Reverb’s design. A web appli-
cation has multiple clients and servers. Clients are assumed to be
standard web browsers which execute JavaScript. Both server-side
and client-side components are assumed to be single-threaded and
event-driven. Each component records its nondeterministic events;
if a component uses a JavaScript engine, then the component also
records its deterministic reads and writes to JavaScript state and the
DOM (§3.2). Distributed causality between hosts, e.g., via HTTP re-
quests, is tracked using vector clocks (§3.4). At debug time, Reverb
uses the global event log to replay each client or server in isolation,
or together as a single logical application (§3.3 and §3.4).

3.1 Overview of the JavaScript Execution Model

Execution environment: JavaScript exposes a single threaded,
event-driven programming interface. A JavaScript file defines initial-
ization code that runs once, at the time that the file is parsed by the
JavaScript engine. The initialization code registers event handlers
that the JavaScript engine will fire in response to GUI interactions,
timer expirations, network activity, and so on. Once a browser has
evaluated all of the JavaScript files in a page’s HTML, the subse-
quent execution of the page is driven solely by the reception of
asynchronous events.

An event handler often calls other functions. Thus, firing a handler
can initiate a call chain that is rooted by the handler. A program
can register multiple handlers for a single event type. Thus, the call
chain for an event is the union of the call chains for the associated
event handlers. In the rest of this paper, the unadorned term “call
chain” refers to the aggregate call chain for a particular event.

Sources of Nondeterminism: In a JavaScript program, the primary
source of nondeterminism is the order in which events arrive (and
the content of those events) [36]. JavaScript code may also in-
voke a small number of nondeterministic functions. For example,
Math.random() returns a random number. Date() returns the
current time with millisecond granularity.

By default, a JavaScript program consists of a single event loop.
However, a web page can incorporate multiple frames [42] or web
workers [25]; each one represents a new event loop that runs in
parallel with the others [38]. Concurrent execution contexts can
only interact with each other via the asynchronous, pass-by-value
postMessage() interface [44]. The browser delivers those mes-
sages by firing an event in the recipient’s execution context. Thus,
from the perspective of the recipient, handling message nondetermin-
ism is no different than handling other event-driven nondeterminism
like GUI interactions.

Externalizing Output: A JavaScript program can externalize three
types of output:
• The DOM interface [40] lets a program update the visual content

that users see. The DOM interface defines methods for dynami-
cally manipulating a page’s HTML structure, e.g., by adding new
HTML tags, or by changing the CSS styles of preexisting tags.

• A JavaScript program can also write to local storage. Cookies [41]
can store up to 4 KB of data, whereas IndexedDB [43] and the
localStorage interface [45] can hold MBs of information.

• To send network data, a program uses the
XMLHttpRequest [47] and WebSocket [46] interfaces.
XMLHttpRequest is an older interface which only supports
request/response interactions. WebSocket supports full-duplex
streams.

In this paper, we ignore multimedia objects like <video> streams,
since we focus on the debugging of pure HTML, CSS, and JavaScript
state.

3.2 Analyzing Value Provenance

To track data flows, Reverb first logs nondeterministic and deter-
ministic events. After reconstructing data flows, Reverb uses them
to support flow queries, and express state divergences caused by
speculative edit-and-continue.

Logging Nondeterminism: Prior work has explored various ways
to deterministically replay client-side JavaScript code [8, 36]. Our
Reverb prototype rewrites JavaScript source code to interpose on
nondeterministic sources (§4), but Reverb’s design makes no deep
assumptions about how nondeterminism is logged or replayed.

A Reverb log has an entry for each nondeterministic event; each
log entry contains event-specific data that is sufficient for recreat-
ing that event. For example, the log entry for a timer firing con-
tains a reference to the timer callback. The log entry for a call to
Math.random() contains the return value of the function. The
log entry for a mouse click stores which mouse button was clicked,
the x and y coordinates for the click, and so on.

At the beginning of logging, Reverb takes a snapshot of the
client’s local storage (e.g., cookies). Reverb also registers its own
handlers for GUI events like mouse clicks. So, if the logged applica-
tion only installs handlers for (say) keypress, but not keydown
or keyup, Reverb will still log when the latter two kinds of events
occur. This information is useful for handling speculative edits which
add new GUI handlers (§3.3).

Logging Deterministic Reads and Writes: In JavaScript, each ob-
ject is essentially a mutable dictionary, with string keys (i.e., property
names) mapping to property values. The global namespace is reified
via the special window object, such that references to a global vari-
able x are implicitly translated to window.x. Abstractly speaking,
Reverb logs reads and writes to the JavaScript heap by shimming
the getters and setters for each object dictionary (including the one
that belongs to window). Our Reverb prototype uses JavaScript
rewriting to inject this shim code (§4).

Reconstructing Data Flows: Using the log of deterministic reads
and writes, Reverb can reconstruct the provenance of all JavaScript
variable values at any moment in a program’s execution. Given a
slicing criterion which mentions variable x at time t, Reverb finds
the prior write for which x was the left-hand side. For the variables
on the right-hand side, Reverb finds the prior write which assigned
to those variables. Reverb continues this recursive process until
reaching the beginning of the program; the traced path represents
the provenance for the slicing criterion. Note that the path may be a
tree, not a line, because a single assignment may involve multiple
right-hand sides (e.g., x=y+z). The path may also cross the event
handlers that belong to multiple high-level events like key presses or
the arrival of network data.

Reverb’s log associates each deterministic read or write with a
source code line. Thus, Reverb can also generate source-code-level
execution traces which provide a serial history of each source code
line that a program ran. The core visualization tool that Reverb
provides to developers is an execution trace that is overlaid with
provenance information: each variable mentioned in each source
code line is associated with the prior source code line which gener-
ated the variable’s value. Figure 7 depicts an example of such a trace,
and the extended technical report [5] (§A.3) describes some of the
pruning techniques which improve the comprehensibility of traces.
For now, we merely explain a developer-guided pruning approach
that is simple, and important in practice: targeted dynamic tracing.
A targeted dynamic trace lets a developer drill down on the executed
source code lines (and associated data flows) that affected a specific
variable. As the developer explores the initial trace, the developer can

OBJ0 x$ y.county
{count:(0}({count:(0}(

{count:(0}(0(

{count:(1}(1({count:(1}({count:(1}(

var(x(=({count:(0};(
var(y(=(x;(
y.count++;(

Figure 3: To capture aliasing relationships, Reverb distin-
guishes between an underlying object and its multiple names.
Writes to an aliased object create horizontal arrows in data
flow diagrams, since time flows downward and the aliases are
updated simultaneously.

add or remove target variables, expanding or shrinking the targeted
trace. Our case studies (§5.3) show that targeted dynamic traces are
fast to generate, and provide helpful diagnostic information.

Reverb uses Scout-style dependency analysis [51] to track data
flows between the JavaScript heap and the DOM. For example, the
DOM tree is a data structure which mirrors a page’s dynamic HTML
tree; each HTML tag has an associated DOM node that is exposed to
JavaScript code. Reverb understands the semantics of DOM methods
like Node.appendChild(newChild). Thus, Reverb can track
how JavaScript values flow to DOM nodes, and how DOM values
are assigned to JavaScript variables.

Reverb’s logs capture a variety of additional behavior. For ex-
ample, Reverb explicitly tracks aliasing relationships, as shown in
Figure 3. Also, for each executed branch, Reverb records the as-
sociated source code line, and the values consumed by the branch
test. This information allows Reverb to apply classical algorithms
for building dynamic control flow dependencies [30]. Reverb easily
handles the special case of execution flows that span try/catch
blocks, since Reverb records both the exception-throwing line, and
the catching line.

3.3 Speculative Edit-and-Continue Debugging
Speculative edit-and-continue debugging has five phases:
• logging the events in a baseline execution run;
• replaying the execution up to a specified point;
• changing the program’s state in some way;
• resuming execution, with nondeterminism from the original run

“influencing” the post-edit execution; and
• comparing the behavior of the original and altered runs to under-

stand the effects of the speculative fix.
The nondeterministic input vectors for a JavaScript program are
well-known and (compared to POSIX) very small in number [36].
However, defining post-edit replay semantics was previously an un-
solved problem. Below, we define those semantics, describing how
to execute post-edit code under the guidance of a log whose nonde-
terministic values may not cleanly apply to the post-edit execution.
These post-edit replay semantics are an important contribution of
the paper.

Inside the call chain that contains the edit: Once we have re-
played execution to the edit point and modified the necessary state,
we resume the call chain’s execution. Post-edit, the chain may ex-
plore different branches than were visited in the original run. Thus,
the chain may issue fewer or additional calls to nondeterministic
functions like Date().

• If the post-edit code makes fewer calls to a nondeterministic
function f , we simply extract return values for f from the log,
replaying the same nondeterminism that the original run experi-
enced. Once the call chain finishes, and we must replay the next
event’s call chain, we replay f ’s values from the log, starting
with the value that was first seen by the original execution of the
call chain for the new event. For example, suppose that, during
the original program execution, two events fired; the first call
chain consumed random numbers r0 . . . r4, and the second chain
consumed r5 . . . r9. Suppose that the first call chain is edited, such
that it only makes two calls to Math.random(). When the sec-
ond call chain executes in the post-edit run, Math.random()
will return r5, then r6, and so on, since these are the random
numbers that the second call chain saw during its original run.

• If the post-edit code generates more calls to a nondeterministic
function than seen at logging time, we use a function-specific
extrapolation technique to generate additional values once the call
chain has exhausted the values that are associated with it in the
log. For Math.random(), we simply generate new random
numbers. For time-related functions like Date(), we return
monotonically increasing time values that are smaller than the
next logged time value. Once the call chain finishes and we
trigger the call chain for a new event, we return to using the log
to provide values for nondeterministic functions.

Post-edit code may also generate new externalized output. For exam-
ple, an edited value may be written to local storage, or sent over the
network via the query string of an XMLHttpRequest. Post-edit
code may also modify event handler state in ways that cause fewer
or additional events to fire in the future. For example, post-edit code
may register timers that were never created in the original run; post-
edit code may also deregister timers that fired in the original run.
Post-edit code may also generate entirely new network requests, or
register/deregister handlers for GUI events. Below, we discuss how
to incorporate these changes into the post-edit universe.

After the call chain which contains the edit has finished execu-
tion: At this point, the replay framework has completed execution
of the call chain. The framework can now manipulate program state
before releasing the next event and invoking the appropriate event
handlers.

Due to the edit, the current execution context may have different
event handlers than what the program had at the equivalent moment
in the original execution. The replay framework must integrate any
changes into the log of nondeterminism; some post-edit events in
the log must be marked as “do not replay,” and some new events
must be added to the log:
• If the edit resulted in the deletion of a timer, we mark all of the

timer’s subsequent events as “do not replay.” If the edit created
a new timer, we inject new timer events into the log, using the
logged wall-clock time of preexisting events to determine where
the new timer events should go, relative to the preexisting events.

• If the edit deleted a DOM handler, and the edited program has
no remaining handlers for a particular event type, we mark all
post-edit instances of that event as “do not replay.” For example,
if the deletion of a keypress handler leaves the program with
no keypress handlers at all, we suppress future dispatches
of logged keypresses (because such events cannot trigger

any call chains). If an edit registers a new DOM handler, then no
special action is required—when the replay framework dispatches
a relevant event, the framework will invoke the new handler as
usual. Remember that Reverb records all GUI events at logging
time, even if the application has not registered its own handlers
for those events (§3.2). Thus, at replay time, Reverb can invoke
new handlers for a particular event at the appropriate moment.

• If an edit closes XMLHttpRequests or WebSockets, the
replay framework cancels future events that involve those network
connections. If the edit creates a new, unlogged network request,
then the replay framework must inject new network events into
the log. If the server-side responder is also being replayed, then
Reverb inserts a new request into the server-side log; the request
represents a speculative server-side edit. When the response is
generated, Reverb buffers it, and uses a model of network latency
to determine where to inject the response into the client-side
log (§3.4). If Reverb does not control the server-side responder,
Reverb can terminate replay; alternatively, Reverb can issue the
request to the live (but uncontrolled) responder, and then insert
the response into a downstream position in the client log, using
the observed network latency of the live fetch to determine where
to place the response.

• The post-edit code may issue new reads or writes to local storage.
The replay framework does nothing special to handle synchro-
nous accesses to cookies or DOM storage—the framework simply
passes those IOs to the underlying storage. For asynchronous ac-
cesses to IndexedDB, the replay framework must inject new
IO events into the log, using a model for the expected latency
of those events. Generating these events is logically similar to
generating new network events, as explained in the previous
bullet.

Note that the replay framework never injects new GUI events into
the post-edit universe. For example, the framework will never inject
new mouse clicks or key presses. Nothing prevents the framework
from doing so, but, lacking a reasonable model for how user intent
would change in the post-edit world, the framework is content to
merely replay the GUI events from the original program run.

Once the replay framework has patched the log, the framework
extracts the next high-level event from the log, and initiates the
relevant call chain. The event may or may not have been seen in the
original program run.

Inside the call chain for a new event which did not occur during
the original execution: Replay uses extrapolation to generate re-
turn values for nondeterministic functions like Math.random().
When the call chain ends, we add and remove top-level events as
described above.

Inside the call chain for an event which did occur in the original
execution: We use the log to replay return values for nondeter-
ministic functions; if the call chain’s nondeterministic values are
exhausted before the call chain finishes, we use extrapolation to
generate additional values. When the call chain finishes, we add and
remove events from the log as described above.
Figure 4 shows an end-to-end example of replaying events after an
edit has been made. Once an altered replay finishes, developers can
compare the data flows of the original and altered executions, look-
ing for evidence that the hypothesized bug fix actually succeeded.

xhr0()

XHR
readyState
(4, data=…)

t0()

Timer 0
(@4s)

q() Date()

mc0() mc1()

Mouse
click

(left button)

z() //Registers
//timer 0 for
//t=4s

kp0() kp1()

x()

Key press
(“h”)

y() //Sets the
//timer period
//to t=4s

(a) A snippet of the program’s original execution, showing two GUI
events (each of which triggers two top-level event handlers), a network
event which indicates the reception of data from a remote server, and
a timer which fires at a wall clock time of 4 seconds after the program
started execution.

kp0() kp1()

x() y() //Edits the

Key press
(“h”)

//timer period
//from 4s to 3s;
//cancels the
//XHR

mc0() mc1()

Mouse
click

(left button)

z() //Registers
//timer 0 for
//t=3s

t0()

Timer 0
(@4s)

q() Date()

xhr0()

XHR
readyState
(4, data=…)

t0()

Timer 0
(@3s)

q() Date()
//Returns
//extrapolated
//value

(b) During the replay process, the developer edits function y(). As a
result, the XHR event is never replayed; additionally, the timer fires
early, and receives a different value from Date().

Figure 4: An example of how an edit changes the replay process.
Beneath each event, we depict the associated call chains. Red
indicates functions whose behavior is altered by the edit. Grey
indicates events from the original execution which do not occur
in the post-edit universe.

Reverb uses classical string diffing algorithms [7, 11] to quickly
identify the reads and writes that diverge in the two provenance
chains. Reverb’s logs contain enough information to reconstruct
execution traces at the granularity of individual source code lines
(see Figure 8); thus, developers can use differential slicing [28] to
align divergent executions with respect to shared and non-shared
lines of executed source code.

3.4 Debugging Across the Wide Area

Node: Node [56] is a server-side implementation of the JavaScript
runtime. Like a browser-based JavaScript engine, Node exposes a
single-threaded, event-driven interface. A Node application runs
headless, i.e., without a GUI, but otherwise has access to timers, non-
deterministic functions like Date(), and asynchronous IO channels
like network sockets. Reverb interposes on these nondeterministic
inputs using the same techniques that it leverages on the client-side.

To track causality between a client and a Node server, Reverb
uses vector clocks [17, 33] to establish a partial ordering over
the distributed events. At logging time, when a client issues an
XMLHttpRequest, Reverb transparently adds a new cookie value
which contains the client’s clock. On the server-side, Reverb trans-
parently modifies the HTTP request handler to extract the client
clock and update the server’s clock appropriately. When the server
generates the HTTP response, Reverb uses a Set-Cookie header

to transmit the server’s updated clock to the client;1 the client ex-
tracts the cookie and updates the local clock. The client browser
automatically persists the cookie on local storage, as the browser
would do for any other type of cookie.

In JavaScript, a program can associate a single top-level event
with multiple handlers. At logging time, a client or server updates
the local clock at the beginning of each event dispatch, before han-
dlers run. The use of browser cookies to store client clocks allows
a client to detect when passively-fetched content triggers server-
side JavaScript execution. For example, suppose that client-side
JavaScript code injects a new <link> tag into the page using the
innerHTML DOM method; such a tag might represent a new style
sheet. Client-side JavaScript will not have an opportunity to inspect
the HTTP response headers for the <link>. However, when the
next JavaScript-visible event fires, the first handler for that event
can inspect the cookie that was set by the <link> fetch, extract
the server’s vector clock, and then update the local vector clock
appropriately.

At replay time, Reverb collates the client logs and the server
logs, using logical clocks to generate a total ordering over all events.
Reverb then replays events from the total ordering; at each step,
Reverb moves either a client or a server one event further in the
global log.

Note that each host’s log contains sufficient information to replay
the host in isolation—the log contains all of the external nondeter-
ministic stimuli that affected the host, as well as internal nondeter-
minism like GUI events or the values returned by clock reads. So, if
a host communicates with multiple parties, but only some of them
run Reverb, then the host can be replayed by itself, or in concert
with some or all of the Reverb-enabled hosts. However, Reverb must
be vigilant for speculative edits that generate new, unlogged requests
to entities that are not participating in the replay (§3.3).
Black-box components: A client-side browser and a server-side
Node engine both run single-threaded, event-driven JavaScript code.
In contrast, server-side components like Redis and NGINX are
single-threaded and event-driven, but are written in C, C++, or an-
other non-JavaScript language. Reverb treats each such component
as a black box, logging incoming requests and outgoing responses
using a proxy. For example, our Reverb prototype intercepts HTTP
traffic that is exchanged with a Redis server, using Redis-specific
rules to extract get(k) and put(k,v) commands, and serialize
the order in which commands are sent to Redis. Reverb assumes
that each event handler inside a black box is deterministic, such
that replaying a serialized stream of requests will result in 1) the
same internal state for the component, and 2) the same responses
being returned.2 These assumptions are reasonable for server-side
components like Redis that act as fairly simple front-ends to storage;
however, these assumptions may not hold for server-side components
that are written in arbitrarily-expressive, non-JavaScript languages
like C++ or Go.

1A subtlety is that, if a server is concurrently handling multiple requests for a particular
client, the server must ensure that the client receives a sequence of responses whose vec-
tor clocks have strictly increasing numbers in the server’s slot. This policy is necessary
because the client-side browser uses a “last-write-wins” policy for cookies.
2At replay time, individual responses may be emitted in a different order than the
logging-time one, due to nondeterministic replay-time access delays to storage media
like SSDs. However, Reverb’s distributed replay driver buffers the responses, and
ensures that response data is delivered to clients in the logging-time order.

Reverb uses vector clocks to establish causality between black-
box components and JavaScript-based components. However, Re-
verb does not log the reads and writes that black-box components
make to internal state. Thus, data flows involving black-box state
originate and terminate in the high-level requests and responses that
black-box components exchange with external parties. For example,
Reverb can track a JavaScript value on a client to the server-side
Redis get() responses that influenced that value; however, Reverb
cannot peer inside Redis to see why those responses were completed
in a particular way.

At the beginning of logging, Reverb takes a snapshot of a black-
box component’s initial state using native mechanisms (e.g., Redis’
built-in snapshot facility). At the beginning of replay, Reverb uses
the snapshot to initialize the component.

Speculative wide-area edits: Reverb allows a developer to pause
the wide-area application, edit client-side or server-side JavaScript,
DOM, or storage state, and then resume execution. In general, Re-
verb uses the techniques from Section 3.3 to handle divergence, but
wide-area debugging introduces some new divergence scenarios.

Define a requestor as a component that generates a request, and
the responder as the component that responds. Browsers always acts
as requestors, with server-side components acting as the correspond-
ing responders; however, as server-side components talk to each
other, they may act as requestors or responders at different points in
time.

An edit may cause a responder to return a different response to
a particular request, where “a particular request” is defined as a
request made at a specific vector clock time. Reverb can detect such
divergence because, at replay time, Reverb interposes on the methods
that the responder uses to return data; Reverb compares the replay-
time value of the response to the logged value from the original
execution. If the values are different, Reverb rewrites the appropriate
requestor-side log entries, propagating the new data. Later, replaying
those events will naturally inject the new data into the requestor-
side execution state. Subsequent requestor-side divergence is then
handled using the approaches from Section 3.3.

If an edit induces a requestor to send a modified request to a
responder, Reverb rewrites the appropriate responder-side log entry.
When the replay logic applies the log entry to the responder, the
replay logic buffers the response, and then replays the response
on the requestor at the moment indicated in the log; note that the
response may contain altered content with respect to the original,
logged version of the response.

An edit can induce a requestor to generate a completely new
request at a vector clock time that was not associated with a request
during the original execution. In this scenario, Reverb’s requestor-
side replay driver does not allow the request to hit the real network.
Instead, the responder-side driver injects a fake request into the
responder-side log, and then resumes the replay process. Eventually,
the replaying responder will handle the new event, and generate
a response. The replay driver will buffer the response, and use a
network model to determine when to replay the response on the
requestor.

An edit may cause a requestor to not generate a logged request.
In this case, Reverb does not replay the associated downstream
events on the responder or the requestor. For example, if a browser

does not issue a logged XMLHttpRequest to a Node server, then
Reverb will not replay the Node-side HTTP request event, or the
downstream browser-side events corresponding to the reception of
the HTTP response.

Replay subtleties: A single web page can embed content from mul-
tiple origins. Cookies are isolated using the same-origin policy [44],
so a page from origin foo.com cannot access cookies that are
set by (say) fetches to bar.com. Thus, JavaScript code in
the enclosing foo.com page cannot read bar.com’s latest vector
clock. An in-browser implementation of Reverb can easily avoid this
problem by allowing cross-origin cookie accesses when the browser
is running in debug mode. A JavaScript-level implementation of Re-
verb must force all remote servers to reside in the same origin. This
is often infeasible for the production version of a complex page, but
possible for a testing version in which all page content is recorded
using Mahimahi [52] or Fiddler [64], and then served from a single
proxy that rewrites URLs to point to the proxy’s origin.

A JavaScript-level implementation of Reverb must also be careful
to replay load events properly. These events cannot be synthetically
generated or deferred by JavaScript code, since JavaScript code has
no ability to force the network stack to release bytes at controlled
intervals. So, to properly replay the load event for a passively
fetched object like an , Reverb must ensure that, from a
client’s perspective, the (and its vector-clock-containing
cookie) arrive at a time that respects the vector clocks in the client-
side log events. Practically speaking, this means that the server-side
replay driver must coordinate with the client-side driver, and only
release the last byte of a passively-fetched object when the wide-area
replay has reached the appropriate point [36].

Handling new features: As with all existing systems for determin-
istic replay, Reverb must be updated as the components-to-log-and-
replay are updated. We believe that determining when a new runtime
interface or network command is added adds minimal burden to de-
velopers. For example, for Node [56], a Reverb developer can simply
observe when the managed runtime gains new APIs, or loses old
ones. Determining the appropriate semantics for speculative execu-
tion may be more difficult. However, we note that a key contribution
of Reverb is in pointing out that, by analyzing a system at the level
of managed code and single-threaded event loops, reasoning about
speculative execution becomes easier.

4 IMPLEMENTATION
To log deterministic reads and writes to the JavaScript heap and
the DOM, Reverb uses a modified version of Scout [51]. The stock
version of Scout rewrites JavaScript and HTML, injecting instrumen-
tation that runs during each read or write to JavaScript or DOM state.
Reverb extends Scout so that it logs nondeterministic JavaScript
events like mouse clicks and timer firings. At replay time, Reverb
reconstructs data flows using the low-level Scout traces. Reverb de-
fines a default set of data flow manipulations, like targeted dynamic
traces (§3.2). However, Reverb stores raw data flow logs in a simple
JSON format, and defines a plugin model which allows developers
to create their own queries. To display data flow graphs, Reverb uses
the NEATO visualization library [22].

At replay time, Reverb injects a custom JavaScript library into
the application code that runs on a browser or a Node instance. The

library acts as a replay driver, dispatching high-level events from
the log as requested by the human developer who is managing the
debugging workflow. The event dispatch process is similar to that of
prior replay frameworks like Mugshot [36] or Jardis [8], although
Reverb dispatches events across multiple hosts during wide-area
replay (§3.4). Black-box components like Redis are logged and
replayed using a component-specific replay proxy (§3.4).

During replay, Reverb uses Mahimahi [52], a record-and-replay
framework for HTTP requests, to serve browser-side content that is
fetched via the src attribute of HTML tags. Content that is actively
fetched by JavaScript code is served by the replay driver, from
the log of nondeterministic events. During a wide-area replay that
involves clients and server-side components, Mahimahi only returns
passively-fetched content that was not returned by a server-side
component during the original execution.

To support speculative edit-and-continue, Reverb must be able to
modify the code or data belonging to a paused JavaScript execution
context. One implementation option would be to change the C++
code inside a JavaScript engine to expose mutation hooks for internal
state. Our Reverb prototype uses a different approach—it executes
the JavaScript code atop MetaES [9], a JavaScript interpreter that is
written in JavaScript. This approach allows Reverb to be used with
arbitrary client browsers or Node implementations, since Reverb
can mutate application state without assistance from the underlying
JavaScript engine. A developer expresses a pause point as a 2-tuple
consisting of a source code line and a trigger condition, e.g., “the
i-th iteration of the enclosing loop.” Reverb will pause the MetaES
interpreter at the appropriate moment. The developer can inspect the
program state, devise an edit, and then express that edit to Reverb in
the form of a JavaScript statement for Reverb to speculatively apply
to the replay (§3.3).

5 EVALUATION
In this section, we demonstrate that Reverb is an efficient, helpful
tool for bug analysis.

5.1 The Tractability of Data Flow Analysis

Intuition might suggest that tracking all deterministic and nondeter-
ministic events would produce huge logs. However, in the Alexa Top
300 pages [3], the median number of reads and writes that occur dur-
ing a page load are 13,275 and 6,328, respectively. Those numbers
are surprisingly low, given the fact that an average web page includes
401 KB of JavaScript source code [68]. However, diagnosing bugs
is still tricky: a graph with thousands of nodes is small enough to be
efficiently analyzed by a computer, but big enough to be hard for a
human to understand. For example, across the 300 test pages:
• the median number of writes per variable was 8, with a 95th

percentile of 210;
• the median number of unique source code lines that wrote a

variable was 5, with a 95th percentile of 22;
• when considering the final value for each variable, the median

length of the value’s provenance chain (§3.2) was 16, with a 95th
percentile of 131.

These statistics are for the JavaScript code which executes during a
page load. After the load completes, additional JavaScript executes
in response to GUI interactions, the firing of timers, and so on.
Executing post-load call chains results in more reads and writes for

0

5000

10000

15000

20000

25000

0 2500 5000 7500
Number of Concurrent Requests

R
eq

ue
st

s
pe

r
S

ec
on

d

Default
Reverb-enabled

10000

Figure 5: Response throughput for two versions of a Node
server. Each data point represents the throughput across
100,000 requests.

Reverb to track, but the volume is low compared to the activity that
is generated by the initial page load. As a concrete example, on the
wsj.com website, hovering over a menu item at the top of the page
will trigger several event handlers for mouse activity. However, firing
these handlers only generates 486 reads and 107 writes. In contrast,
the initial page load generates 33,844 reads and 16,121 writes.

Using Mahimahi [52], we loaded Reverb-instrumented pages un-
der a variety of emulated network conditions, measuring the client-
perceived impact of Reverb’s instrumentation. Due to space restric-
tions, we elide a full discussion of the results, and just note that
Reverb’s client-side instrumentation is fast enough to add to real,
customer-facing pages; for example, on a 12 Mbits/s link with a 50
ms RTT, median page load time slows by just 5.5%. The logs for
Reverb-instrumented pages also grow slowly: across our 300 page
corpus, the median (gzipped) log size after a page load was 45.4 KB,
with a 95th percentile size of 113.2 KB. Given such a log, Reverb
required a median of 7.8 seconds to generate a full data flow graph;
the 95th percentile time was 32.3 seconds. Note that graph gener-
ation can be performed in the background during the logging run.
Thus, much or all of the cost can be paid before a human developer
begins the debugging process.

5.2 Server-side Overheads

Reverb’s logging approach for a Node server is similar to Reverb’s
logging approach for a client-side browser (§3.4). However, a Node
server that handles many clients will produce log entries more
quickly than a client browser which loads a single page and then
intermittently handles user input. To examine Reverb overheads
on Node, we wrote a simple Node web server. For each request,
the server returned the dynamic string “Hello world at ” +
(new Date()).getTime(). For each request, Reverb had to
log the incoming HTTP request, a few dozen reads and writes inside
the server’s request handler, the timestamp returned by Date(),
and the outgoing HTTP response. This toy server was a pessimistic
test of Reverb’s overheads, since real server code has a higher ratio
of executed source code lines per nondeterministic value logged.

We used the Apache benchmarking tool ab [6] to generate HTTP
requests. We placed the Node server and ab on the same machine, to
emphasize Reverb’s computational overheads. As shown in Figure 5,
we varied the number of concurrent client requests from 25 to 10,000,
measuring response throughput for a normal version of the server,
and a Reverb-enabled variant. The throughputs of the two servers

Mailpile EtherCalc
Total writes 24,202 31,251
Total reads 67,335 89,737

JavaScript heap objects 2,822 4,028
DOM nodes 619 1,531

Wall-clock time to bug
at logging time 12.8 secs 10.4 secs

Wall-clock time to bug
at replay time 3.1 secs 3.9 secs

Figure 6: Summary statistics for the Mailpile and EtherCalc
case studies. Note that, during replay, Reverb can skip user
think time, so Reverb can replay a buggy execution faster than
it originally occurred.
were within 3% of each other. CPU utilization was also similar for
the two servers.

The growth of Reverb’s compressed log was 258 Kbps (equivalent
to 32.3 KB per second). Note that black box components like Redis
have slower log growth—for these components, Reverb logs incom-
ing requests and responses, but not deterministic reads or writes to
internal black-box state.

5.3 Bug Diagnosis Case Study: EtherCalc
Evaluating a new debugging platform is tricky, and partially subjec-
tive. In this section, we provide an in-depth case study of how we
used Reverb to debug a web application that we did not create, and
whose code we had no previous familiarity with.

As shown in Figure 1, EtherCalc is a collaborative spreadsheet
application. A single document can be simultaneously viewed and
edited by multiple users, with a Node server disseminating updates
across browsers, and storing the canonical spreadsheet state in a
Redis database. EtherCalc is the largest application that we exam-
ined, consisting of 36 HTML files, 899 JavaScript files, and 232,662
total lines of code. Figure 6 provides additional statistics about the
application.

Bug #314 involves a broken propagation of auto-fill operations
between two browsers. In an auto-fill operation, a user enters data
(e.g., “1,2,3”) into a few exemplar cells; the user then highlights the
cells, and drags the bottom edge of the highlighted region downward,
causing the spreadsheet to guess the pattern in the exemplar cells
and automatically apply the pattern (e.g., “4,5”) to subsequent cells.
In Bug #314, auto-fill operations that are generated on one browser
are not properly delivered to other browsers. In the example above,
the first browser (client1) would correctly display “1,2,3,4,5”,
but the second browser (client2) would display “1,1,1,1,1”. We
recreated this problem, recording a buggy session that involved two
browsers, a Node server, and a Redis server.
Diagnosing the bug: Figure 7 annotates a targeted dynamic trace
for the buggy execution; to make room for the annotations, we re-
moved the more obvious data flows. When client1’s user initiates
an auto-fill, EtherCalc creates a range object which describes the
auto-fill operation; for example, the range object contains the start
cell and ending cell for the base pattern, as well as the start cell
and ending cell for the range where the extrapolated data should be
placed. EtherCalc then calls ExecuteSheetCommand(), using
the filldown parameter to indicate a pattern extension request.
The function checks whether a valid range object is present (1),
and if it exists, the function uses values in the object to determine

File:ðercalc.js&
244(257):&&cserver&=&new&
&&&&&&&&&&&&&&&&&&&&WebSocket(addr);&

client1:)cserver) client1:)range)

File:ðercalc.js&
817(991):&&range&=&{“current”:&A1,&“extend”:&5,&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&“start”:&A1,&“end”:&A3,&“length”:&3};&
818(992):&ExecuteSheetCommand(“filldown”);& &

&
File:&socialcalcQ3.js&

505(1244):&if&(range.hasrange)&{&//&true&
506(1249)&&&&inc&=&(range.end.val–range.start.val)/range.length;&}&
507(1250):&for&cell&in&range&{&//&iterate&over&rows/columns&
508(1251):&&&cell.val&=&range.start.val&+&(offset*inc);&}&
509(1255):&sheet.clear_range();&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&

client1:)inc)

File:&socialcalcQ3.js&
509(1255):&&range&=&{“current”:&A1,&

& &&&&“extend”:&5};&

&
&

File:&socialcalcQ3.js&
489(1487):&vals&=&{};&
505(1488):&if&(range.hasrange)&{&//&false&}&else&{&
572(1493):&&&for&cell&in&range&{&
573(1494):&&&&&&&vals[cell]&=&range.current.val;&}}&
579(1499):&return&make_cmd(“filldown”,&vals);

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&

File:ðercalc.js&
863(1453):&&cmd=&ExecuteSheetCommand(“broadcast”);&

client1:)cmd) client1:)vals)

File:ðercalc.js&
863(1499):&&cmd=&“1,&filldown,&A1;:A5,&all&‘1,1,1,1,1’”;&

File:ðercalc.js&
866(1511):&&cserver.send(cmd);&

server:)rserver)

File:&server.js&
114(125):&&redis&=&new&
RedisServer(addr,&redis.conf);&

&
File:&server.js&

311(1643):&rserver.onmessage&=&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&func`on(event)&{&

312(1644):&&&msg&=&fproc(event);&
313(1645):&&&ops&=&redis.get(msg[0]);&
314(1645):&&&ops.append(msg[1]);&
315(1647):&&&redis.set(msg[0],&ops);} &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&

client2:)cserver)

&
File:ðercalc.js&

244(2031):&cserver&=&new&&
&&&&&&&&&&&&&&&&&&&WebSocket(addr);&
863(2441):&ExecuteSheetCommand(&

&&&&&&“update”,&& &&
&&&&&&fetch_latest(cserver));&

&

server:)redis)
File:&server.js&

&87(102):&&rserver&=&new&
&&&&&&&&&&&&&&&&&&&WebSocket(addr);&

Redis)Black)Box)Opera9ons)
1.&Read(sheet121)&
2.&Write(sheet121,&“1,&filldown,&
A1;:A5,&all&‘1,1,1,1,1’”)&&
3.&Read(sheet121)&

range.start.value&=&1&
range.end.value&=&3&
range.length&=&5&

“1,&filldown,&A1;:A5,&all&‘1,1,1,1,1’”&

cells&A1QA3&

Empty&range&

“1,&filldown,&A1;:A5,&all&‘1,1,1,1,1’”&

{A1:1,&A2:1,&A3:1,&A4:1,&A5:1}&

Empty&range,&so&just&
copies&the&first&
value&(1,&1,&1,&1,&1)&

Displays&
‘1,&1,&1,&1,&1’&

Black:box)
Read)

Black:box)
Read)

Black:box)Write)

Properly&computes&
increment&(1)&and&extends&

paeern&(1,&2,&3,&4,&5)&

6&

3&

1&

2&

5&

4&

9&

8&

7&

Figure 7: A buggy EtherCalc session. The i-th executed source code line is prefixed with lineNumInSrcFile(i). Black arrows
represent data flows between executed source code lines: data written by the source code at the base of an arrow is read by source
code at the head of the arrow. The blue and red text was manually added to highlight specific parts of the debugging narrative; Reverb
generates the information in the rest of the diagram.

the appropriate increment value for the pattern extension (2). Af-
ter applying the auto-fill to client1’s GUI and JavaScript state,
ExecuteSheetCommand() overwrites client1’s range ob-
ject, effectively removing several properties like start and
extend. client1 then calls ExecuteSheetCommand()
again, passing a different parameter called broadcast. This pa-
rameter specifies that ExecuteSheetCommand() should not ap-
ply the operation to local state, but instead send that operation to
the Node server, who will persist the operation in Redis and then
distribute the operation to other clients. As in the first execution
of ExecuteSheetCommand(), the function checks whether a
valid range object exists. However, in this case, because the prior
function execution partially cleared the range object, the validity
check fails (3). As a result, ExecuteSheetCommand() simply
generates an operation which copies the value in range.current
to all cells covered by range.current to range.length (4);
note that these two properties were not removed during the earlier
reset of the range object. The resulting operation (5) is what will
eventually create the autofill “1, 1, 1, 1, 1” (rather than “1, 2, 3, 4, 5”)
on client2. client1 sends the operation to the Node server (6),
triggering a server-side onmessage handler. The handler issues a
black-box read to Redis, fetching the list of all operations that have
been applied to the spreadsheet (7). The handler appends the new
operation to the list, and then uses a black-box write to store the

updated list on Redis (8). Later, when client2 opens the spread-
sheet (9), client2 will fetch the buggy operation list and use the
list to update the local GUI.

Fixing the bug: Reverb made it easy for us to generate a wide-area
data flow graph. However, these graphs do not automatically provide
a bug fix; instead, the graphs help to localize where buggy state is
being created, and how that state is being propagated. Thus, our
next task was to try to actually fix the bug. An obvious potential
fix was to modify ExecuteSheetCommand() so that the first
invocation did not reset the range object. We made this edit and
then performed a speculative replay. The edit initially appeared
successful—the Node server received the correct auto-fill opera-
tion, stored it on Redis, and then sent it to the second browser, who
correctly applied the operation. However, our recorded session con-
tained two auto-fill operations involving two distinct sets of cells;
our hypothesized fix prevented the second auto-fill operation from
appearing in the GUI of the first browser or the second browser.
Looking at the distributed data flow, we saw that the first browser
was not generating a second auto-fill locally (and therefore was not
sending a second auto-fill operation to the Node server).

Further investigation of ExecuteSheetCommand()’s code
revealed that the first call in a pair of invocations expects
the range object to be set to a default value—otherwise,

ExecuteSheetCommand() terminates without updating the lo-
cal spreadsheet or sending an update to remote clients via the Node
server. We tried a different bug fix in which the second call to
ExecuteSheetCommand() clears the range object at the end
of ExecuteSheetCommand()’s execution. The speculative re-
play for this fix led to no problems—both auto-fill operations were
properly displayed on both browsers.

Of course, the successful speculative replay was not a proof of the
fix’s correctness; the successful replay was essentially the successful
passing of a unit test involving a particular usage scenario. However,
this case study demonstrates how replay debugging, wide-area data
flow tracking, and speculative edits work in concert to ease the
cognitive overhead of understanding large code bases.

5.4 Additional Case Studies
We have used Reverb to diagnose a variety of additional bugs. The
appendix (§A.1 and §A.2) of the extended technical report [5] pro-
vides detailed case studies for two of them. The first case study
demonstrates Reverb’s usefulness in debugging visual errors in-
volving DOM misconfiguration; the second case study shows how
Reverb helps developers to fix errors in third-party JavaScript code
that local developers did not write.

5.5 Speculatively Replaying Known-Good Bug Fixes
As another test of Reverb’s efficacy, from the public bug database
of jQuery [65], we examined five random bugs from the past eight
years, which had successfully been resolved, and whose bug tracker
descriptions were sufficiently detailed for us to recreate the bug.3

jQuery is a popular client-side JavaScript library for DOM manipu-
lation; the library consists of roughly 6,600 lines of code. For each
of the resolved bugs, we did the following:
• First, we downloaded the buggy version of jQuery that immedi-

ately preceded the patched version.
• We verified that Reverb could reproduce the bug using traditional

(i.e., non-speculative) deterministic replay.
• We then replayed the library to the moment that preceded the

faulty behavior. We paused the replay at that point, applied the
known-good bug fix from the bug database, and then resumed
the now-speculative replay to see whether the replay would finish
without displaying the faulty behavior.

For all five cases, Reverb’s edited replay correctly indicated that the
“speculative” bug fix was indeed a correct one.

5.6 User Study
To determine whether Reverb would be useful to people besides
the paper authors, we performed a small user study involving six
participants. All participants had prior experience with front-end
web development, and all possessed at least some familiarity with
traditional in-browser debuggers. All participants brought their own
laptops to the user study, but debugging exercises were performed
inside of a VM provided by the paper authors, to ensure uniformity
of experience.

For each user, we first provided a refresher tutorial about how the
traditional debugger works; we discussed topics like watchpoints,
breakpoints, and code prettification. We also explained how Reverb’s
data flow graphs are generated and refined via human-driven queries.

3We examined bugs #3439, #3472, #3571, #3573, and #3579.

Once both tutorials were complete, we presented the user with a
real bug to diagnose. The bug involved a JavaScript exception being
thrown by a real, complex web page; refer to Section A.2 in the
extended technical report [5] for a detailed description of the bug.
We divided the participants equally, creating two groups of three; the
first group was asked to use Reverb to diagnose the bug, whereas the
second group was asked to use the traditional in-browser debugger.
Each person was given ten minutes to diagnose the bug. When a user
believed that she had found the root cause for the bug, she informed
the paper authors, who then verified whether the hypothesized root
cause was correct. If it was not, the user was told to keep working
until a correct diagnosis was generated, or ten minutes elapsed.

Two of the Reverb users diagnosed the bug in less than five min-
utes, with the third user did so within ten minutes. In contrast, one
user of the traditional debugger failed to diagnose the error within
the ten minute window. The remaining two users of the traditional
debugger correctly diagnosed the fault before the timer elapsed,
but required more than five minutes. Thus, these results suggest
that Reverb is a more powerful diagnostic tool than a traditional
debugger.

At the end of the study, we asked the participants some qualitative
questions. In response to the question “Would you prefer to use
Reverb over a traditional debugger?”, five out of six participants said
yes. The one person who disagreed complained about Reverb’s GUI
(which is admittedly rudimentary in our prototype). In particular, the
complaining user said that graph querying and pruning was unneces-
sarily awkward. When asked “Would Reverb-style data flow oper-
ations be a useful compliment to standard debugging primitives?”,
all six participants said yes. Furthermore, all three Reverb users de-
clared, without prompting, that speculative edit-and-continue would
be a powerful debugging feature.

Testing bug fixes is inherently unsound, even without Reverb (§1);
unsurprisingly, the replay of an edited execution may occasionally
lead to confusing results. In the authors’ own experience, these
incidents usually involve the replaying of GUI events. For example,
if an edit changes the visual locations of DOM nodes, then replaying
(say) a mouse click to a particular (x ,�) coordinate may result in
unexpected event handlers firing. Reverb’s ability to diff the data
flows and control flows of a logged execution and an edited one can
identify the reason for divergence, but developers must be diligent
about checking the diffs when exploring counterintuitive post-edit
behaviors.

6 CONCLUSION
Reverb is the first replay debugger that tracks fine-grained, wide-
area data flows while also supporting speculative edit-and-continue.
Such capabilities were impossible in prior debugging frameworks
because those frameworks logged program behavior at the wrong
level of abstraction; in contrast, Reverb efficiently tracks behavior
at the level of managed code and single-threaded event loops. Case
studies demonstrate that Reverb is a powerful tool for diagnosing
real, complex bugs.

REFERENCES
[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. 1991. Dynamic

Slicing in the Presence of Unconstrained Pointers. In Proceedings of the Sympo-
sium on Testing, Analysis, and Verification (TAV4). ACM.

[2] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. In
Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation (PLDI). ACM.

[3] Alexa. [n.d.]. Top Sites in the United States. http://www.alexa.com/topsites/
countries/US.

[4] Bowen Alpern, Ton Ngo, Jong-Deok Choi, and Manu Sridharan. 2000. DejaVu:
Deterministic Java Replay Debugger for JalapeÑO Java Virtual Machine. In
Proceedings of OOPSLA. ACM.

[5] Anonymous. [n.d.]. Reverb Technical Report. https://github.com/anonymous-
tr/Reverb_SOCC19_Technical_Report/blob/master/reverb_technical_report.pdf.

[6] Apache Software Foundation. 2017. https://httpd.apache.org/docs/2.4/programs/
ab.html.

[7] Gregory V. Bard. 2007. Spelling-error Tolerant, Order-independent Pass-phrases
via the Damerau-levenshtein String-edit Distance Metric. In Proceedings of the
Fifth Australasian Symposium on ACSW Frontiers (ACSW). Australian Computer
Society, Inc.

[8] Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. 2016. Time-
Travel Debugging for JavaScript/Node.js. In Proceedings of the 2016 International
Symposium on the Foundations of Software Engineering (FSE). ACM.

[9] Bartosz Krupa. [n.d.]. MetaES. https://github.com/metaes/metaes.
[10] Jean-Francois Bergeretti and Bernard A. Carré. 1985. Information-flow and Data-

flow Analysis of While-programs. ACM Trans. Program. Lang. Syst. 7, 1 (Jan.
1985).

[11] Philip Bille. 2005. A Survey on Tree Edit Distance and Related Problems. Theor.
Comput. Sci. 337, 1-3 (June 2005), 217–239.

[12] David Binkley, Mark Harman, and Jens Krinke. 2007. Empirical Study of Opti-
mization Techniques for Massive Slicing. ACM Trans. Program. Lang. Syst. 30, 1,
Article 3 (November 2007).

[13] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Pe-
ter M. Chen. 2002. ReVirt: Enabling Intrusion Analysis Through Virtual-machine
Logging and Replay. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002).

[14] Eclipse. 2016. FAQ What is hot code replace? https://goo.gl/brp5oQ.
[15] Stuart I. Feldman and Channing B. Brown. 1988. IGOR: A System for Program

Debugging via Reversible Execution. In Proceedings of the 1988 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed Debugging (PADD). ACM.

[16] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319–349.

[17] Colin J. Fidge. 1988. Timestamps in message-passing systems that preserve the
partial ordering. Proceedings of the 11th Australian Computer Science Conference
10 (1988), 56–66.

[18] Firebug. [n.d.]. JavaScript Debugger and Profiler. http://getfirebug.com/javascript.
[19] GDB: The GNU Project Debugger. 2012. GDB and Reverse Debugging. https:

//www.gnu.org/software/gdb/news/reversible.html.
[20] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. 2006. Replay

Debugging for Distributed Applications. In Proceedings of the USENIX Annual
Technical Conference (ATEC). USENIX.

[21] Google Developers. [n.d.]. Debug. https://developers.google.com/web/tools/
chrome-devtools/debug/?hl=en.

[22] Graphviz. [n.d.]. Drawing Graphs with NEATO. http://www.graphviz.org/pdf/
neatoguide.pdf.

[23] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. 1999. An Efficient Relevant
Slicing Method for Debugging. In Proceedings of the 7th European Software
Engineering Conference Held Jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-7). Springer-
Verlag, London, UK, UK.

[24] Christian Hammer and Gregor Snelting. 2009. Flow-sensitive, Context-sensitive,
and Object-sensitive Information Flow Control Based on Program Dependence
Graphs. Int. J. Inf. Secur. 8, 6 (Oct. 2009).

[25] Ian Hickson. 2015. Web Workers. https://www.w3.org/TR/workers/.
[26] Shin Hong, Yongbae Park, and Moonzoo Kim. 2014. Detecting Concurrency

Errors in Client-Side Java Script Web Applications. In Proceedings of the 2014
IEEE International Conference on Software Testing, Verification, and Validation
(ICST). IEEE Computer Society.

[27] Jon Howell, Bryan Parno, and John R. Douceur. 2013. Embassies: Radically Refac-
toring the Web. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (NSDI). USENIX.

[28] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant,
Pongsin Poosankam, Daniel Reynaud, and Dawn Song. 2011. Differential Slicing:
Identifying Causal Execution Differences for Security Applications. In Proceed-
ings of the 2011 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society.

[29] Andrew J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and
Answering Why and Why Not Questions About Program Behavior. In Proceedings
of the 30th International Conference on Software Engineering (ICSE). ACM.

[30] Bogdan Korel and JJanusz Laski. 1988. Dynamic Program Slicing. Inform.
Process. Lett. 29, 3 (Oct. 1988).

[31] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. 2008. Practical Object-
Oriented Back-in-Time Debugging. In Proceedings of the 22Nd European Confer-
ence on Object-Oriented Programming (ECOOP). Berlin, Heidelberg.

[32] Mailpile. 2017. https://github.com/mailpile/Mailpile.
[33] Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems.

In Parallel and Distributed Algorithms: proceedings of the International Workshop
on Parallel & Distributed Algorithms, M. Cosnard et. al. (Ed.). Elsevier Science
Publishers B. V., 215–226.

[34] James Mickens. 2012. Rivet: Browser-agnostic Remote Debugging for Web
Applications. In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (USENIX ATC’12). USENIX Association.

[35] James Mickens and Mohan Dhawan. 2011. Atlantis: Robust, Extensible Execution
Environments for Web Applications. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP). ACM.

[36] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Deterministic
Capture and Replay for Javascript Applications. In Proceedings of NSDI.

[37] Microsoft. [n.d.]. Edit and Continue. https://msdn.microsoft.com/en-us/library/
bcew296c.aspx.

[38] Mozilla Developer Network. [n.d.]. Concurrent model and Event Loop. goo.gl/
UmzCa5.

[39] Mozilla Developer Network. [n.d.]. Debugger. https://developer.mozilla.org/en-
US/docs/Tools/Debugger.

[40] Mozilla Developer Network. 2016. Document Object Model (DOM). https:
//developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model.

[41] Mozilla Developer Network. 2016. HTTP Cookies. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Cookies.

[42] Mozilla Developer Network. 2016. <iframe>. https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/iframe.

[43] Mozilla Developer Network. 2016. IndexedDB API. https://developer.mozilla.
org/en-US/docs/Web/API/IndexedDB_API.

[44] Mozilla Developer Network. 2016. Same-origin Policy. https://developer.mozilla.
org/en-US/docs/Web/Security/Same-origin_policy.

[45] Mozilla Developer Network. 2016. Web Storage API. https://developer.mozilla.
org/en-US/docs/Web/API/Web_Storage_API.

[46] Mozilla Developer Network. 2016. WebSocket. https://developer.mozilla.org/en-
US/docs/Web/API/WebSocket.

[47] Mozilla Developer Network. 2016. XMLHttpRequest. https://developer.mozilla.
org/en-US/docs/Web/API/XMLHttpRequest.

[48] Kiran-Kumar Muniswamy-Reddy, David Holland, Uri Braun, and Margo Seltzer.
2006. Provenance-Aware Storage Systems. In Proceedings of USENIX ATC.

[49] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript
Races That Matter. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE). ACM.

[50] Nicholas Nethercote and Alan Mycroft. 2003. Redux: A dynamic dataflow tracer.
In Electronic Notes in Theoretical Computer Science. Elsevier.

[51] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016. Po-
laris: Faster Page Loads Using Fine-grained Dependency Tracking. In Proceedings
of NSDI. USENIX Association.

[52] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proceedings of ATC. USENIX Association, Santa Clara,
CA.

[53] NGINX Inc. 2017. NGINX. https://www.nginx.com/.
[54] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Building

Call Graphs for Embedded Client-side Code in Dynamic Web Applications. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE). ACM.

[55] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2015. Cross-language
Program Slicing for Dynamic Web Applications. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM.

[56] Node.js Foundation. 2017. Node.js. https://nodejs.org/en/.
[57] Frolin S. Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An

Empirical Study of Client-Side JavaScript Bugs. In 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement.

[58] Frolin S. Ocariza, Guanpeng Li, Karthik Pattabiraman, and Ali Mesbah. 2016.
Automatic Fault Localization for Client-side JavaScript. Softw. Test. Verif. Reliab.
26, 1 (Jan. 2016).

[59] Frolin S. Ocariza, Karthik Pattabiraman, and Benjamin Zorn. 2011. JavaScript
Errors in the Wild: An Empirical Study. In Proceedings of the 2011 IEEE 22Nd
International Symposium on Software Reliability Engineering (ISSRE). IEEE
Computer Society.

[60] Redis Labs. 2017. Redis. https://redis.io/.
[61] Sam Shah, Craig Soules, Greg Ganger, and Brian Noble. 2007. Using Provenance

to Aid in Personal File Search. In Proceedings of USENIX ATC.
[62] Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh Bagchi, and Patrick Eugster.

2015. TARDIS: Software-only System-level Record and Replay in Wireless Sensor
Networks. In Proceedings of the 14th International Conference on Information
Processing in Sensor Networks (IPSN). ACM.

[63] Audrey Tang. 2017. EtherCalc: A Web Spreadsheet. https://ethercalc.net/.

http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US
https://github.com/anonymous-tr/Reverb_SOCC19_Technical_Report/blob/master/reverb_technical_report.pdf
https://github.com/anonymous-tr/Reverb_SOCC19_Technical_Report/blob/master/reverb_technical_report.pdf
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/metaes/metaes
https://goo.gl/brp5oQ
http://getfirebug.com/javascript
https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html
https://developers.google.com/web/tools/chrome-devtools/debug/?hl=en
https://developers.google.com/web/tools/chrome-devtools/debug/?hl=en
http://www.graphviz.org/pdf/neatoguide.pdf
http://www.graphviz.org/pdf/neatoguide.pdf
https://www.w3.org/TR/workers/
https://github.com/mailpile/Mailpile
https://msdn.microsoft.com/en-us/library/bcew296c.aspx
https://msdn.microsoft.com/en-us/library/bcew296c.aspx
goo.gl/UmzCa5
goo.gl/UmzCa5
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://www.nginx.com/
https://nodejs.org/en/
https://redis.io/
https://ethercalc.net/

[64] Telerik. [n.d.]. Fiddler. http://www.telerik.com/fiddler.
[65] The jQuery Foundation. 2018. jQuery. https://jquery.com/.
[66] Frank Tip. 1994. A Survey of Program Slicing Techniques. Technical Report. CWI

(Centre for Mathematics and Computer Science), Amsterdam, The Netherlands.
[67] Nicolas Viennot, Siddharth Nair, and Jason Nieh. 2013. Transparent Mutable

Replay for Multicore Debugging and Patch Validation. In Proceedings of ASPLOS.
[68] WebPagetest. 2016. HTTP Archive - Interesting Stats. https://goo.gl/9V4KJn.
[69] Mark Weiser. 1982. Programmers Use Slices when Debugging. Commun. ACM

25, 7 (July 1982), 446–452.
[70] Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. 2017. Auto-

mated Bug Removal for Software-Defined Networks. In Proceedings of NSDI.

[71] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. 2014. Diagnosing Missing Events in Distributed Systems with Negative
Provenance. In Proceedings of SIGCOMM.

[72] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. 2011. Statically Locating Web
Application Bugs Caused by Asynchronous Calls. In Proceedings of the 20th
International Conference on World Wide Web (WWW). ACM.

[73] Wenchao Zhou, Qiong Fei, Narayan Arjun, Andreas Haeberlen, Boon Thau Loo,
and Micah Sherr. 2011. Secure Network Provenance. In Proceedings of SOSP.

[74] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun
Mao. 2010. Efficient Querying and Maintenance of Network Provenance at
Internet-Scale. In Proceedings of SIGMOD.

http://www.telerik.com/fiddler
https://jquery.com/
https://goo.gl/9V4KJn

