
Remote-Control Caching: Proxy-based URL Rewriting to
Decrease Mobile Browsing Bandwidth

Ravi Netravali
MIT CSAIL

ravinet@mit.edu

James Mickens
Harvard University

mickens@g.harvard.edu

ABSTRACT
Mobile browsers suffer from unnecessary cache misses. The same
binary object is often named by multiple URLs which correspond to
different cache keys. Furthermore, servers frequently mark objects
as uncacheable, even though the objects’ content is stable over time.

In this paper, we quantify the excess network traffic that mobile
devices generate due to inefficient caching logic. We demonstrate
that mobile page loads suffer from more redundant transfers than
reported by prior studies which focused on desktop page loads.
We then propose a new scheme, called Remote-Control Caching
(RC2), in which web proxies (owned by mobile carriers or device
manufacturers) track the aliasing relationships between the objects
that a client has fetched, and the URLs that were used to fetch
those objects. Leveraging knowledge of those aliases, a proxy dy-
namically rewrites the URLs inside of pages, allowing the client’s
local browser cache to satisfy a larger fraction of requests. Using a
concrete implementation of RC2, we show that, for two loads of a
page separated by 8 hours, RC2 reduces bandwidth consumption
by a median of 52%. As a result, mobile browsers can save a median
of 469 KB per warm-cache page load.

CCS CONCEPTS
• Information systems → Web applications; • Networks →
Middle boxes / network appliances;Mobile networks;

KEYWORDS
Web proxies, caching, content aliasing

ACM Reference Format:
Ravi Netravali and James Mickens. 2018. Remote-Control Caching: Proxy-
based URL Rewriting to Decrease Mobile Browsing Bandwidth. InHotMobile
’18: 19th International Workshop onMobile Computing Systems & Applications,
February 12–13, 2018, Tempe , AZ, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3177102.3177118

1 INTRODUCTION
Users desire web pages that load quickly. However, on mobile de-
vices with limited cellular data plans, users also desire pages that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5630-5/18/02. . . $15.00
https://doi.org/10.1145/3177102.3177118

load with a minimal amount of network traffic. The average mobile-
optimized web page is still 3.1 MB in size [8], which is close to
the 3.6 MB size of the average desktop page [7]. HTTP objects
are downloaded not just by traditional browsers, but by the many
applications that use GUI-stripped browsers [4, 5] to fetch and
render user-facing content. HTTP traffic, regardless of its source,
consumes data plan bandwidth that is also coveted by video appli-
cations and non-HTTP-based programs. So, reducing the transfer
bandwidth for mainline web content (i.e., HTML, CSS, JavaScript,
and images) is important.

Mainline content is amenable to client-side caching. Objects like
CSS files and JavaScript files are often used by multiple pages; fur-
thermore, a given page will often use the same version of an object
across multiple page reloads. Unfortunately, traditional caching suf-
fers from low hit rates on mobile devices. The reasons are myriad.
For example, web servers often use time-based expiration instead
of content-based ETags expiration [1], resulting in browsers mak-
ing unnecessary fetches of unchanged content. Caching rules are
also defined using exact match semantics for URLs. Exact-match
semantics can result in cache misses even if the necessary bytes
already reside in the cache (§2).

In this paper, we provide two contributions. First, we perform
an empirical study of how traditional caching logic misses oppor-
tunities to avoid redundant downloads. For example, we show that
89% of mobile pages have at least one object which is named via
multiple URLs that only differ in the query string (§3.5). We also
find that 95% of pages contain objects that do not change across
reloads, but are marked as uncacheable by servers. Comparing our
results to those of prior studies which focused on content aliasing
in desktop web pages [9, 10], we find that redundant transfers are a
worse problem in the mobile setting, causing at least twice as many
cache misses as in the desktop setting.

Our second contribution is the design and evaluation of Remote-
Control Caching (RC2). RC2 allows mobile carriers or device man-
ufacturers to improve cache hit rates without changing mobile
browsers or mobile operating systems. In the current world, mo-
bile browsers often use web proxies to compress content [1]; in
RC2, proxies also actively rewrite the embedded URLs in HTML and
JavaScript. In particular, an RC2 proxy tracks information about
the contents of a phone’s browser cache. When a phone requests a
page, the RC2 proxy loads that page using a headless browser, deter-
mining the external objects (e.g., images and CSS files) whose raw
bits are cached on the phone, but stored under different URLs than
the ones used by the page to load. The RC2 proxy rewrites those
URLs so that the page references the associated objects via URLs
that will guarantee cache hits. The result is that phones download
much less data per page load. For example, on an LTE network and
a Nexus 5 phone, across the 500 most popular sites, RC2 reduces
bandwidth costs by 52% for the median page that was reloaded

https://doi.org/10.1145/3177102.3177118
https://doi.org/10.1145/3177102.3177118

HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA R. Netravali et al.

eight hours after its initial load; this reduction translates into raw
bandwidth savings of 469 KB.

2 TRADITIONAL CACHING
A browser cache is a key/value store. A key is a full HTTP request,
which includes the URL of the object to fetch, and the HTTP request
headers in the fetch. A cache value represents the binary contents
of an object, e.g., the bits in an image.

When a web server returns an object to a browser, the server
uses HTTP response headers to describe the cacheability of the
object. For example, the header Cache-Control: max-age=500
indicates that a browser may cache the object for 500 seconds.
Cache-control: no-store indicates that the browser should
never cache the object.

A server can also indicate that an object is conditionally cacheable,
meaning that the browser’s cached version should only be used
if a particular condition is true. When a server returns a condi-
tionally cacheable object, the response includes a Last-Modified:
timestamp header, and/or an ETag: opaque-string header. A
Last-Modified header indicates the creation time of the object;
an ETag header provides a unique id for the object. An ETag
id may be strong validator like a hash value, or a weak valida-
tor like a version number. When the browser issues a request
for a conditionally cached object, the request includes the ap-
propriate If-Modified-Since: timestamp or If-None-Match:
opaque-string headers. The server parses those headers, deter-
mines whether the requested object has changed, and returns either
a 200: OK response with a new version of the object, or a 304: Not
modified response with no object data.

The problem with the traditional caching protocol is that cache
keys are defined by HTTP request state instead of raw object content.
A single binary object can be named by an arbitrary number of
HTTP requests; each of those requests is a different cache key, even
though each request maps to the same object. Consider the URL
http://a.foo.com/image.jpg?abcd.

• Modified domain names: Popular sites use CDNs to dis-
tribute load and push content servers closer to users. The
hostnames for CDN servers often differ in just a few positions
(e.g., a.foo.com versus b.foo.com). However, those differ-
ences mean that if a browser fetches the same object twice,
from two different CDN servers, the two HTTP requests will
represent different cache keys, even if the responses contain
the same bits.

• Modified resource names: A resource name specifies an
object to fetch (e.g., image.jpg). Web servers often add
client-specific strings to resource names, such that clients
refer to the same underlying object using different resource
names.

• Modified query strings: Query strings like ?abcd are typ-
ically used to embed user-provided data, e.g., from a form.
Query strings in an HTTP request convey important infor-
mation to a server. However, servers often return the same
bytes in response to requests with different query strings.

• Improper caching headers: Even if a request exactly
matches an earlier one, a server may have marked the re-
sponse to the earlier request as uncacheable. If this happened,
the second request will suffer a cache miss, and fetch bytes
that already exist on the client.

Metric Median 95th Percentile
of objects 95 369
of bytes 1.4 MB 6.1 MB

Figure 1: Summary of our 500 page test corpus.

As we empirically demonstrate in Section 3.5, all four of these
scenarios are common. Note that ETag headers are not a solution—
ETag headers enable content-based caching for a particular URL,
but the scenarios that we described above involve multiple, distinct
URLs that refer to the same object.

3 PREVENTING ALIAS-INDUCED MISSES
In this section, we first describe an optimal content-based caching
scheme; this optimal scheme defines an upper bound on the band-
width savings that a concrete scheme can provide. We then describe
the design of RC2. RC2 is a web proxy that rewrites embedded
URLs in HTML, allowing the proxy to effectively take control of
a phone’s cache management strategy. By tracking the content in
client-stored objects, and rewriting URLs to refer to those objects
whenever possible, RC2 unlocks 99.1% of the optimal bandwidth
savings.

3.1 Methodology
We used a 500 page test corpus that was collected using Mahimahi,
a tool for recording and replaying HTTP traffic [18]. Each test page
was the landing page for an Alexa Top 500 site [2]; we used the
mobile-optimized version of a page when such a version existed.
Figure 1 provides a high-level summary of the pages in the corpus.

All experiments used a Nexus 5 phone that ran Android 5.1.1 and
Google Chrome v53. For experiments that involved page load times,
we loaded each individual page five times using cold browser and
DNS caches, and five times using warm browser and DNS caches;
we recorded the median load time for each scenario. We defined
“load time” as the elapsed time between the navigationStart and
loadEventEnd JavaScript events.

3.2 Optimal Content-based Caching
We used Mahimahi to record three versions of each page: an initial
version, a version that was recorded a few seconds later, and a
version that was recorded eight hours later. The first and second
versions represented the pages that a browser would see if it loaded
a page and then immediately reloaded it. The first and third versions
represented what a browser would see if it loaded a page, and then
waited eight hours to reload the page.

For each of the three versions, we examined the caching head-
ers for each object in the version, determining which HTTP re-
quests would incur network fetches in the immediate-reload sce-
nario and the delayed-reload scenario. We also examined the con-
tents of the objects in the three versions of each page. For each
object, we calculated a SHA1 hash. Using those hashes, we de-
termined when an omniscient content-based cache would incur
network fetches in the immediate-reload and delayed-reload sce-
narios. In particular, let bits(obji) correspond to the binary content
in obji , and let bits(req, t) correspond to the bits associated with
the HTTP request req when fetched at time t . For a page reload
at tr eload > tinit ial_load , we declared a particular request to hit

Remote-Control Caching HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA

in the cache if bits(req, tr eload) = bits(obji) for any obji that was
fetched at tinit ial_load . This calculation ignored all of the tradi-
tional caching logic; for example, even if an object’s response head-
ers at tinit ial_load marked the object as uncacheable, the object
might still provide a content-based cache hit for some request at
tr eload . This setup evaluates a perfect content-based cache with
infinite storage space and a priori knowledge of the mappings be-
tween URLs and raw objects.

3.3 RC2 Caching
An RC2 proxy is a remote dependency resolution (RDR) proxy.
Before explaining how RC2 rewrites HTML, we first provide a
brief overview of RDR proxying.

RDR Fundamentals: When a mobile browser issues an HTTP
fetch for a page’s top-level HTML, an RDR proxy loads the entire
page locally, using a headless browser that runs on the proxy.1 The
proxy loads the page fully, parsing the top-level HTML and fetching
all of the external objects that are referenced by that HTML. After
returning the fetched HTML, most RDR proxies will proactively
push the fetched external objects to the client, allowing the client
to load the objects locally when the associated HTTP requests are
generated during the local HTML parse. This approach, used by
Amazon Silk [3], Opera Mini [19], and PARCEL [23], reduces page
load times, but requires a modified client browser to handle the
proxy’s object-push logic. In contrast, RC2 is designed to work
with unmodified mobile browsers. So, after an RC2 proxy returns
HTML to the client, the proxy buffers the fetched external objects,
draining the buffer as the phone issues HTTP requests for those
objects.

RC2: In addition to an object buffer, an RC2 proxy maintains a
per-client data structure that persists across individual page loads;
this data structure represents the proxy’s belief about which objects
are stored in the client’s browser cache. The data structure is a table
which maps the hash value of a client-resident object to 1) the URL
that the client used to fetch that object, and 2) the cache expiration
date, as indicated by the HTTP response headers for the associated
fetch.

A client’s proxy-side table is initially empty. At some point,
the client issues an HTTP fetch for a page’s top-level HTML. The
proxy fetches and loads the HTML in a headless browser, trig-
gering additional proxy-side HTTP fetches for the external ob-
jects referenced by the top-level HTML. For each HTTP fetch
via URL Ui , the proxy calculates the hash value H of the re-
trieved object. If the client has no table entry for H , the proxy
adds the table entry t[H] = <Ui , expUi >, where expUi is the
cache expiration date for the object, as indicated by the HTTP
response headers. If t[H] is not empty, then there is an alias-
ing relationship between <Ui , expUi > and some preexisting ta-
ble value <UalreadyCached , expUalreadyCached >. Assuming that
expUalreadyCached is still in the future, the proxy rewrites the
HTML’s reference toUi , changing the reference toUalreadyCached ;

1A headless browser is one that has no GUI, but is otherwise equivalent to a regular
browser. PhantomJS [6] is the most popular headless browser, and is the one used by
our RC2 prototype.

this change prevents an aliasing-based cache miss on the mobile
browser. If expUalreadyCached has already passed, then the proxy
updates t[H] with <Ui , expUi >, and does not rewrite the reference
toUi in the HTML.

An RC2 proxy uses DOM shimming [13] to rewrite the URLs
for HTML tags that are dynamically created via DOM methods
like document.appendChild(). An RC2 proxy also rewrites URLs
for JavaScript-initiated XMLHttpRequests that issue during a page
load. The proxy detects aliasing relationships for XMLHttpRequests
during the proxy-side page load, creating a map between the base-
line URLs and the rewritten ones. The proxy includes this map in
a small JavaScript library which the proxy injects into the page’s
HTML. This library also uses DOM shimming [13] to interpose on
the mobile browser’s creation of XMLHttpRequest objects. When
the mobile browser creates XMLHttpRequests, the shimmed objects
consult the URL map to determine which objects to fetch.

An RC2 proxy must avoid situations in which URL rewriting
causes a mobile browser to load a page with inconsistent content,
i.e., a set of objects which would never be seen in an unmodified
load of the page. To avoid these problems, an RC2 proxy uses two
mechanisms.

• First, an RC2 proxy always marks top-level HTML as un-
cacheable, ensuring that the proxy controls the objects
fetched for every load of a page. This caching strategy de-
viates little from the status quo, since top-level HTML is
often dynamically-generated and therefore unsuitable for
caching. We examined the cache headers for all of the HTML
objects in our 500 page test corpus, and found that only 6.7%
of objects were naturally marked as cacheable.

• An RC2 proxy also does not rewriteUi toUalreadyCached if
expUalreadyCached is less than 30 seconds in the future. This
policy ensures that the associated object in the client cache
will not expire half-way through the page load, resulting in
a live fetch for that object which might lead to inconsistent
page content.

RC2must also bewary of users who unilaterally delete some or all of
the mobile browser’s cache entries. If this happens, then the mobile
browser may issue an HTTP fetch for an object which the RC2
proxy (incorrectly) believed would be satisfied by the client’s cache.
When the proxy receives such an unexpected HTTP request, the
proxy forces the request to fail by terminating the TCP connection.
The termination induces a client-side onerror JavaScript event;
the proxy rewrites each page’s HTML to include a custom onerror
handler that, when fired, forces the entire page to reload via a call to
the browser’s Location.reload(true) JavaScript method. Note
that passing true to the method forces the reload to bypass the
browser cache and load the page directly from the origin server (via
the proxy).When the proxy detects such a reload, the proxy discards
the entirety of the client’s table, under the assumption that the
proxy’s view of the client-side cache is now totally desynchronized
and must be rebuilt from scratch.

As a mobile phone is used, it may switch between different cel-
lular towers, or between cellular service and WiFi service. If the
RC2 proxy is maintained by phone vendors, then a phone can redi-
rect its web traffic to the proxy regardless of whether the phone’s
last-mile link is cellular or WiFi; this network-agnostic approach

HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA R. Netravali et al.

Figure 2: The fraction of cache misses that RC2 avoids, rel-
ative to the total number of misses incurred by traditional
caching. Results span the 500 page test corpus.

Figure 3: The number of cached objects during an immediate
page reload, and an 8-hour-delayed reload.

Figure 4: The number of bytes saved during an immediate
page reload, and an 8-hour-delayed reload.

is used by Google’s compression proxy for Android phones [1]. If
the RC2 proxy is instead deployed by a cellular provider, then the
proxy will lose visibility into the phone’s cache updates when the
phone switches to a WiFi network. These updates may cause the
phone and the proxy to become desynchronized, forcing the proxy
to discard the user’s RC2 table when the phone reassociates with
the cellular network.

3.4 Bandwidth Savings
We built a prototype RC2 system by modifying the Cumulus RDR
proxy [18]. Figure 2 demonstrates the performance of our prototype.
For both immediate and delayed page reloads, RC2 eliminates a
median of 75% of the cache misses that would be suffered by a
traditional, URL-indexed cache. These savings are roughly three

Raw savings % savings
Optimal 948 (4420) KB 69.9% (72.5%)
RC2 911 (4284) KB 67.5% (70.3%)

Traditional 682 (3543) KB 50.4% (58.1%)

(a) Immediate reloads.
Raw savings % savings

Optimal 909 (4191) KB 67.1% (68.7%)
RC2 901 (4093) KB 66.5% (67.3%)

Traditional 432 (2439) KB 31.9% (40.0%)

(b) Delayed reloads (8 hours).

Figure 5: Bandwidth saved at the median (95th percentile):
optimal content-based caching (§3.2), RC2 (§3.3), and tradi-
tional caching.

times the savings observed in a 2002 study of content aliasing on the
web [10, 14], and roughly two times the savings observed in a 2011
study of content aliasing on the web [9]. Both studies focused on
traffic involving desktop browsers, so additional research is needed
to determine whether our findings generalize to non-mobile pages.

Whereas Figure 2 shows the fractional reduction in cache misses,
Figures 3 and 4 provides raw numbers for the cacheable objects
found per page reload, and the bandwidth saved per page load due
to cache hits. For example, during an immediate reload, traditional
caching logic found a median of 32 cacheable objects per page; as a
result, the reload needed 50.4% less bandwidth than the initial load.
RC2 identified a median of 73 cacheable objects, allowing the reload
to use 67.5% less bandwidth than the initial load. The additional
cache hits represented a raw bandwidth savings of 229 KB over
traditional caching.

In a delayed-reload scenario, both traditional caching and RC2
had lower hit rates. However, RC2 retained its performance advan-
tage. With an eight hour separation between the initial visit and
the reload, RC2 saved a median of 1.1% less bandwidth than in the
immediate reload scenario; traditional caching saved 36.7% less.

As Figure 5 demonstrates, an RC2 proxy achieves 99.1% of the
maximum possible savings in the delayed reload case. In the im-
mediate reload case, RC2 achieves 96.1% of the optimal savings.
Traditional caching only enables 47.5% of the optimal savings for
delayed reloads, and only 71.9% for immediate reloads.

3.5 Analysis of Bandwidth Savings
In Section 2, we described four reasons why traditional caching
logic often leads to unnecessary cache misses. Figure 6 uses that tax-
onomy to explain why RC2-based caching outperformed traditional
caching. Each of the four reasons was impactful, but surprisingly,
misspecified caching headers (“Req match, resp uncached”) were
the most popular reason for cache misses with traditional caching
logic. In themedian page, 33.1% of newly cacheable objects had been
fetched during the initial page load, but marked as uncacheable by
the server, such that, during a reload, requests for those objects
would generate cache misses, even though the bits in the objects
had already been fetched.

Modified domain names were the second most popular reason
for cache misses, causing 29.9% of the misses for the median page.
Modified query strings caused 20.8% of the misses for the median

Remote-Control Caching HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA

Figure 6: The reasons why traditional caching generated
misses for objects that would hit in an RC2-managed cache.
These results came from the immediate reload experiments.

Object Type % newly cacheable % newly cacheable
objects bytes

JavaScript 29.8% 26.6
CSS 5.0% 3.3

Images 46.3% 63.4
Fonts 1.2% 2.1
JSON 13.8% 3.9
Other 3.9% 0.7

Figure 7: The types of newly cacheable objects that RC2
found. Recall that RC2 marks HTML as uncacheable (§3.3).

page. Modified resource names were the least common reason for
misses, causing only 5.4% of misses for the median page.

Every page in our corpus suffered from at least one of the four
types of unnecessary cache misses. Additionally, 89% of pages con-
tained at least one object that was named by multiple URLs which
only differed in their query strings. 95% of pages contained at least
one object that was marked uncacheable by a server, but whose
bits did not change across reloads. These statistics remained stable
for both immediate reloads and delayed reloads.

Figure 7 lists theMIME types for the newly cacheable objects that
RC2 caching discovered. Images were the most common type, both
in terms of object count (46.3%) and bytes saved (63.4%). JavaScript
files provided the second-largest amount of bytes saved (26.6%).

3.6 Page Load Time
Prior studies ofmobile caching found that page load times (PLTs) are
only moderately affected by cache hits—warm cache PLTs decrease
by only 13% relative to cold cache PLTs [24]. The reason is that a
traditional cache stores few objects that reside on the critical path
for a page load [17]. Since RC2 improves cache hit rates, RC2 should

Scenario Median PLT 95th-percentile PLT
Traditional 5.23 seconds 14.66 seconds

RC2 5.27 seconds 14.54 seconds
(a) Cold caches.

Scenario Median PLT 95th-percentile PLT
Traditional 4.31 seconds 9.95 seconds

RC2 3.62 seconds 7.69 seconds
(b) Warm caches, immediate reload.

Scenario Median PLT 95th-percentile PLT
Traditional 4.68 seconds 10.83 seconds

RC2 3.70 seconds 5.62 seconds
(c) Warm caches, 8-hour-delayed reload.

Figure 8: Page load times for traditional caching and RC2.

increase the likelihood that critical path objects will hit in the cache.
Thus, RC2 should lower PLTs as well as bandwidth consumption.

To empirically measure the PLT benefits, we USB-tethered a
Nexus 5 phone to a Linux desktop machine. The desktop machine
ran an RC2 proxy which treated Mahimahi servers [18] as the origin
servers for all web content. The phone/proxy connection was an
emulated Verizon LTE link which used packet delivery schedules
driven by an empirical trace [26]. The proxy/Mahimahi link used
an emulated RTT of 5 ms, and an emulated bandwidth of 25 Mbps.
We also evaluated traditional caching by having the phone directly
contact the Mahimahi servers over an emulated LTE link.

In all warm cache experiments, we warmed the cache (and RC2
proxy) by simulating a user with a 100-day old browser cache. At
the beginning of simulated day 1, the browser cache was empty.
During each simulated day, the simulated user loaded 10 pages
drawn from a Zipfian distribution over the Alexa Top 500 pages.
For each page PLT to examine, we then ensured that the cache had
objects from either a recent or an 8-hour-old version of the page.
Using this methodology, we could measure the expected size of the
per-client data structures kept by a proxy—the final size of such a
structure on the 100th simulated day was roughly 636 KB.

Figure 8 shows the PLT results. In the cold cache case, median
PLTs are slightly higher (0.76%) with RC2 because of proxy over-
heads for manipulating per-client data structures and loading pages
inside of a headless browser. However, RC2 provides significant
PLT reductions in warm cache scenarios; compared to baseline
PLTs that used cold caches, RC2 reduces warm cache PLTs by 30.8%
for immediate reloads, and 29.3% for 8-hour-delayed reloads.

4 OPEN CHALLENGES AND FUTUREWORK
Web traffic is increasingly shifting from HTTP to HTTPS [15]. The
transition is beneficial for security, but detrimental to proxy-based
solutions for reducing load times or decreasing bandwidth costs.
Compression proxies like Flywheel [1], and RDR proxies like Ama-
zon Silk [3], require access to cleartext HTTP traffic; however, to
gain access to that traffic, proxies would have to spoof HTTPS origin
servers and break TLS’s end-to-end security guarantees. Flywheel
and Amazon Silk choose not to break those guarantees, thereby
eschewing acceleration for HTTPS traffic. In contrast, Opera Mini
does perform man-in-the-middle TLS mediation, such that end-to-
end integrity is broken, but both HTTP and HTTPS pages can be

HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA R. Netravali et al.

accelerated. The results in Section 3 usedOperaMini-style proxying;
RC2’s performance would obviously be worse if only HTTP traffic
could be proxied. For example, in delayed reload scenarios, RC2 pro-
vides 99.1% of the optimal benefits if all traffic can be proxied, but
only 81.2% of those benefits if HTTPS traffic must be ignored. RC2
still outperforms traditional caching (which only provides 47.5% of
the optimal benefits), but proxy-based web acceleration in general
is threatened by the increasing ubiquity of HTTPS. Researchers
have begun to investigate secure mechanisms for TLS introspec-
tion by middleboxes [16, 22]; further work is needed to apply such
techniques to web acceleration proxies.

An RC2 proxy stores a per-client data structure that represents
the proxy’s view of the client-side browser cache. In our unopti-
mized RC2 prototype, the data structure for a client with a 100-day-
old cache is roughly 636 KB in size. The data structure contains
hash values (which are random-looking and thus incompressible),
as well as URLs and dates (which are more promising candidates for
compression). To maximize proxy scalability, future work should
investigate concrete approaches for shrinking per-client data struc-
tures.

Using HTML rewriting, an RC2 proxy takes control of a phone’s
browser cache. We believe that rewriting can enable other proxy-
managed optimizations. For example, proxies receive HTTP re-
quests from a large set of phones. By observing cross-request corre-
lations (e.g., “requests for page X are typically followed by requests
for page Y ”), a proxy can inject <link> prefetch tags [25] for Y into
X , so that a mobile browser will proactively fetch Y before the local
user requests Y .

5 RELATEDWORK
Ma et al. examined mobile caching behavior [11], but ignored
HTTPS content. Their survey also did not consider cross-site alias-
ing relationships (as considered in Section 3.6). Additionally, their
survey considered a cache hit to be a false hit if, at the time of the
cache hit, the server-side version of an object differed from the
client-side version retrieved from the cache. This definition is prob-
lematic, since sites can define cross-object consistency semantics
which Ma et al.’s methodology would flag as leading to false cache
hits.

Prior systems have explored client/server protocols for imple-
menting content-based caching. For example, in CZIP [20], a client
fetches a page using two HTTP-level RTTs: one to fetch the list of
hashes for objects in the page, and another to fetch the raw data for
objects that are not client-resident. In Silo [12], a web server inlines
all of the external content referenced by an HTML file, and then
splits the inlined HTML into chunks. The server returns the chunks
to the client, who stores the chunks in DOM storage; in a subse-
quent request for the HTML, the client indicates which chunks are
locally resident, so that the server only has to return the new ones
(plus a list of old chunks that are no longer contained in the page’s
inlined HTML). These prior systems for content-based caching are
either incompatible with standard web browsers [20, 21], or can-
not track aliasing relationships for the same object across different
sites [12]. In contrast, RC2 works on commodity browsers, and can
track aliasing relationships across all sites that a client visits.

6 CONCLUSION
Bandwidth is precious on mobile phones. In this paper, we quantify
the amount of bandwidth that is needlessly consumed by HTTP
fetches that miss in a traditional browser cache, but would have
hit in a content-based one. We then propose a new content-based
caching scheme, called RC2. RC2 leverages a proxy that rewrites
HTML to avoid unnecessary cache misses. Experiments with 500
popular sites demonstrate that RC2 eliminates 99.1% of unnecessary
cache misses, while requiring no changes to mobile browsers.

REFERENCES
[1] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-

stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian
Yin. 2015. Flywheel: Google’s Data Compression Proxy for the Mobile Web. In
Proceedings of NSDI.

[2] Alexa. 2018. Alexa Top 500 Global Sites. http://www.alexa.com/topsites. (2018).
[3] Amazon. 2018. Silk Browser. http://amazonsilk.wordpress.com/. (2018).
[4] Apple. 2018. https://developer.apple.com/documentation/webkit/wkwebview.

(2018).
[5] Google. 2018. Android Developer Reference: WebView. https://developer.android.

com/reference/android/webkit/WebView.html. (2018).
[6] Ariya Hidayat. 2018. PhantomJS. http://phantomjs.org/. (2018).
[7] HTTP Archive. 2018. Desktop Trends. http://httparchive.org/interesting.php#

bytesperpage. (2018).
[8] HTTP Archive. 2018. Mobile Trends. http://mobile.httparchive.org/interesting.

php#bytesperpage. (2018).
[9] Sunghwan Ihm and Vivek Pai. 2011. Towards Understanding ModernWeb Traffic.

In Proceedings of IMC.
[10] Terence Kelly and Jeffrey Mogul. 2002. Aliasing on the World Wide Web: Preva-

lence and Performance Implications. In Proceedings of WWW.
[11] Yun Ma, Xuanzhe Liu, Shuhui Zhang, Ruirui Xiang, Yunxin Liu, and Tao Xie. 2015.

Measurement and Analysis of Mobile Web Cache Performance. In Proceedings of
WWW.

[12] James Mickens. 2010. Silo: Exploiting JavaScript and DOM Storage for Faster
Page Loads. In Proceedings of USENIX WebApps.

[13] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Deterministic
Capture and Replay for Javascript Applications. In Proceedings of NSDI.

[14] Jeffrey Mogul, Yee Man Chan, and Terence Kelly. 2004. Design, Implementation,
and Evaluation of Duplicate Transfer Detection in HTTP. In Proceedings of NSDI.

[15] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco
Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. 2014.
The Cost of the "S" in HTTPS. In Proceedings of the CoNEXT.

[16] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R. López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and
Peter Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network
Functionality in TLS. In Proceedings of SIGCOMM.

[17] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016. Po-
laris: Faster Page Loads Using Fine-grained Dependency Tracking. In Proceedings
of NSDI.

[18] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proceedings of USENIX ATC.

[19] Opera. 2018. Opera Mini. http://www.opera.com/mobile/mini. (2018).
[20] KyoungSoo Park, Sunghwan Ihm, Mic Bowman, and Vivek S. Pai. 2007. Support-

ing Practical Content-addressable Caching with CZIP Compression. In Proceed-
ings of USENIX ATC.

[21] Sean Rhea, Kevin Liang, and Eric Brewer. 2003. Value-Based Web Caching. In
Proceedings of WWW.

[22] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-
Box: Deep Packet Inspection over Encrypted Traffic. In Proceedings of SIGCOMM.

[23] Ashiwan Sivakumar, Shankaranarayanan Puzhavakath Narayanan, Vijay
Gopalakrishnan, Seungjoon Lee, Sanjay Rao, and Subhabrata Sen. 2014. PAR-
CEL: Proxy Assisted BRowsing in Cellular Networks for Energy and Latency
Reduction. In Proceedings of CoNEXT.

[24] Jamshed Vesuna, Colin Scott, Michael Buettner, Michael Piatek, Arvind Krish-
namurthy, and Scott Shenker. 2016. Caching Doesn’t Improve Mobile Web
Performance (Much). In Proceedings of USENIX ATC.

[25] W3C. 2017. Resource Hints. https://w3c.github.io/resource-hints/. (May 4, 2017).
[26] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic

Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In
Proceedings of NSDI.

http://www.alexa.com/topsites
http://amazonsilk.wordpress.com/
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html
http://phantomjs.org/
http://httparchive.org/interesting.php#bytesperpage
http://httparchive.org/interesting.php#bytesperpage
http://mobile.httparchive.org/interesting.php#bytesperpage
http://mobile.httparchive.org/interesting.php#bytesperpage
http://www.opera.com/mobile/mini
https://w3c.github.io/resource-hints/

	Abstract
	1 Introduction
	2 Traditional Caching
	3 Preventing Alias-induced Misses
	3.1 Methodology
	3.2 Optimal Content-based Caching
	3.3 RC2 Caching
	3.4 Bandwidth Savings
	3.5 Analysis of Bandwidth Savings
	3.6 Page Load Time

	4 Open Challenges and Future Work
	5 Related Work
	6 Conclusion
	References

