
A System-Wide Debugging Assistant Powered by Natural
Language Processing

Pradeep Dogga
UCLA

Karthik Narasimhan
Princeton University

Anirudh Sivaraman
NYU

Ravi Netravali
UCLA

ABSTRACT
Despite advances in debugging tools, systems debugging today re-
mains largely manual. A developer typically follows an iterative and
time-consuming process to move from a reported bug to a bug fix.
This is because developers are still responsible for making sense
of system-wide semantics, bridging together outputs and features
from existing debugging tools, and extracting information from
many diverse data sources (e.g., bug reports, source code, comments,
documentation, and execution traces). We believe that the latest
statistical natural language processing (NLP) techniques can help
automatically analyze these data sources and significantly improve
the systems debugging experience. We present early results to high-
light the promise of NLP-powered debugging, and discuss systems
and learning challenges that must be overcome to realize this vision.

KEYWORDS
systems debugging, natural language processing

ACM Reference Format:
Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, and Ravi Netravali.
2019. A System-Wide Debugging Assistant Powered by Natural Language
Processing. In SoCC ’19: ACM Symposium of Cloud Computing conference,
Nov 20–23, 2019, Santa Cruz, CA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3357223.3362701

1 INTRODUCTION
Despite the proliferation of debugging techniques and tools [4, 21,
28, 29, 31, 38, 45, 49], diagnosing and fixing bugs in systems re-
mains challenging. The debugging process for developers typically
entails reading a bug report, understanding its context in the system,
reproducing the bug, iteratively asking and answering questions to
identify its root cause, and then developing and testing potential
fixes. Much of this process is manual, has many false starts, and re-
quires significant developer familiarity with the system at hand—an
increasingly elusive requirement as systems get more complex.

Indeed, given the increasingly powerful systems debugging tools
we now have, a key challenge for developers is identifying how

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20-23, Santa Cruz, CA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362701

Figure 1: Overview of how our proposed debugging assistant improves
different steps in a developer’s end-to-end debugging workflow. Devel-
opers begin by submitting system-wide bugs or performance concerns
to the NL debugging assistant. The assistant generates hints (e.g., files
to investigate) or actions (e.g., debugging queries to issue) based on an-
alyzing past bug report data, design documents, tracing information
collected throughout the system, and developer input. The process is
iteratively followed until a bug is resolved.

to leverage the fine-grained operations they support (e.g., queries)
when presented with a high-level bug or issue. For example, what
debugging tool should the developer use when a service is deemed
unreachable? What query should they issue?

At the same time, coupled with the increase in system and debug-
ging complexity, there has been an important shift in the way that
developers write and run systems, tackle bugs, and document their
experiences. In particular, the amount of auxiliary data associated
with software systems has rapidly grown, e.g., monitoring logs, exe-
cution traces, bug reports, patches, and code documentation. These
data sources embed helpful debugging information [16], but existing
debugging tools fail to fully leverage them, and instead place the
burden of extracting insights from this data on developers.

There are two reasons why this auxiliary data isn’t fully exploited
in today’s debugging workflows. First, the auxiliary data sources,
in contrast to source code, are highly unstructured and varied, rang-
ing from custom logging formats (e.g., from debugging tools) to
natural language bug reports. Techniques for automatic test genera-
tion [11, 30] and program repair [24, 42] rely on precise definitions
of correctness and cannot fully leverage such unstructured data.

Second, in large systems, problems occur at the intersection of dif-
ferent system components. The above approaches, as well as existing
monitoring and debugging tools, only instrument specific subsys-
tems (e.g., network switches [18, 37, 38], end-host network stacks
and operating systems [4, 35, 45, 46], or applications [39, 49]), but

https://doi.org/10.1145/3357223.3362701
https://doi.org/10.1145/3357223.3362701

still place the onus of correlating information across subsystems on
developers. Thus, existing tools have limited utility in debugging
issues that arise due to the interaction between subsystems. For ex-
ample, they are unable to automatically determine that an application
timeout was the result of a routing black hole, since they fail to link
together data from multiple disparate sources (in this case, network
and application-level traces from an entire cluster).

Our thesis is that natural language processing (NLP) techniques
are well-positioned to analyze the large amount of auxiliary data
across multiple subsystems and extract insights that significantly
enhance the current debugging experience. The natural language
nature of auxiliary data and the inexact nature of the debugging
process require models that go beyond existing techniques that need
exact and structured inputs. NLP can provide these models.

Prior work has demonstrated the promise of NLP in debugging
scenarios (§2), but has focused on specific sub-problems (e.g., gener-
ating Bash scripts from natural language [25] or extracting keywords
from bug reports [43]). Though promising, we believe there is a
significant untapped opportunity for systems research that integrates
these NLP techniques—and develops new ones—into a system-wide
interactive debugging assistant that facilitates and accelerates each
step in a developer’s end-to-end debugging process (Figure 1). In
§3, we identify three features that are crucial to such a system: a)
preliminary diagnosis of incoming bug reports, b) automatic genera-
tion of debugging queries (for existing debugging tools) to monitor
different subsystems, and c) taking multiple diagnostic or corrective
decisions towards fixing the bug.

We performed several sets of preliminary experiments (§4). First,
using a diverse set of 98 open-source GitHub repositories, we trained
text classification models to automatically predict summaries of
solutions (i.e., developer-provided labels for issues) and repository
contents (i.e., folders relevant to the issue) from high-level repository
issues reported in English. Our models predicted labels with 76%
precision and 78% recall, and folders with 74% precision and 76%
recall. Figure 2 shows concrete examples of the helpful suggestions
that our models can provide. Second, we created a local distributed
systems testbed and an associated fault injector running Reddit [3]
over an emulated Mininet topology [23] with the Marple [38] debug-
ging tool integrated in. We performed template-based generation by
training a classifier to map from user-written issue text to structured
Marple debugging queries; precision and recall were 82% and 67%,
respectively. These early results show the promise of NLP techniques
to learn and generalize from diverse data sources to produce accurate
predictions for various stages of the debugging process.

In summary, we outline a vision for an NLP-based debugging
assistant that will ease systems debugging by:

• automatically extracting debugging insights from unstruc-
tured auxiliary data (e.g., bug reports, code comments, execu-
tion traces, monitoring logs) to diagnose system-wide bugs.

• helping developers better leverage state-of-the-art debugging
tools (e.g., network debuggers, distributed system tracers, and
end-host monitors) by suggesting which tools to use, what
low-level queries to issue to each one, and when to do so.

Collectively, these tasks will accelerate the process of identifying
the root cause of a bug or issue. We envision our assistant becoming
an integral part of the developer’s ecosystem, as compilers, code
editors, and interpreters are today.

2 RELATED WORK
Program analysis and synthesis: NLP techniques have been uti-
lized in multiple aspects of software development [14], through the
lens that software systems comprise not only source code statements,
but also information-rich natural language comments that should not
be ignored. Examples include detecting operations with incompati-
ble variable types [19] and converting natural language comments
into assertions [15]. More recently, NLP has also been used in code
generation by allowing developers to specify requirements in high-
level natural language. This entails parsing loosely organized input
in natural language to generate structured output in the forms of
regular expressions [26], Bash programs [25], API sequences [17],
and queries in domain specific languages [12].

Program debugging: NetSieve [43] used NLP to parse network
trouble tickets by generating a list of keywords and using a domain-
specific ontology model to extract ticket summaries from those
keywords. While NetSieve automates parsing, significant manual
effort is still required in (1) offline construction of an ontology model
and (2) determining what constitutes a keyword. In contrast, we seek
to build models that learn automatically from data, with minimal
manual effort. Net2Text [8] translates English queries into SQL
queries, issues those queries, summarizes the results, and translates
them back into natural language for easy interpretation. We aim
to go further and automatically determine which queries to issue
based on bug reports, debugging traces, and source code. Recent bug
localization work uses information retrieval techniques [22, 36, 53],
but requires manual feature engineering.

Big Code: Recent efforts such as the Big Code initiative [50] per-
form statistical program analysis to take advantage of the large
amount of code in existence today, with the goal of extracting in-
sights to aid code generation, refinement, and debugging. Learning
techniques have been used to identify comments that are largely
redundant with source code [27] or generate natural language sum-
maries of source code [40, 52]. We view work in the Big Code
initiative as contributing to some of the individual building blocks
of our proposed debugging assistant. However, significant effort is
required to integrate these building blocks.

Summary: The aforementioned projects offer a glimpse into the
ability to extract meaning from natural-language auxiliary data
present in software projects. They also illustrate the benefits of
combining information from natural language and source code [14].
However, these tools fall short of realizing our vision. First, these
approaches are limited to ingesting data from a single subsystem.
However, our target distributed systems scenarios require extract-
ing and relating diverse data (e.g., bug reports, source code, code
comments, execution traces) from multiple subsystems (e.g., the net-
work and applications on end hosts). Second, all of these approaches
assume a single-step process, where the NLP system has to perform
a single prediction. In contrast, we focus on the end-to-end system
debugging process that is iterative by nature.

3 EXPEDITING DEBUGGING WITH NLP
The manual debugging workflow:

Debugging usually starts with a bug report filed by a bug reporter
(e.g., network tickets [16], JIRA, or GitHub issues). This bug report

is specified in natural language (e.g., English). The text of the report
is analyzed by a developer to decide whether it is truly a bug, as
opposed to a feature request or a configuration error at the bug
reporter’s end. If it is a bug, it is assigned to some developers, who
then progressively narrow it down to a particular subsystem, folder,
file, and eventually a change to some lines of code.

Viewed end-to-end, the debugging workflow takes as input the
text of the bug report and outputs either a bug-fix patch representing
changes to the source code, a comment telling the bug reporter
how to fix their configuration error, a comment saying that the bug
won’t be fixed, or a comment saying that the feature request won’t
be handled. Our goal is to reduce the end-to-end latency of this
workflow, i.e., from the time the bug is reported to the time it is
deemed handled, by using NLP to automate some debugging steps.

Opportunities for automation: We now identify opportunities to
augment the developer’s debugging workflow with automation at
different points during the debugging process. Developer intuition
is invaluable to the debugging process and complementary to the
automation afforded by techniques from NLP. Conceptually, imagine
an NLP-powered debugging assistant running in the background to
continuously ingest text from various sources: the bug report’s text,
the bug report’s comments as they come in, the source code of the
repository, and different traces. It then produces recommendations,
e.g., assign a particular label to the bug report, look at this folder to
diagnose the bug. These recommendations are shown to the devel-
oper, who can act on them and fix the bug, or provide further input
to the debugging assistant based on their domain knowledge. This
assistant can be applied to several different parts of the workflow:

1. Preliminary diagnosis: At the beginning of the workflow, the
assistant can be used to perform diagnostics on incoming issues
such as assigning labels or localizing the relevant subsystems in the
project at various granularities, from top-level directories to indi-
vidual lines of code. The assistant can also assign each ticket to the
most relevant developer in order to streamline reviews. These tasks
broadly fall into the framework of text classification and document
retrieval. However, our setup presents a unique challenge of learning
joint representations of the data that capture useful information from
both unstructured text and structured source code.

2. Generating debugging queries: Another part of the workflow
involves the assistant generating domain-specific queries to monitor
different subsystems (e.g., BPF code for monitoring the kernel). This
falls under the umbrella of language generation which plays a key
role in problems like machine translation or text summarization. The
added challenge here lies in learning a model that can effectively use
a diverse set of sources like issue text, system status information, and
source code semantics to generate useful and syntactically correct
debugging queries (e.g., queries in BPF [6] or AppDynamics [5]).

3. Active (interactive) debugging: Finally, the debugging assistant
could take multiple diagnostic or corrective actions, each building
upon previous actions and their results. For this, we will draw upon
techniques for sequential decision making like reinforcement learn-
ing, with the goal being to perform the optimal sequence of actions
to fix the problem, within constraints on the latency of performing
these actions or the compute resources expended in the process. In
addition, we can keep the developer in the loop to supervise the

entire process, and simultaneously help fine-tune the assistant’s deci-
sion making. We imagine that developer and assistant actions will be
interleaved to debug the issue efficiently and with minimal human
effort.

Ultimately, our vision is an assistant that captures the hard-won
debugging wisdom of the expert programmer in different parts of the
workflow by exploiting the abundant data available within source
code repositories and their associated issue trackers. Of course,
across all of these use cases, we must provide system support to
ensure a developer-assistant interface that seamlessly handles expres-
sive input options from the developer and provides timely responses
from the assistant. In particular, developers must be able to (but not
required to) input case-specific debugging information (e.g., time
limits, expertise levels), and receive responses in a way that does not
add undue latency to any debugging stage.

4 EXPERIMENTS
We present early evaluations for three automation techniques that we
developed to expedite different stages of the end-to-end debugging
workflow: predicting labels for a GitHub issue, predicting folders
in a GitHub repository that are relevant to an issue, and generating
debugging queries in a real distributed system.

4.1 Label and Folder Prediction
Label prediction for project issues: We formulate the label predic-
tion task as a standard text classification problem. Formally, consider
a dataset D = (x,y) containing pairs of issue text (x) and their corre-
sponding labels (y). Since each issue may have more than one valid
label, our task is a multi-label classification problem [47]. Therefore,
we consider each y to be a one-hot vector of size |L|, where L is the
set of all possible labels, with each entry in the vector being 1 or 0
depending on whether a particular label applies to the issue or not.
Our goal is to train a model to accurately predict as many labels as
possible.

The key challenge lies in learning an appropriate representation
for the bug reports available in textual form. This representation
should be able to capture the semantics of the issue sufficiently to
predict accurate labels. There are several techniques and models
that have shown considerable promise in NLP such as word em-
beddings [32, 41] or LSTM recurrent neural networks [20], which
convert discrete textual symbols into a real-valued vector represen-
tation. As an initial foray, we use a bag-of-words representation to
convert the text in each issue into a suitable vector: φ(x). Each entry
in this vector corresponds to the number of times a particular word
appears in the text (most entries will be 0). We train a linear classifier
f to predict probabilities for each label from this representation:

fθ(φ(x)) =W ·φ(x)+b; ŷ = σ(fθ(φ(x)))

where W is a matrix of weights, b is a bias vector, σ is the ReLU
function and ŷ is a vector of predictions over all labels. We train
our model by minimizing the binary cross-entropy loss (over all the
labels) with respect to θ using stochastic gradient descent [10]:

L(θ) =−∑
i
[yi · log ŷi +(1− yi) · log(1− ŷi)]

Prediction of source code folders: Moving down a level of granu-
larity, we also consider the task of predicting files/folders that might

Label prediction
issues 165966 (15)

mean # words/issue 137 (117)
distinct words in dataset 98786 (497)

Folder prediction
issues 240138 (25670)

distinct words in dataset 15225 (4011)
folders 1706 (174)

Table 1: Statistics on our dataset of GitHub issues. Each entry is the
value summed across all repos and for the median repo (in parentheses).

be relevant to a particular issue, and would be useful for a developer
to look at. This is a challenging task to automate since it requires a
semantic understanding of both natural language text as well as the
semantics of each folder (and its contents, e.g., source code).

As a first step, we focus on predicting folders that appear in
changelists linked to issues. This is inherently similar to the problem
of information retrieval, where the goal is to return relevant docu-
ments given a natural language query. In our case, the the issue is
a query and our goal is to return a (ranked) list of relevant folders
in the project. Our key requirement is to learn good representations
and a similarity metric between issues and folders,

Assume each instance in our dataset is a pair (x,z), where each
x is an issue text and each z is the text corresponding to a single
folder (e.g. folder name). Our goal is to learn a similarity func-
tion ψ(φ1(x),φ2(z);θ) which can be used to predict relevant folders
given a new issue x′. Here, the φs are again suitable representations
for converting text into a real-valued vector; we use the same bag
of words (BOW) representation as previously described. For the
similarity function ψ, we train a 2-layer neural network that operates
on the concatenation of both BOW vectors [φ1(x); φ2(z)] to predict
the probability of a folder being relevant: P̂(y = 1|x,z).

We treat the pairs in the dataset as positive examples of matches,
and generate pairs of negative examples (D ′ = (x′,z′)), by randomly
matching issues to a folder in the code that is not relevant. With this,
we can train our model by minimizing the following loss function
with respect to θ using stochastic gradient descent.

L(θ) =−
[

∑
(x,z)∈D

log P̂(y = 1|x,z)+ ∑
(x′,z′)∈D′

log P̂(y = 0|x′,z′)
]

Setup: We perform empirical evaluation of our models on real-world
data sourced from publicly available code repositories, specifically
98 repositories hosted on GitHub.

We collect text from closed issues along with associated labels
and pull requests containing details on modified folders in the source
code. This gives us supervised data for both classification problems.

For the label prediction task, we select the top-5 labels across
all repositories according to their frequency of occurrence. Upon
filtering for issues that contain these labels, we end up with 165,966
issues in total. We split this into train (72%), validation (8%) and
test (20%) sets. We use the validation set to determine thresholds for
classifying various classes by using basin-hopping [51]. For folder
prediction, we take each issue and treat the corresponding folders
referenced in the commit data as positive examples while randomly
generating other folders from the repository as negative examples.
Table 1 provides more details on our data; as shown, the problem is
challenging due to the diverse vocabulary and large scale of data.
Results: We use standard classification metrics of precision, recall
and F-1 scores. For the label prediction task, we also report accuracy,
considering a case to be correct if the set of predicted labels exactly

• Issue 1: I want to be able to access a specific resource variable
within that resource. For example : run a provisioner for an in-
stance and supply it with the instance private ip (or id or anything
else).
True Labels: CORE, ENHANCEMENT

Predicted Labels: CORE, ENHANCEMENT

• Issue 2: The menu panel not being closed when its ‘overlayref‘
is detached externally using ‘detach‘ for example when using the

‘closescrollstrategy‘. **note:** this is a re-submit of #8654 due to
some sync issues.
True Folder: src/lib/menu Model score: 0.99
False Folder: src/tools/dashboard Model score: 0.0

Figure 2: Examples of label & folder predictions for two repos:
hashicorp/terraform and angular/material2.

matches the set of true labels. For folder prediction, we also report
scores for mean average precision (MAP), which is an aggregate
metric over precision at various levels of recall. We achieve 77.8%
accuracy and 0.77 F-1 on label prediction (Table 2), which is quite
promising for a multi-label classification problem over 5 classes. For
comparison, a random baseline would achieve 20% on a simpler
single-label classification problem. On folder prediction, we achieve
an F-1 score of 0.75 and a MAP score of 0.72 for predicting relevant
folders from more than 160 folders in the entire repository. This is
significantly higher than a random baseline which would get a MAP
score of 0.0062. Figure 2 lists qualitative examples of our model
predictions. These results highlight the ability of NLP techniques to
relate varied data sources (i.e., by learning a model across repos that
are quite different in terms of topic, code, and structure).

4.2 Query Generation
A second capability we target for our assistant is the ability to au-
tomatically generate syntactically correct queries for systems and
network debugging tools (e.g., Marple [38], GDB [4]) to aid the hu-
man debugging process. We formulate this as a contextual language
generation problem, where the system takes user-written issue text x
as input1 and generates a structured debugging query q. As an initial
foray, we perform template-based generation [44], where we train
a classifier (f) to predict the most relevant template T for an issue
and then predict values for the slots in the template to generate q:

T̂ = f (x); q̂ = g(T̂ ,x)

The classifiers are trained using ground truth data collected using
our setup (described below), using cross entropy as the loss func-
tion during training. We stress that template-based generation is a
first step. In the future, we plan to investigate more sophisticated
generation models such as recurrent neural networks [20] and trans-
formers [48], which have shown considerable promise in tasks like
language modeling and machine translation.
Setup: We created a local testbed that runs the open source Reddit
web application [3] over an emulated Mininet topology [23, 33].
Each of Reddit’s service components, including Memcached [13],
Cassandra [1], and PostgreSQL [2], was hosted on a separate con-
tainer within the Mininet environment, and components were con-
nected using emulated network switches that could be programmed
in P4 [9]. Our setup incorporated the Marple network debugging

1The input could also consist of other signals like system status.

• Issue: Took a while and the webpage says ‘You broke reddit’ and
‘Funny 500 page message 3’. Upon refreshing the page it says
‘Funny 500 page messsage 6’. Upon further loads, the browser is
stuck on ‘waiting for 10.0.0.2’

• Actual Fault: mcrouter instance down.
Relevant Query: stream = filter(T, switch==1);
result = groupby(stream, [srcip, dstip,
srcport, dstport, proto], count); Model Score:
0.94
Irrelevant Query: stream = filter(T, switch==5);
result = groupby(stream, [srcip, dstip,
srcport, dstport, proto], count); Model Score:
0.01

Figure 3: Example query predictions for debugging a given issue.

framework [38], which assigns each network switch and packet a
unique ID, and supports queries that (1) determine per-packet and
per-switch queueing delays, and (2) aggregates various metrics (in-
cluding user-defined ones) obtained across packets. Marple queries
are compiled by the Marple compiler into P4 programs that can be
run on the emulated switches inside Mininet.

We then designed an automatic fault injector, which randomly
injects faults into our Mininet topology. Faults include inducing
component failures, creating congestion on various links, and adding
NAT and firewall router rules that create routing loops or drop cer-
tain traffic. To produce realistic debugging data, we configured the
fault injector to inject a single unknown fault into our setup. We
then (without knowledge of which fault was selected) acted as end
users and developers. As end users, we recorded observations of
different Reddit web pages (e.g., page load delays, missing content)
to create the user-written issue text. As developers, we iteratively
issued Marple queries until the root-cause was identified. In total,
we collected 28 sets of end-user issues, Marple queries, and query
outputs; we split this into train (72%), validation (8%) and test
(20%) sets. Our classifier considers two kinds of query templates:
one which counts packets for a given 5-tuple identifier, and another
which counts per-packet queueing delay and switch queue length.
Both templates are parameterized by the switch ID.

Results: Our results show early promise for template-based query
generation. We achieve a MAP score of 0.82 and an F-1 score of 0.76
for generating relevant Marple queries (Table 2). Figure 3 shows an
example query output for a scenario where a system component has
failed. As shown, the model correctly predicts both the appropriate
query template to use and the switch to issue it on.

Extending to other tools: Though our evaluation focused on the
Marple debugging tool, we believe that the techniques used naturally
generalize. We observe that most debugging frameworks ultimately
support SQL-like frameworks for querying, e.g., the Jaeger [7] dis-
tributed tracing system supports SQL-like querying of its traces. By
extracting this unified structure from the languages/grammars of
different tools, we can represent any query generation problem as
a sequence generation problem. This extensibility is similar to how
compilers are re-engineered to target different backends.

5 CHALLENGES AND FUTURE WORK
Systems challenges: All of the above use cases require a developer-
assistant interface that seamlessly handles expressive input options

Precision Recall F-1

Label Prediction 0.76 0.78 0.77
Folder Prediction 0.74 0.76 0.75
Query Generation 0.82 0.67 0.76

Table 2: Results for label and folder prediction, as well as template-
based query generation tasks.

Figure 4: Precision vs. recall for folder prediction.

from the developer and provides timely responses from the assistant.
Keeping the developer in the loop is critical because the developer
represents years of domain expertise that is complementary to the
data-driven NLP approach. However, determining the right interface
is challenging as developer time and inputs are scarce resources. Re-
peatedly asking the developer for inputs negates automation benefits,
but judicious developer inputs (e.g., a hint that the bug might reside
in a particular subsystem) could significantly improve the assistant’s
output. It is also important to determine what developer inputs to
request. For instance, in a multi-label classification problem, the
developer could provide a rank-ordered list of labels, which can
be converted to a prior probability distribution over the labels. Fur-
ther, since developer time is precious, the developer should be able
to smoothly tradeoff prediction accuracy or granularity for lower
prediction time, e.g., predicting issue labels is likely faster than
predicting the files associated with an issue.

Machine learning challenges: While our preliminary experiments
use a bag-of-words representation, determining the optimal model
to use requires additional work. For instance, we can capture more
of the compositionality in text with models like RNNs, CNNs, or
even the recently proposed Transformer model [48]. However, such
advanced models have high training overheads with respect to in-
put data size, processing time, and memory. For widespread use,
novel systems and algorithmic techniques must be developed to
perform such training in resource-constrained settings. Potential
approaches include distributed training, incremental real-time infer-
ence, and model predictions conditioned on developer preferences.
There are also challenges related to data availability and privacy as
systems can span multiple organizations; supporting such scenar-
ios would require algorithmic techniques like privacy-preserving
machine learning [34].

End-to-end evaluation: Our evaluation measured standard classifi-
cation metrics because this was a preliminary investigation. However,
the real value of such an assistant will be a reduction in end-to-end
debugging latency and a commensurate improvement in the devel-
oper experience. To understand the impact on end-to-end debugging
latency, we plan to conduct a developer study using the debugging
assistant on systems of reasonable complexity (e.g., TensorFlow).

REFERENCES
[1] 2016. Apache Cassandra. http://cassandra.apache.org/.
[2] 2016. PostgreSQL. https://www.postgresql.org/.
[3] 2016. reddit. https://github.com/reddit/reddit.
[4] 2018. GDB: The GNU Project Debugger. https://www.gnu.org/

software/gdb/.
[5] 2019. AppDynamics Query Language - ALY310 | Univer-

sity | AppDynamics. https://learn.appdynamics.com/courses/
appdynamics-query-language-aly310.

[6] 2019. Berkeley Packet Filter - Wikipedia. https://en.wikipedia.
org/wiki/Berkeley_Packet_Filter.

[7] 2019. Jaeger: Open source, end-to-end distributed tracing. https:
//www.jaegertracing.io/.

[8] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever,
and Martin T. Vechev. 2018. Net2Text: Query-Guided Summa-
rization of Network Forwarding Behaviors. In 15th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI). 609–623.

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. 2014. P4:
Programming Protocol-Independent Packet Processors. SIG-
COMM CCR (July 2014).

[10] Léon Bottou. 2010. Large-scale machine learning with sto-
chastic gradient descent. In Proceedings of COMPSTAT’2010.
Springer, 177–186.

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.
KLEE: Unassisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Im-
plementation (OSDI’08). USENIX Association, Berkeley, CA,
USA, 209–224. http://dl.acm.org/citation.cfm?id=1855741.
1855756

[12] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain,
Amey Karkare, Mark Marron, Sailesh R, and Subhajit Roy.
2016. Program Synthesis Using Natural Language. In Pro-
ceedings of the 38th International Conference on Software
Engineering (ICSE). ACM.

[13] Dormando. 2015. Memcached-a distributed memory object
caching system. https://memcached.org/.

[14] Michael D. Ernst. 2017. Natural Language is a Programming
Language: Applying Natural Language Processing to Software
Development. In 2nd Summit on Advances in Programming
Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA.
4:1–4:14.

[15] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro
Pezzè. 2016. Automatic Generation of Oracles for Exceptional
Behaviors. In Proceedings of the 25th International Symposium
on Software Testing and Analysis (ISSTA 2016). ACM.

[16] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Ko-
ley, and Amin Vahdat. 2016. Evolve or Die: High-Availability
Design Principles Drawn from Googles Network Infrastruc-
ture. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM). ACM.

[17] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun
Kim. 2016. Deep API learning. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM, 631–642.
[18] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,

David Mazières, and Nick McKeown. 2014. I Know What Your
Packet Did Last Hop: Using Packet Histories to Troubleshoot
Networks. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation (NSDI).
USENIX Association.

[19] Irfan Ul Haq, Juan Caballero, and Michael D. Ernst. 2015. Ayu-
dante: Identifying Undesired Variable Interactions. In Proceed-
ings of the 13th International Workshop on Dynamic Analysis
(WODA 2015). ACM.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-
term memory. Neural computation 9, 8 (1997), 1735–1780.

[21] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao,
Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller,
Pingjia Shan, Brendan Viscomi, Vinod Venkataraman, Kaushik
Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An End-to-
End Performance Tracing And Analysis System. In Proceed-
ings of the 26th Symposium on Operating Systems Principles
(SOSP). ACM.

[22] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller.
2013. Where should we fix this bug? a two-phase recommen-
dation model. IEEE transactions on software Engineering 39,
11 (2013), 1597–1610.

[23] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Net-
work in a Laptop: Rapid Prototyping for Software-defined Net-
works. In Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks (Hotnets-IX). ACM.

[24] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and
Westley Weimer. 2012. GenProg: A Generic Method for Au-
tomatic Software Repair. IEEE Trans. Softw. Eng. 38, 1 (Jan.
2012), 54–72.

[25] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and
Michael D. Ernst. 2018. NL2Bash: A Corpus and Semantic
Parser for Natural Language Interface to the Linux Operating
System. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC).

[26] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon,
Nate Kushman, and Regina Barzilay. 2016. Neural Generation
of Regular Expressions from Natural Language with Minimal
Domain Knowledge. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (EMNLP).

[27] Annie Louis, Santanu Kumar Dash, Earl T. Barr, and Charles A.
Sutton. 2018. Deep Learning to Detect Redundant Method
Comments. CoRR abs/1806.04616 (2018). arXiv:1806.04616
http://arxiv.org/abs/1806.04616

[28] Jonathan Mace and Rodrigo Fonseca. 2018. Universal Con-
text Propagation for Distributed System Instrumentation. In
Proceedings of the Thirteenth EuroSys Conference (EuroSys).
ACM.

[29] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015.
Pivot Tracing: Dynamic Causal Monitoring for Distributed
Systems. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP). ACM.

[30] Mateusz Machalica, Alex Samylkin, Meredith Porth, and
Satish Chandra. 2018. Predictive Test Selection. CoRR

http://cassandra.apache.org/
https://www.postgresql.org/
https://github.com/reddit/reddit
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://learn.appdynamics.com/courses/appdynamics-query-language-aly310
https://learn.appdynamics.com/courses/appdynamics-query-language-aly310
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://www.jaegertracing.io/
https://www.jaegertracing.io/
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://memcached.org/
http://arxiv.org/abs/1806.04616
http://arxiv.org/abs/1806.04616

abs/1810.05286 (2018). arXiv:1810.05286 http://arxiv.org/
abs/1810.05286

[31] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot:
Deterministic Capture and Replay for Javascript Applications.
In Proceedings of NSDI.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural in-
formation processing systems. 3111–3119.

[33] Mininet Team. 2018. Mininet An Instant Virtual Network on
your Laptop (or other PC).

[34] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A
system for scalable privacy-preserving machine learning. In
2017 38th IEEE Symposium on Security and Privacy (SP).
IEEE, 19–38.

[35] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin
Vahdat. 2016. Trumpet: Timely and Precise Triggers in Data
Centers. In Proceedings of the 2016 ACM SIGCOMM Confer-
ence (SIGCOMM). ACM.

[36] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013.
Transfer defect learning. In 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 382–391.

[37] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rex-
ford, and David Walker. 2016. Compiling Path Queries. In Pro-
ceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation (NSDI). USENIX Association.

[38] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Pra-
teesh Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar
Jeyakumar, and Changhoon Kim. 2017. Language-Directed
Hardware Design for Network Performance Monitoring. In
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM). ACM.

[39] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Bal-
akrishnan. 2016. Polaris: Faster Page Loads Using Fine-grained
Dependency Tracking. In Proceedings of the 13th Usenix Con-
ference on Networked Systems Design and Implementation
(NSDI). USENIX Association.

[40] Jayavardhan Peddamail, Zhen Wang, Ziyu Yao, and Huan Sun.
2018. A Comprehensive Study of StaQC for Deep Code Sum-
marization. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
Lond, UK, August 2018.

[41] Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. 2014. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP). 1532–1543.

[42] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amaras-
inghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco,

Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai
Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. 2009.
Automatically Patching Errors in Deployed Software. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (SOSP). ACM.

[43] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. 2013.
Juggling the Jigsaw: Towards Automated Problem Inference
from Network Trouble Tickets. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association.

[44] Ehud Reiter and Robert Dale. 2000. Building natural language
generation systems. Cambridge university press.

[45] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2015.
CherryPick: Tracing Packet Trajectory in Software-defined Dat-
acenter Networks. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research (SOSR).
ACM.

[46] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016.
Simplifying Datacenter Network Debugging with Pathdump.
In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI). USENIX Associ-
ation.

[47] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label
classification: An overview. International Journal of Data
Warehousing and Mining (IJDWM) 3, 3 (2007), 1–13.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is all you need. In Advances in Neural
Information Processing Systems. 5998–6008.

[49] Nicolas Viennot, Siddharth Nair, and Jason Nieh. 2013. Trans-
parent Mutable Replay for Multicore Debugging and Patch
Validation. In Proceedings of ASPLOS.

[50] William W. Cohen, Charles Sutton, and Martin T. Vechev. 2016.
Programming with "Big Code" (Dagstuhl Seminar 15472). (01
2016). https://doi.org/10.4230/DagRep.5.11.90

[51] David J. Wales and Jonathan P. K. Doye. 1997. Global Opti-
mization by Basin-Hopping and the Lowest Energy Structures
of Lennard-Jones Clusters Containing up to 110 Atoms. The
Journal of Physical Chemistry A (1997).

[52] Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun.
2018. StaQC: A Systematically Mined Question-Code Dataset
from Stack Overflow. In Proceedings of the 2018 World Wide
Web Conference (WWW ’18).

[53] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should
the bugs be fixed? more accurate information retrieval-based
bug localization based on bug reports. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 14–
24.

http://arxiv.org/abs/1810.05286
http://arxiv.org/abs/1810.05286
http://arxiv.org/abs/1810.05286
https://doi.org/10.4230/DagRep.5.11.90

	Abstract
	1 Introduction
	2 Related Work
	3 Expediting debugging with NLP
	4 Experiments
	4.1 Label and Folder Prediction
	4.2 Query Generation

	5 Challenges and Future Work

