
Acorn: Aggressive Result Caching in Distributed Data
Processing Frameworks

Lana Ramjit
UCLA

Matteo Interlandi
Microsoft

Eugene Wu
Columbia University

Ravi Netravali
UCLA

ABSTRACT
Result caching is crucial to the performance of data processing sys-
tems, but two trends complicate its use. First, immutable datasets
make it difficult to efficiently employ powerful result caching tech-
niques like predicate analysis, since predicate analysis typically
requires optimized query plans but generating those plans can be
costly with data immutability. Second, increased support for user-
defined functions (UDFs), which are treated as black boxes by query
engines, hinders aggressive result caching. This paper overcomes
these problems by introducing 1) a judicious adaptation of predi-
cate analysis on analyzed query plans that avoids unnecessary query
optimization, and 2) a UDF translator that transparently compiles
UDFs from general purpose languages into native equivalents. We
then present Acorn, a concrete implementation of these techniques
in Spark SQL that provides speedups of up to 5× across multiple
benchmark and real Spark graph processing workloads.

KEYWORDS
result caching, user-defined functions, data analytics frameworks,
materialized views, computation reuse

ACM Reference Format:
Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi Netravali. 2019. Acorn:
Aggressive Result Caching in Distributed Data Processing Frameworks.
In SoCC ’19: ACM Symposium of Cloud Computing conference, Nov 20–
23, 2019, Santa Cruz, CA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3357223.3362702

1 INTRODUCTION
Recent years have witnessed significant efforts to improve the speed
with which large-scale data processing frameworks like Apache
Hadoop [4] and Spark [67] execute queries [35, 47, 53, 69]. A com-
mon technique used to accelerate data processing tasks is result
(or view) caching [28, 41, 64, 72]. With this optimization, results
from prior query executions are used to reduce the on-demand work
needed to execute new queries.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20-23, Santa Cruz, CA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362702

Result caching has been successfully employed by traditional
databases and early data processing frameworks [11, 15, 21, 26,
29, 33, 34, 38, 51]. Benefits have been particularly pronounced for
the iterative workloads common to machine learning algorithms,
and the incrementally constructed queries in graph processing and
interactive data exploration sessions [8]. However, several major
trends in recent data processing frameworks (e.g., Spark SQL [8])
complicate the use of result caching.

First, many distributed data processing frameworks generate in-
creasingly large query plans which are both expensive to execute
and expensive to optimize [68]. The reason is that, unlike databases
which perform data updates in-place, modern analytics frameworks
operate on immutable data [8, 9, 52]. This model treats data as
read-only, and updates or queries that data by maintaining a lineage
of transformations whose intermediate results may be materialized.
Although this simplifies debugging and failure recovery [68], trans-
formation histories (and query plans) can grow to immense sizes,
particularly for iterative and incremental workloads.

Aggressive result caching is a natural way to shrink query opti-
mization overheads. However, while there has been much work on
deciding what results to cache [7, 23, 59, 60], modern frameworks
still struggle with determining how to make the best use of cached
results. Frameworks such as Spark SQL elect to apply exact-match
caching, rather than more powerful techniques like predicate anal-
ysis that can also identify partial query equivalence matches (i.e.,
where the results for one query entirely or partially subsume the
results for another query) [24]. The reason is that it is challenging
to determine where in the query optimization pipeline (Figure 1)
predicate analysis can be efficiently performed. Performing predi-
cate analysis before query optimization can reduce query plan sizes
and optimization costs, but requires operating on analyzed query
plans (logical query plans that have not gone through the optimizer)
which obfuscate caching opportunities since predicate pushdown
has yet to be performed. Predicate analysis after query optimization
can benefit from optimized (canonicalized) query plans, but must
fully incur expensive optimization overheads.

Second, modern analytics frameworks increasingly make it easy
for developers to interleave declarative querying with user-defined
functions (UDFs) expressed in general-purpose programming lan-
guages (e.g., Java, Scala). For instance, 74% of DataBricks’ [19]
client-facing clusters run workloads that contain UDFs, with UDF
execution accounting for 34% of median cluster execution time.1

This trend will likely grow, as in-language integration of data flow
engines increases, making UDF-heavy analytics programs easier to
write [8, 22, 43].

1Databricks only provided these statistics, not raw workloads.

https://doi.org/10.1145/3357223.3362702
https://doi.org/10.1145/3357223.3362702
https://doi.org/10.1145/3357223.3362702

Unfortunately, query optimizers treat UDFs as black boxes, and
must thus resort to exact-match caching. Recent work such as
Froid [56] shows how UDFs written in special SQL procedural
languages (i.e., T-SQL) can be translated into native SQL operator
plans. However, Froid provides limited support for UDFs expressed
in general purpose languages, as Froid may not preserve types and
cannot support language constructs such as generics, reflection, and
virtual function invocations.

This paper addresses the use of result caching in large-scale data
analytics frameworks through the combination of judicious adapta-
tion of existing techniques such as predicate and program analysis,
and novel UDF analysis for general-purpose languages. Our goal
is to enable aggressive result caching without 1) burdening devel-
opers to provide hints or rewrite queries, 2) incurring unnecessary
query optimization overheads, or 3) sacrificing the expressiveness of
UDFs. We integrate our ideas in Spark SQL, but the problems we
tackle and our solutions broadly apply to large-scale data processing
frameworks (§6.3). We make three main contributions.

Our first contribution adapts the extensive caching and predi-
cate equivalence concepts from the database community [24, 39] to
distributed query processing frameworks. Rather than ineffectively
performing predicate analysis on analyzed query plans or operating
on optimized query plans that have already incurred considerable
optimization costs, our key insight is to perform a cheap partial
optimization pass that applies only the handful of optimizations
(e.g., constant propagation, predicate pushdown) that affect predi-
cate analysis. In this way, queries only run through the full optimizer
after aggressive caching decisions are applied. Our predicate anal-
ysis identifies total and partial subsumption relationships between
analyzed plans and cached results.

Our second contribution translates UDFs written in a general-
purpose language into equivalent functions expressed solely with
native query operators and API calls. This opens up UDFs to the
query optimizer, including the result caching mechanism, and en-
ables the co-optimization of UDFs and relational queries. To do
this, we lower UDF Java bytecode into a type-preserving intermedi-
ate representation, and use symbolic execution to quickly generate
an equivalent query plan. Translation is completely transparent to
developers (unlike VooDoo [55], Weld [54]), and can support the
advanced language features described above that Froid [56] cannot.
Although our approach supports almost all Java and Scala features,
it is best-effort and is mainly limited by the target language (e.g.,
Spark) (§5.3).

Our third contribution is Acorn, an implementation of the afore-
mentioned result caching optimizations in the latest version of Spark
SQL (v2.4). We evaluated Acorn on two benchmark workloads
(TPC-DS and TPC-H [3]) with datasets sized between 1-100 GB, as
well as on multiple real-world Spark workloads. Experiments show
that Acorn provides speedups of 2× and 5× over Spark SQL for
benchmark workloads with and without UDFs, respectively, while
imposing negligible overheads and no changes to the workloads.
Benefits were 1.4×–3.2× for real graph processing workloads. Fur-
ther, other than 3 UDFs that are not expressible with Spark’s native
API, Acorn was able to translate all UDFs in our workloads, many
of which Froid cannot.

2 BACKGROUND
Using Spark SQL [8] as an example, we discuss how distributed
data processing frameworks plan and execute queries, and how these
design decisions affect result caching and their programming envi-
ronments.
Query Planning:

Spark SQL’s query planner, Catalyst, advances queries through
five phases to translate a logical query plan into a physical one
where operators have been moved, replaced, or combined based on
optimizations and disambiguation rules (Figure 1). In stage 1, the
analyzer resolves column names to a table or dataset, validating any
column or table references in the query, and outputting an analyzed
query plan. If a query has previously been marked for caching (de-
scribed below), stage 2 retrieves the cached data by exactly matching
the stage 1 plan to the cache index. Stage 3 applies a set of rules
to the (potentially modified) analyzed query plan, restructuring and
rewriting the query plan for efficiency, and outputting an optimized
query plan. Stages 4-5 choose physical operators for the query, such
as a particular join strategy, and generate code for executing those op-
erators. Many rule-based query planners [4, 13, 25] share these steps,
but Catalyst slightly differs in that stages 2-5 are lazily evaluated for
efficient in-memory execution [68].
Caching: Spark SQL uses immutable datasets and maintains a lin-
eage graph (akin to a query plan) associated with each materialized
dataset. To minimize optimization times (§1), Spark SQL performs
caching prior to query optimization (stage 2 versus stage 3), allowing
cache hits to skip the optimizer. Caching in Spark SQL is primar-
ily user-driven, where users explicitly mark intermediate results as
cacheable.2 When a user requests that a query or dataset is cached,
the Stage 2 cache manager creates an index using the current ana-
lyzed plan (from Stage 1), and reserves space for the to-be-computed
dataset. As of the latest version of Spark SQL (v2.4), the cache man-
ager uses a hash-based canonicalizer to match analyzed plans during
cache substitution. Thus, cache hits only arise when the cache man-
ager finds an exact match for the corresponding analyzed plan. This
differs from traditional databases, where cache substitution happens
after the optimization step, and is thus performed on optimized query
plans that facilitate the detection of caching opportunities through
in-exact matches [14, 24, 32, 70].
Programming Environment: Spark SQL maintains a DataFrame
API that enables seamless integration of procedural and declara-
tive tasks. Although raw SQL strings are accepted, developers can
write valid SQL queries by chaining procedural API calls that mir-
ror SQL clauses. For example, a projection clause typically found
in the SELECT clause of a SQL query can be written using the
select() function in the DataFrame API. The DataFrame API
also provides support for data processing tasks such as those in
MapReduce systems [8].

Spark SQL also allows users to write user-defined functions
(UDFs) in general-purpose programming languages (e.g., Scala,
Java, Python). UDFs can be registered with the query engine (as
they are in traditional databases), or they may manifest as lambdas
and anonymous closure functions. Certain UDFs may be used as
operators, being mixed into a chain of native API calls. However,
2Recent implementations[19] support automatic caching, where intermediate results are
optimistically cached without user instruction.

Figure 1: Spark SQL’s query planning pipeline. Grey boxes and dotted lines indicate Acorn’s new components. Each stage generates or modifies a
query plan and passes it down the pipeline; query plans relevant to Acorn are labeled.

anonymous UDFs can only be passed as arguments to existing oper-
ators. Importantly, both forms of UDFs are treated as black boxes
by the query engine, which is unaware of how a UDF will access or
manipulate data. Registered UDFs preserve their user-given name
across appearances, while anonymous UDFs get a unique name each
time. Thus, the former can benefit from exact-match caching, while
the latter cannot (the changed name results in a changed analyzed
plan).

3 MOTIVATING EXAMPLES
We present several example queries that 1) expose the limitations of
exact-match caching, 2) motivate the need for aggressively identi-
fying result caching opportunities, and 3) explain how supporting
UDFs is critical for result caching. The presented queries are based
on two hypothetical data tables, people and siblings, that share
the two-column schema, name and age.

3.1 Need 1: Aggressive Identification of Result
Caching Opportunities

Spark SQL’s exact-match caching (§2) that only uses cached results
if the corresponding query plans exactly match, foregoes critical
caching opportunities. For example, consider the following queries:
// Query 1
people.join(siblings, "age")

.filter(people.age > 18)

// Query 2

people.join(siblings, "age")

.filter(siblings.age > 21)
Both queries perform a join on the people and siblings
tables, finding siblings of the same age. Thus, any predicate applied
to people.age is in effect applied to siblings.age; these
two columns can be treated as interchangeable for the rest of the
query. Consequently, despite the fact that the two queries employ
seemingly different filters (shown in bold)—Query 1 filters the
age column in people, while Query 2 filters the age column in
siblings—Query 2 should be able to reuse results from Query
1. Specifically, since any age greater than 21 is also greater than
18, Query 2’s result set will always be a subset of Query 1’s result
set; that is, Query 1 totally subsumes Query 2. Reusing results
from Query 1 to compute Query 2 enables an in-memory scan of
a (potentially) much smaller table, rather than recomputing the
expensive join. However, Spark SQL’s cache manager would deem
these queries as unrelated because it is unaware of the equivalence
relationship that the join creates between the seemingly different
filter predicates.

Another result caching opportunity that would go undetected
with Spark SQL’s exact-match caching relates to the input of a join
operation. For instance, consider the following queries:

Figure 2: (1) The (identical) analyzed and optimized plans for Query
3, (2) analyzed plan for Query 4, and (3) optimized plan for Query 4.
Boxes show a cache opportunity: Query 3 can safely be used as Query
4’s left join child.

// Query 3
people.filter(age > 18)

// Query 4

people.join(siblings, "age")

.filter(people.age > 18)
Query 3 filters all rows that have an age greater than 18 in the
people dataset. In contrast, Query 4 first joins the people
dataset with the siblings dataset to find rows with matching age
values, and then applies the same exact filter. Thus, though Query
3’s result set does not entirely contain Query 4’s result set, Query 3
does produce a useful input for the join in Query 4. In other words,
Query 3 partially subsumes Query 4.

To help understand why Spark SQL would fail to detect this
relationship, consider the analyzed and optimized query plans for
these queries shown in Figure 2. Comparing only the analyzed plans
of each query (which Spark SQL’s cache manager does) hides the
fact that Query 3 partially subsumes Query 4. However, during
optimization, Query 4’s filter predicate is pushed down to below
the join. This transformation highlights the fact that Query 3 is
identical to the left join child in Query 4, enabling caching.

3.2 Need 2: Result Caching Support for UDFs
Detecting the caching opportunities between the above queries relies
on the ability to analyze query predicates. However, UDFs hide
query components from the query engine, obscuring even exact
cache matches (§2). Consider the following two queries:
// Query 5
people.select(lower("name"))

// Query 6

people.map(p => p.get("name").toLowerCase)

Both queries return the list of names, converted to lowercase for-
mat, from the people dataset. Indeed, in the absence of null values,
Query 5 and Query 6 will always return the same result set, mean-
ing that they are valid rewrites of one another. However, from the
perspective of caching, Query 5’s structure is preferable because it
uses a native call to Spark SQL’s DataFrame API and can thus be

analyzed in detail by the optimizer; in contrast, Query 6 contains
a UDF closure that makes an external call to a Scala library, and
is thus treated as a blackbox during planning. Simply put, Query 6
uses a UDF while Query 5 does not, and this impacts caching.

4 AGGRESSIVE RESULT CACHING
This section presents a judicious adaptation of predicate analysis on
analyzed query plans that enables aggressive result caching without
unnecessary query optimization.

4.1 Challenges and Approach
A natural and proven approach for detecting result caching opportu-
nities (both exact match and subsumption relationships) is predicate
analysis [14, 24, 32, 70]. With predicate analysis, logical opera-
tors are grouped by how they manipulate a dataset (e.g., column-
removing versus aggregating). The most restrictive predicates within
each group are then identified and compared to infer caching op-
portunities. Predicate analysis can be used in queries containing
selection, projection, joins, grouping, and aggregation.

Spark SQL’s use of immutable datasets does provide some ad-
vantages to performing predicate analysis compared to a traditional
database system. In particular, unlike with databases [27, 45, 71],
we need not worry about stale (and inaccurate) cached data. How-
ever, the associated query optimization overheads (§1) makes it
difficult to efficiently integrate predicate analysis. To illustrate this
challenge, we first discuss several potential integration approaches
(and the associated consequences), before presenting our solution;
we empirically compare these approaches in §7.

Swap: Make caching decisions later in the pipeline. The most
natural approach is to reorder the pipeline such that cache substi-
tution comes after query optimization (i.e., swapping stages 2 and
3), thereby exposing optimized query plans to predicate analysis.
Unfortunately, this would forego query optimization benefits as a
query must pass through the entire optimizer before any caching
decisions can be made and applied (via predicate analysis and query
rewriting). This is despite the fact that optimizations must only be
run on uncached query components. We show in §7 that these passes
through the query optimizer result in significant resource and delay
overheads [42, 48].

Double: Insert an additional cache retrieval step. In this scenario,
the pipeline would have a cache retrieval step both before and after
query optimization. Early-stage caching can identify exact matches
on analyzed plans, while late-stage caching can use predicate analy-
sis on optimized query plans to more aggressively identify caching
opportunities. Thus, this approach partially addresses the limita-
tions of Swap: query components handled by the cache (identified
by exact match) need not pass through the query optimizer. How-
ever, this approach has several limitations. First, the potential in-
exact query matches that predicate analysis identifies (which have
proven to be significant in databases and early data analytics frame-
works [11, 15, 21, 26, 33, 34, 38, 51]) can still only be determined
after costly query optimization, leading to wasted work. Second,
it doubles the size of the cache index by storing two or more ver-
sions of query plans per cached job. This scales particularly poorly
with cached jobs that have many operators—jobs that are the best
candidates for result caching.

Our solution: Given these tradeoffs, our solution is to partially
optimize analyzed query plans, only enforcing rules that result in
canonicalized predicates that affect caching decisions. In this way,
predicate analysis can run early in the pipeline and still operate on
standardized and information-rich query plans necessary to make
aggressive but correct caching decisions. Our key observation is that
only a few query optimizations influence predicate analysis (and
thus caching decisions), so the cost of this early and partial query
optimization is small.

4.2 Detecting Subsumption on Analyzed Plans
We begin with the simpler “total subsumption” case where a cached
query entirely contains the result set of another query. We then
discuss extensions to handle the scenario where the cache contains
only part of the new query’s results (i.e., “partial subsumption”).

Total Subsumption: We first seek to identify the set of optimiza-
tions that query optimizers perform which generate canonicalized
predicates that affect predicate analysis (and caching decisions).
To answer this question, we classify optimizer rules based on how
they affect the query tree. Optimizer rules may reorder, replace, or
rewrite operators. Reorder rules do not affect predicate analysis in
total subsumption, as all operators are sorted during analysis anyway.
Replace rules may help generate efficient plans by swapping opera-
tors, but sorting predicates groups equivalent operators and extracts
their predicates with the same effect. Instead, rewrite rules yield a
standardized structure that is beneficial to predicate analysis, so we
extract and apply these.

Analyzing the Spark SQL query optimizer rules revealed that
out of the 19 total rules covering 100 structural patterns, only these
4 rules (covering 25 structural patterns) are rewriting rules that
standardize operator syntax for predicate analysis:
(1) Typecast checking: lifts raw values out of cast expressions after

confirming that the cast is type safe.
(2) Boolean simplification: standardizes Boolean expressions, for

instance by rewriting not operators into equivalent positive
expressions.

(3) Constant folding and propagation: evaluates constants and
uses them when possible.

(4) Operand ordering: standardizes operand orders for quick com-
parisons.

Thus, we prune the optimization suite to only include these 4 rules
and run them iteratively to a fixed point over the relevant predicates
in analyzed query plans.

After canonicalizing predicates, we can directly apply existing al-
gorithms to identify total subsumption relationships on our partially
optimized query plans [24]. Beginning with the cross product of all
source tables, the following must be met:

• Row Removal: The cached job must remove the same rows (or a
subset of them) as the new job. If predicates impose a range on
the column, the range must be larger or equal to that of the new
job.

• Column Removal: The cached job must output all columns
needed by the new job; specifically, it must contain the output
columns of the new job and any columns needed to calculate any
new predicates.

• Grouping: All groupings in the cached job must be supersets of
groups in the new job, and the cached job must be less aggregated.

• Other operators: Any other operators in the cached job are de-
terministic, and either invertible or applied to the same inputs in
the new job.

To further enhance the detectable caching opportunities with pred-
icate analysis, we identify column equivalence classes [24]. Equiva-
lence classes are used to specify that seemingly different columns
are equivalent for a given query based on the query’s filtering predi-
cates (e.g., Query 1 and Query 2 in §3). To build equivalence classes,
each column begins in its own class. For every predicate of the
form ColA == ColB, the corresponding equivalence classes contain-
ing ColA and ColB are merged, since these columns will always
have the same value. The above conditions are then checked using
equivalence classes in place of columns.

If total subsumption scenarios are detected, Acorn rewrite the new
query’s analyzed plan to use the relevant cached results. Recall that
with total subsumption, the cached results may include extra rows
beyond what the new query requires. Thus, we add the required filter
predicates from the original plan to remove extraneous rows. Since
we only add filters, the full optimizer pass addresses any introduced
inefficiencies.

Partial Subsumption: A query A partially subsumes another query
B if it totally subsumes a join node in query B (e.g., Query 3 and
Query 4 in §3). With optimized query plans, this relationship can
be found by running the total subsumption algorithm described
above on the children of each join node in query B. This would
work because optimized plans employ predicate pushdown, whereby
predicates that remove columns or rows are pushed below a join if
possible (using reorder rules) [30].

Predicate pushdown is crucial for detecting many partial subsump-
tion caching opportunities. This is because the smaller a join’s child
is, the more likely we can find a cached job that subsumes its results.
To increase our chance of success, we want to scan the entire query
and push any operators that remove rows below a join if possible.
However, even assuming a standard predicate pushdown pass has
been made, introducing partial cache subsumption breaks a critical
safety guarantee in the Spark architecture. The optimizer assumes
all column references have been disambiguated with respect to the
base tables of the query; when Acorn replaces a base table with a
partial subsumption match, it assumes responsibility for ensuring
that this disambiguation remains faithful to the original tables. For
example, consider the following query pair:
val q1 = people.select("name")

val q2 = q1.filter("age" > 21)

Notice that q2 references age, which is not in q1’s output schema;
Spark allows users to reference attributes that are not in the projec-
tion list because they will be resolved during reference disambigua-
tion. This can cause subtle errors when caching plans. For instance,
consider the following cached plans:
P1: people.select("name").filter("age > 18")

The semantics of P1 are such that the filter clause can be evaluated.
However the cached output does not contain age. Thus, P1 is not
suitable to replace q1 in q2’s plan, because age was not material-
ized. By default, Spark’s reference disambiguation will incorrectly

infer that age is available in people.select(“name”) of the
cached plan P1.

To address this limitation, we present an algorithm for detecting
partial subsumption on the children of joins in analyzed query plans.
Our approach uses a predicate sorting technique that mimics the
effect of predicate pushdown while simultaneously guaranteeing
safe accesses to all column references—neither predicate pushdown
nor Spark’s projection analysis can achieve both in a single pass.

Since we want to maximize constraints on each join child, we
push down all filter predicates that reference any column in the same
equivalence class as a column originating from that join child. At a
high level, we tag all equivalence classes necessary to compute each
predicate in the entire query, then delete a predicate if the join child
cannot supply a column in each equivalence class.

To carry out this approach, we first need to know, for each pred-
icate P that appears anywhere in the entire query, the set of all
columns required to calculate that predicate (which we call the
re f set). We compute re f set by initializing it to the empty set and
adding all equivalence classes (EC) of each column directly refer-
enced in that predicate,

refset(P)← EC1, EC2, ... ECN ,
where 1...N are ids for the columns referenced in P.

With this information, we can discard predicates that cannot be
computed by the base tables of this join child. To do this, we take
the set of all columns that appear in a base table of the current join
child as the child column set (CCS). We then keep only predicates if
its refset consists only of equivalence classes with some column in
the child’s base tables:

{P | ∀ EC ∈ refset(P): EC ∩ CCS , /0}.
The above steps tell us what row-removing predicates we should

keep. We also must know what columns to keep, which we can find
by using the refset: any column appearing in both the CCS and any
refset is required as output from the join child, and thus must be
kept.

Once we have pushed down all the appropriate filter predicates
and calculated the new output set for a join child, we can perform
total subsumption analysis on that join child to find caching oppor-
tunities. Rewriting on a cache hit uses the same steps as with total
subsumption.

Correctness: We meet both conditions proven to preserve correct-
ness when moving predicates [30]. First, our approach does not
change the order of join operations. Second, we ensure that every
root-to-leaf path in the query tree only refers to attributes produced
by the join child. This follows from the fact that, by definition, the
refset contains all column references in a predicate. Cross referenc-
ing the refset with the CCS ensures that a predicate is only moved
down if it can be independently computed by the join child.

5 TRANSPARENT UDF COMPILATION
This section discusses our approach to transparently open up UDFs
(written in a general purpose language) to query planners to enable
the aggressive result caching techniques presented in §4.

5.1 Goals and Solution Overview
We have several goals and requirements for UDF translation that
existing techniques do not meet (§8):

Figure 3: The translation steps used to convert a simple UDF into a native Spark Expression. Code segments and expression trees have been trimmed
due to space constraints.
• Transparency: Users should not have to rewrite queries, annotate

jobs for the sake of the optimizer, or restrict themselves to only
using registered UDFs.

• Speed: Translation overheads must be lower than optimization
benefits.

• Safety: Translated expressions must behave exactly the same as
the original expressions on all inputs.

• Tractability: Translating general purpose languages like Java
and Scala requires parsing Java bytecode, which is a stack-based
language with over 200 opcodes. Thus, the search space is large
and must be explored efficiently.

• Extensibility: A UDF translator should be easily maintained and
extended to support new or modified language features.

While prior work meets some of these goals, no current solution
satisfies all of them (§8). UDF rewriting [54, 55] and annotation
techniques [39] violate our transparency requirement, while program
synthesis approaches [6] take minutes to run. Further, UDF compil-
ers like Froid [56] only operate on constrained languages (T-SQL),
and cannot support many general purpose language features (e.g.,
generics, reflection).

Our solution: We provide a best-effort UDF translator for general
purpose languages that meets all of the above requirements. The
translation process passes each UDF through three steps. First, we
use an off-the-shelf bytecode parser to generate a typed, compact
intermediate representation (IR) for the UDF. We then use symbolic
(simulated) execution and pattern matching to quickly generate an
equivalent query plan expressed solely with native query operators
and API calls. Finally, we optionally rewrite the UDF if compilation
is successful.

Using a compact and typed IR significantly trims the search space
to consider, ensuring tractability and fast translation. Simulated exe-
cution ensures that each unique path through the function is explored
exactly once. Importantly, our simulated execution propagates types
from the IR (rather than inferring them). Collectively, these tech-
niques ensure a type-safe, accurate, and efficient translation. Further,
because our translation leverages Scala’s pattern matching capabili-
ties [37], new operators can be supported with a single line of code
(for a new pattern), bringing extensibility. Our integration of this

translation into query processing pipelines (§6) makes this entirely
transparent to users.

5.2 UDF Translation
Our translator accepts a Scala or Java function as input, and outputs
an equivalent expression solely with Spark native operators. To
aid our description of the translation process, we will reference
the example command in Figure 3: p => p.getage < 30 is a
Scala lambda UDF that is passed as an argument to the filter
operator, and applied to a dataset named PersonDS.

5.2.1 Step 1: Lower to an Intermediate Representation. The
translator initially receives the UDF in Java bytecode form. Raw
Java bytecode is an stack-based language with over two hundred
opcodes and bytecode specific types. Thus, simulating execution
of Java bytecode directly would require the burdensome and error-
prone tasks of maintaining a stack and inferring types. To obviate
the need for stack simulation or dynamic typing, we instead opt
to perform translation directly on an IR called Jimple [66]. Jimple
reintroduces high-level types and provides a concise, three-address
format with only a few dozen opcodes. Reintroducing types ensures
that the translator must only track types during compilation (rather
than inferring them) for type safety, while the three-address format
obviates the need for simulating a local variable stack.

Though translation with the Jimple IR greatly simplifies the pro-
cess compared to working with Java bytecode, we note that using
an IR is not strictly necessary for the ensuing steps. In order to com-
pile down to Jimple, we use an off-the-shelf bytecode parser called
Soot [65], which adds minimal overheads to the overall translation
process (§7). Figure 3 shows a comparison of our example lambda
(written in Scala) with its Java bytecode and Jimple equivalents.

5.2.2 Step 2: Simulate Execution. The next step compiles the
UDF’s Jimple representation into a Spark native expression. Our
compiler accepts as input the Jimple function, the function argu-
ments, and a schema for the corresponding datatype. Spark SQL
allows schemas to be defined as classes where each field is a column,
so the schema input may be a class definition or a struct pairing
column names with types. For example, the function from Figure 3
would be supplied with the argument for p and the Person class
schema.

Translation progresses by simulating execution of the Jimple
function body. We use three techniques to explore the search space
safely, efficiently, and comprehensively. First, we use a map to keep
track of a typed local environment. Types are propagated to the
map from Jimple throughout translation, guaranteeing a type-safe
translation. Second, we use Scala’s pattern matching capabilities to
facilitate translation from Jimple into a Spark expression. Finally,
we use reflection to examine function signatures to decide whether
to substitute recognized library functions with Spark expressions or
recursively translate the function call.

Local environment: To mimic a local environment, we use a map
(rather than a stack) to pair UDF variable names and types with Spark
expressions. Assignment statements do not have a corresponding
Spark expression, and are instead used to populate or update the
map. The right-hand side of each assignment statement is translated
and the resulting expression is placed in the map. For instance, if
the right-hand side is a constant or a column (as in line 3 of Figure
3), we map the value into a Spark literal of the corresponding type.
Similarly, if the right-hand side is an expression, it is translated
into the corresponding Spark expression and the operands are then
recursively translated. When any variable is read during subsequent
translation steps, a typed Spark expression value is supplied from
the environment map.

Translation: Jimple code is organized as a series of statements, each
of which is composed of expressions, which are in turn composed of
values. Spark expressions, our target language, are structured as trees.
To match Jimple expressions by type and create the corresponding
Spark tree node, we use Scala’s pattern matching capability [37].
Any Jimple subexpressions or values are extracted via pattern match-
ing, recursively translated, and added as children. This flow enables
subexpressions (e.g., child expressions) to be translated indepen-
dently of higher level expressions (e.g.,parent expressions). Further,
adding a new operator only requires matching the corresponding
Jimple expression and creating the corresponding Spark expression
tree node, which can be expressed in a single line of code.

Path exploration: Simulating UDF execution requires systematic
exploration of each path through the function. In a function with
only a single path, every Jimple statement creates or updates a
variable until a return statement is reached. Jimple always returns
a variable, so the translator retrieves the associated expression from
the local environment map and returns it.

The more common scenario is for a function to contain multiple
execution paths, which arise from conditional statements (e.g., line 4
of Figure 3). In this case, the conditional predicate is translated, and
the translation process forks to find an expression for each branch
separately. Special care is given to short-circuiting predicates as
Spark SQL does not enforce the short-circuiting semantics of Java
and Scala logical operators. To address this, Acorn uses conditionals
to mimic short-circuiting behavior: short-circuiting ANDs are rewrit-
ten to be nested if statements (e.g., “if x != null && x.a” would
be rewritten to “if x != null { if x.a }”), while ORs are broken into
if-elif-else blocks.

The first conditional statement encountered during translation is
considered the branching point, and thus represents the root of all
paths through the function. A branch is explored by providing the
translator with the relevant variable environment, original function

arguments, and a pointer indicating the first instruction of the branch.
The translator executes from that instruction until it reaches a return.
To ensure accuracy, conditional variable assignments are preserved;
branches maintain their own copies of the environment to prevent
conflicts.

Function calls: Some expressions may invoke a function, like
r1.age() in line 2 of our example. In this case, we either in-
voke the translator and explore the provided age function or use
reflection to examine the function signature. The latter approach
is preferred as it lets us bypass the translator and directly supply
the matching Spark expression. In our example, we would match
the age function with the Person class schema to determine that
the function results in a column reference. Since Spark operators
usually handle null inputs quietly while library functions throw
exceptions, we are careful to reintroduce null exceptions where
necessary. In cases where the function signature is unknown but lies
on the user class path, we attempt to translate the function to find
a matching Spark expression. This allows us to handle important
library functions while limiting expensive library function execution.

5.2.3 Step 3: Rewrite the UDF. On successful translation, the
UDF query tree should be rewritten to use the output Spark expres-
sion. Since query plans use a tree structure, rewriting only involves
replacing the UDF node with the root of the new Spark expression.
This can happen in one of two ways. First, if a UDF node appears
directly as an operator, we simply replace the UDF node in the ex-
pression tree with the root node of the generated Spark expression.
Second, a UDF may be the argument to another operator. In cases
where the operator can take a function or a Spark expression as
its argument (e.g., filter), we translate the function and swap
the parent operator for a version that accepts a Spark expression.
For operators that only take functions as arguments (e.g., map), we
add another version of the operator to Spark (that accepts Spark
expressions as arguments) and use the same process. If our translator
cannot generate a native Spark equivalent (§5.3), we revert to the
original UDF path to ensure correctness; failed translation overheads
are negligible (§7).

5.3 Correctness and Limitations
Our translator supports almost all features of the Java and Scala lan-
guages, and is primarily limited by the target language (i.e., Spark’s
native API). We handle variable manipulation, control flow state-
ments, and logical, bitwise, and arithmetic operations. Additionally,
unlike Froid [56], we preserve types and can support UDFs that
use generics, reflection, and virtual function invocations. The key
limitation is that we are restricted to non-recursive function calls
and statically bounded loops. The impact of this limitation is mit-
igated by Spark’s requirement that query trees be acyclic and its
corresponding lack of support for loops. Note that we can translate
loops that are unrolled by the Java compiler or contained in a library
function invocation. Examples of the latter class include most String
and Array manipulations, for which we translate based on the func-
tion signature. Additional library function invocations we support
are type casting, column/row access, and sorting. Nondeterministic
functions (e.g., Random class functions) cannot be translated as
they complicate faithful simulated execution.

6 ACORN
Acorn integrates our aggressive result caching optimizations (§4 and
§5) into the query processing pipeline (Figure 1) of the most recent
version of Spark SQL (v2.4). As Spark itself is written in Scala, so is
Acorn. We note that Acorn does not increase the amount of cached
content (or memory usage), and instead only tries to make better use
of what Spark already caches.

6.1 Judicious Predicate Analysis
Acorn implements predicate analysis in Stage 3 (cache substitution)
of the Spark SQL pipeline. To do this, Acorn edits the base class for
analyzed plans, augmenting them with functions for containment
detection and rewriting. Acorn also modifies Spark SQL’s cache
manager; instead of using exact matching, the manager calls Acorn’s
custom containment function which implements subsumption detec-
tion (§4) in 250 lines of code. If a cache opportunity is detected, this
function rewrites and returns the query accordingly.

6.2 Transparent UDF Translation
UDF translation is structured as a standalone unit (400 lines of code)
to simplify integration into the pipeline. UDFs that appear as the
argument to an operator are translated when the operator itself is
parsed. The operator is then rewritten to use the generated Spark ex-
pression instead of the UDF. This happens just before stage 1, when
the query is parsed and transformed into an input for stage 1. For
UDFs that act as an independent operator, Acorn adds a rule to the
analyzer to translate and rewrite the UDF during stage 1. Translation
happens before cache replacement in Stage 3 so translated UDFs
undergo the caching optimizations described in §4.

6.3 Generalizing Beyond Spark SQL
Although Acorn is implemented in Spark SQL, other data processing
systems can naturally benefit from its optimizations. Systems that
struggle to reuse cached plans (e.g., SQLServer [42]), especially
those that use immutable datasets (e.g., CouchDB [1], Datomic [36],
BigTable [12]), can perform partial query optimization to use predi-
cate analysis without unnecessary query optimization. Acorn’s par-
tial optimization rules are Spark-specific, but the approach to identify
necessary rules for partial optimization generalize (i.e., the group-
ing of rule types in §4.2). Similarly, Acorn’s UDF translation is
JVM-specific as it operates on Java bytecode, but the lowering and
UDF analysis can be implemented for Python or applied to other
multi-language pipelines (e.g., Pandas [43], DyradLINQ [22]) whose
UDFs can be compiled to an IR (e.g., asm, .NET, LLVM).

7 EVALUATION
In this section, we experimentally evaluate Acorn and find that 1)
Acorn can significantly accelerate workloads compared to Spark
SQL, with benefits of 2× and 5× for benchmark workloads with
and without UDFs, respectively; 2) Acorn outperforms the alterna-
tives for predicate analysis described in §4 by avoiding unnecessary
query optimization; 3) Acorn’s benefits range from 1.4×–3.2× for
real graph algorithm workloads; 4) Acorn can translate 90% of
UDFs collected from multiple real Spark workloads, many of which
Froid [56] cannot; and 5) overheads for Acorn’s predicate analysis
and UDF translation techniques are negligible.

Figure 4: Evaluating Acorn on the SQL-only (no UDFs) TPC-DS work-
load. Bars represent median workload completion times (i.e., summing
across all queries in the workload), with error bars spanning min to
max.

7.1 Methodology
We evaluate Acorn on three main workloads:

TPC-DS v2.1: From this big data benchmark [3], we use all 4
queries marked as “iterative,” which each come with 2-5 variants.
We also select 10 random “reporting” queries which are parameter-
ized by a random number generator; we create multiple variants by
resampling the parameter values. In total, we use 14 base queries
from TPC-DS with 28 variants, for a total of 42 queries. To create
UDF versions of the queries, we convert the SQL string to an equiv-
alent query that uses the Spark SQL DataFrame API (§2). We mark
the first executed variant of each query for caching, allowing queries
later in the sequence to reuse previously cached queries; the cache is
cleared between runs.

TPC-H: For this benchmark [3], we use all 22 queries. These queries
directly include 7 UDFs, and we augment this list with the 12 ad-
ditional UDFs used in the evaluation of Froid [56]. In total, this
workload includes 19 UDFs and 34 UDF invocations; we manually
rewrote each UDF into an equivalent Scala version. We use dataset
sizes of 1, 10, and 100 GB for this and TPC-DS.

Real-world workloads: We use two graph algorithms from the
GraphFrames Spark graph processing library [2]: connected com-
ponents and belief propagation. Belief propagation contains one
UDF to color the graph, while connected components has none.
For datasets, we use publicly available snapshots of graph data
from the SnapNet project [40]: a snapshot of the Twitter network
from 2010 with 41.6 million vertices and 1.5 billion edges, and
a snapshot of the Berkeley-Stanford web graph with 700K ver-
tices and 7.6 million edges. In addition, to evaluate Acorn’s UDF
translation, we extract real UDFs from seven open-source reposito-
ries. [5, 10, 44, 49, 50, 61, 63]

We compare five systems. Our Baseline is unmodified Spark
(v2.4), and we consider two versions of Acorn: Acorn_cache_only
performs predicate analysis-based cache detection, while Acorn also
uses UDF translation. In addition, we implemented and evaluate
the alternative predicate analysis approaches described in §4: Swap
and Double. Each workload is run five times with each system,
with the cache cleared between runs, and we report on the overall
distributions. Tests were conducted on a 16 machine cluster, where
each machine ran Ubuntu 12.04 and had an i7-4770 processor, 32
GB of RAM, and 1 TB disk.

7.2 Aggressive Caching with Acorn
Here we evaluate Acorn’s caching, without considering UDF trans-
lation (i.e., Acorn_cache_only).

Figure 5: Breaking down Acorn’s execution, compared to Swap and
Double, on the 29 queries in the TPC-DS workload which automatically
used some cached data. Results are for the 10 GB dataset, and times are
the median of five runs.

Speedups: Figure 4 shows that subplan caching improves runtimes
by 2.2× for the entire 1GB and 10GB TPC-DS workloads (161s,
662s saved respectively), and up to 2.7× for the 100GB dataset
(5942s saved). Since this workload doesn’t contain UDFs, Acorn,
Swap, and Double identify caching opportunities for the same 26
queries (69%), compared to 14 (33%) for the baseline.

The larger improvements on the 100GB data are because the
queries become disk-bound. On smaller datasets, the data is read
into memory once and used to serve all queries against that data.
For larger queries, the entire dataset must be paged into memory for
each query since it cannot entirely fit. Therefore, larger datasets see
more benefit from caching since in-memory relations can be used
rather than reading from disk.
Sample TPC-DS queries: Figure 6 lists several example queries
from the TPC-DS benchmark which illustrate various subsumption
relationships which Acorn can identify and exploit. The first segment
shows the SQL syntax for Q39a and Q39b. As shown, Q39a omits
the last predicate, commented in red, which is present in Q39b—
this represents a common total subsumption pattern in which an
additional predicate is applied to the result of a previous query.
Acorn is able to recognize this total subsumption relationship and
reuse the results of Q39a, unlike baseline Spark.

Q23a includes a union all operator over two subqueries; note
that the subqueries are condensed for brevity as Subplan A and
Subplan B. Q23b calculates an aggregate over one of the output
columns of Q23a, again demonstrating a total subsumption relation-
ship. Q23c adds new predicates to both Subplan A and Subplan
B. Unlike baseline Spark which re-executes the entire query, Acorn
can reuse the subqueries from Q23a or Q23b.

Finally, the last example demonstrates how TPC-DS query pa-
rameters are re-rolled to generate alternative versions of reporting
queries. The Q37 template generates new queries by randomly pick-
ing the parameters labeled (i), (ii), and (iii). There are three possible
cases for reuse across rolls. For total subsumption, (i) must exactly
match, and the second rolls of (ii) and (iii) must either match the first
rolls exactly or produce subsets of the first roll values. For partial
subsumption, either (i) must be an exact match and (ii) must be a
subset in which case the item table can be reused, OR (iii) must be
a subset in which case the inventory table can be reused. Acorn
is able to detect all three subsumption scenarios.
Benefits of partial query optimization: Acorn, Swap, and Dou-
ble identify the same caching opportunities in TPC-DS. However,

Figure 6: A selection of TPC-DS queries with differences highlighted
in red on commented lines. These examples illustrate several caching
opportunities missed by baseline Spark but detected by Acorn.

Figure 5 shows that Swap and Double can nearly double the final
runtimes of queries served from the cache due to excessive optimiza-
tion overheads. The reason is that both Swap and Double force some
cached queries through the full optimizer: Swap fully optimizes
all queries to find exact or inexact cache matches, while Double
fully optimizes queries without exact matches (including those with
inexact matches). The median cost of this unnecessary optimization
for Swap and Double is 0.43ms per query (12.5s total). Since the
median query runtime is only 0.37ms, overheads of this optimization
vary from 100–1000% of the overall query runtimes.

High optimization costs are particularly relevant for iterative
workloads (e.g., graph processing, ML training) that append to larger
and larger plans each iteration. Using the plan after each iteration
of GraphFrames’ connected components algorithm (§7.1), the full
optimization cost grows exponentially whereas Acorn’s partial opti-
mization grows linearly (Figure 7). The same trend holds for belief
propagation, which we omit for space.

Figure 7: Spark SQL’s full optimization (Baseline) versus Acorn’s par-
tial optimization on the connected components algorithm. Note that the
y-axis is logarithmic.

Figure 8: Baseline Spark versus Acorn on the TPC-H workload (scaled
to 10 GB), with and without UDFs.

Cache search overheads: We now study the overhead of using
predicate analysis to search the cache by rerunning the TPC-DS
iterative workload on a 10 GB dataset. In this experiment, we filled
Spark SQL’s cache index with all 104 TPC-DS queries and measure
the time spent in the search algorithm. The total time spent in search
was 10.42s (.1s per query), in part because the matching algorithm
can terminate early at multiple places, such as comparing base tables.
Note that although the search time is runtime agnostic, this implies
an overhead of <1% of execution time.

7.3 Acorn’s UDF Translation
We now evaluate Acorn’s transparent UDF translation.

Cost of UDFs: Prior work in Froid [56] showed that UDFs incur
a 100-10,000× slowdown compared to native relational operators.
Thus, we first measure the overhead of using UDFs. Figure 8 com-
pares the overhead of using UDFs by comparing baseline Spark on
the 10GB TPC-H benchmark without UDFs, with relational opera-
tors replaced with Scala UDFs as in Froid, and Acorn on TPC-H with
the same UDFs. TPC-H is non-iterative and no queries are cached,
thus the differences are due to opening the UDFs to the optimizer.
Using UDFs slow baseline Spark by 1.4×, whereas Acorn translates
100% of the UDFs, eliminating serialization overheads and bring-
ing Acorn’s performance in-line with the pure relational version.
Per-operator UDF overhead was 80-100×—we speculate that the
discrepancy with Froid may be due to Spark’s efficient Kryo serial-
izer, our use of a 16-machine cluster rather than a single machine,
and that SQLServer’s native operators are faster than Spark’s.

Figure 9: Original and Acorn-translated UDFs from real-world Spark
workloads.

Translating real UDFs: We extracted and ran the UDF transla-
tor on 30 Scala and Java UDFs from seven open-source reposito-
ries [5, 10, 44, 49, 50, 61, 63] that contained Spark applications. In
total, Acorn translated 27 of them (90%). Two of these could not
be translated because the UDF performed some form of I/O which
cannot be expressed as a native operator, an inherent limitation of
translation. The third required translating a call to an unrecognized,
external library function; although Acorn can perform the transla-
tion, we are cautious and disallow it since it may lead to loading
large library binaries and cause JVM memory contention during
translation. Example UDF translations: Figure 9 shows three ex-
ample UDF translations with Acorn. The first is a UDF (written in
Scala) taken from the TPC-H workload. The UDF includes common
programming language mechanics such as variable declaration and
short-circuiting boolean logic. As discussed in §5.2 and shown in
the example, Acorn circumvents lack of short-circuiting recognition
by breaking conjunctive logic into nested if statements. We note
that state-of-the-art translators like Froid [56] can translate UDFs
with such features.

The second and third UDFs contain examples of language features
which Froid does not support. The second is a closure that, when
applied to a typed DataFrame, extracts a class field named birth as
a column and performs a simple filter. Note that the translation of this
UDF depends on the DataFrame to which it is applied, highlighting
the importance of dynamic translation based on the currently loaded
class definition: if the DataFrame schema or class file does not
have an accessible class field named birth, the UDF will raise
an error and Acorn’s translation will change accordingly. The third
UDF takes a row from a DataFrame, splits it according to a regular
expression, and then creates an object instance using the result.

Figure 10: Acorn vs baseline Spark SQL on the TPC-H workload (10
GB dataset), with varying fractions of query operators being replaced
by UDFs.

Froid has no clear mechanism for translating object-to-relation
constructs such as the class field extraction in the second UDF and
the object created in the third UDF. In contrast, Acorn leverages its
ability to encode an entire table definition as an expression and use
of object reflection to translate both UDFs.

Translation overheads: Translating UDFs with Acorn is a multi-
step process. To understand the associated overheads, we test a
version of Acorn that performs all of the translation steps other than
rewriting. We evaluate this version of Acorn on all 24 UDFs in the
TPC-H workload (10 GB), and observe that the total translation time
is 540 ms, or 22.5 ms per query, which is well within the margin of
variability for workload completion time. Indeed, median workload
completion time with this version of Acorn was still 872 ms faster
than the baseline due to normal variance.

7.4 Acorn: Putting it all Together
We next investigate the effects of combining Acorn’s predicate
caching and UDF translation.

Benchmarks: In this experiment, we replace relational operators in
the TPC-DS benchmark with UDF versions of those operators. To
investigate how performance changes with different workload prop-
erties, we vary the percentage of operators replaced with UDFs from
20%–100%. As shown in Figure 10, Acorn significantly improves
performance over the baseline. Speedups with Acorn were 2.6×
with 20% of operators replaced, and sharply increased to 4.35× and
5.3× for 80% and 100% replacements, respectively. The reason is
that, unlike the baseline, Acorn’s performance remains mostly flat
as more UDFs are introduced, since it can translate those UDFs and
find reuse opportunities.

Graph algorithms:
We also evaluated Acorn on two popular graph processing algo-

rithms: connected components and belief propagation (§7.1). As
Spark SQL’s poor optimization performance is well known, a com-
mon “hack” to subvert this inefficiency is for workloads to force
materialization by caching datasets, converting them to a (now depre-
cated) internal data structure, and converting them back. Compared
to the optimized baseline, Acorn provides median speedups of 1.4×

Figure 11: Acorn vs baseline Spark SQL on two graph processing
algorithms: connected components (CC) and belief propagation (BP).
Baseline (Optimized) manually forces materialization of inter-
mediate data structures. Experiments used snapshots of a Twitter fol-
lower graph (Twitter) and the Berkeley-Stanford web (BerkStan) [40].

and 1.7× for connected components and belief propagation (Fig-
ure 11); Acorn’s speedups are 2.3× and 3.2× over the baseline—all
without any developer intervention.

8 RELATED WORK
Multi-query Optimization: Materialized views [24, 32, 70] and
their maintenance [27, 45, 71] has received much attention in
databases. We draw on many of these principles to find containment
relationships. However, our focus is on efficiently applying these
techniques to the new domain of data analytics frameworks with lazy
query planning and UDFs. Further, view maintenance does not apply
in this environment since source relations are immutable (unlike
with databases). Other systems [51] find work-sharing opportunities
within intermediate results for queries executed simultaneously. Our
approach is complementary as we target result caching for queries
that are handled separately.
Result Caching in Data Processing Systems: ReStore [21] em-
ploys result caching and incremental computation in MapReduce-
like systems but uses graph-based searches to compare physical
operators. Unlike Acorn, ReStore requires optimized query plans
and also ignore UDFs. PigReuse [11] provides an alternative using
predicate analysis on analyzed query plans. However, PigReuse’s
methods are specifically designed for restricted variants of PigLatin;
we focus on general purpose languages with many more operators.
CloudViews [34] finds useful subexpressions for caching in shared
cloud jobs. This, and similar related work which adds the caching
annotations assumed by Acorn, is fully complementary to our goal,
although unwrapping UDFs would strengthen such annotations.
Domain Specific Languages for Data Processing: Several prior
approaches provide new, heavily optimized languages for data ana-
lytics environments [46, 54, 55]. These techniques provide expres-
sive (but performant) languages that are alternatives for efficiently
writing and evaluating UDFs. However, using these languages re-
quires manual rewriting of workloads. Instead, Acorn transparently
accelerates unmodified workloads.
Optimizing UDFs: Several systems parse UDFs and extract infor-
mation to aid the optimization of program execution [17, 18]. These
approaches are orthogonal to Acorn, which can be modified to ex-
tract similar optimization properties during UDF translation. This,

however, would require changes to Spark SQL’s query optimizer; in
contrast, Acorn’s components are transparent to downstream pipeline
components.

Bytecode analysis can extract key properties from UDFs that are
strong enough to enable reordering [31, 57]. However, the derived an-
notations are not strong enough to detect subsumption relationships
for aggressive caching [20, 58]. Other approaches have detected
subsumption relationships with UDFs [39], but require manual UDF
annotation and only work with registered UDFs (limiting benefits
for Spark SQL where anonymous UDFs are common).

Perhaps closest to our approach is Froid [56] which inlines UDFs
into SQL queries. Froid translates each statement in isolation, can-
not ensure type-safety with generics, and requires a separate, cus-
tomized mapping class for each imperative construct. Instead, Acorn
uses symbolic execution (traditionally used for model checking and
constructing logic formulas) to dynamically connect sequences of
statements. This is critical, since Java bytecode frequently erases
generic types, which are extensively used to declare lists and SQL
relations.

For example, a UDF might create and fill a Row<T>. Froid’s
parse-and-map strategy does not allow user-defined types, let alone
generics: because of bytecode type erasure, Froid would create a
table of Objects for use in subsequent statements in the UDF. This
introduces exceptions if the Row is later cast back to the original
type. Instead, symbolic execution lets Acorn treat the variable as
Row<Object> until a cast is performed or a specific subtype is
found, update the type, and then propagate this type information
to subsequent statements. Handling these subtle details lets Acorn
support UDFs with generics, reflection, and virtual function invoca-
tions, which Froid cannot. Thus, while Froid can effectively handle
the constrained T-SQL language, it is intractable (and unsafe) for
general purpose languages.
Program Equivalence and Synthesis: Certain systems use equiv-
alence detection techniques [16, 62] or program synthesis [6] to
analyze imperative code in search of equivalent and more perfor-
mant rewrites (e.g., MapReduce programs). These systems can be
used to automatically rewrites UDFs into native equivalents. How-
ever, they are generally meant to run offline. For example, despite the
fact that Casper [6] accelerates the synthesis process by searching
over program summaries, it still takes an average of several minutes
to run. In contrast, we target online UDF translation.

9 CONCLUSION
The benefits that modern data analytics frameworks have achieved
by using immutable datasets and increased support for UDFs have
come at the cost of suboptimal result caching. This paper presented
two novel techniques to efficiently enable aggressive result caching
in theese frameworks. First, we described a judicious adaptation
of predicate analysis on analyzed query plans that avoids unneces-
sary query optimization. Second, we presented a UDF translator
that transparently compiles UDFs, expressed in general purpose
languages, into native equivalents. Experiments with our imple-
mentation of these techniques, Acorn, on several benchmark and
real-world datasets revealed speedups of 2×–5× over Spark SQL.
Though our implementation and results use Spark SQL, the un-
derlying techniques generalize to other distributed data processing
systems.

REFERENCES
[1] [n.d.]. CouchDB. https://couchdb.apache.org/.
[2] [n.d.]. GraphFrames Overview. https://graphframes.github.io/

graphframes/docs/_site/index.html.
[3] [n.d.]. TPC Benchmarks. http://www.tpc.org/default.asp.
[4] 2017. Apache Hadoop. http://hadoop.apache.org.
[5] AbhinavkumarL. [n.d.]. PageRank_InvertedIndex. https://

github.com/AbhinavkumarL/PageRank_InvertedIndex/.
[6] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automat-

ically leveraging mapreduce frameworks for data-intensive
applications. In Proceedings of the 2018 International Confer-
ence on Management of Data. ACM, 1205–1220.

[7] MichaÅĆ ÅŽwitakowski Alicja Luszczak,
MichaÅĆ SzafraÅĎski and Reynold Xin. [n.d.].
Databricks Cache Boosts Apache Spark Performance.
https://databricks.com/blog/2018/01/09/databricks-cache-
boosts-apache-spark-performance.html.

[8] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai,
Davies Liu, Joseph K Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J Franklin, Ali Ghodsi, et al. 2015. Spark sql: Rela-
tional data processing in spark. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data. ACM, 1383–1394.

[9] MKABV Bittorf, Taras Bobrovytsky, CCACJ Erickson, Martin
Grund Daniel Hecht, MJIJL Kuff, Dileep Kumar Alex Leblang,
NLIPH Robinson, David Rorke Silvius Rus, JRDTS Wander-
man, and Milne Michael Yoder. 2015. Impala: A modern, open-
source SQL engine for Hadoop. In Proceedings of the 7th
Biennial Conference on Innovative Data Systems Research.

[10] biyingbin. [n.d.]. laobi-spark. https://github.com/biyingbin/
laobi-spark.

[11] Jesús Camacho-Rodríguez, Dario Colazzo, Melanie Herschel,
Ioana Manolescu, and Soudip Roy Chowdhury. 2016. Pi-
gReuse: A Reuse-based Optimizer for Pig Latin. Ph.D. Dis-
sertation. Inria Saclay.

[12] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh,
Deborah A Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E Gruber. 2008. Bigtable: A distributed stor-
age system for structured data. ACM Transactions on Computer
Systems (TOCS) 26, 2 (2008), 4.

[13] Surajit Chaudhuri. 1998. An overview of query optimization
in relational systems. In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of data-
base systems. ACM, 34–43.

[14] Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive
query containment revisited. Theoretical Computer Science
239, 2 (2000), 211–229.

[15] Rada Chirkova and Jun Yang. 2012. Materialized Views. Foun-
dations and Trends in Databases 4, 4 (2012), 295–405. https:
//doi.org/10.1561/1900000020

[16] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu.
2017. HoTTSQL: Proving Query Rewrites with Univalent SQL
Semantics. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI 2017). ACM, New York, NY, USA, 510–524.

https://couchdb.apache.org/
https://graphframes.github.io/graphframes/docs/_site/index.html
https://graphframes.github.io/graphframes/docs/_site/index.html
http://www.tpc.org/default.asp
http://hadoop.apache.org
https://github.com/AbhinavkumarL/PageRank_InvertedIndex/
https://github.com/AbhinavkumarL/PageRank_InvertedIndex/
https://databricks.com/blog/2018/01/09/databricks-cache-boosts-apache-spark-performance.html
https://databricks.com/blog/2018/01/09/databricks-cache-boosts-apache-spark-performance.html
https://github.com/biyingbin/laobi-spark
https://github.com/biyingbin/laobi-spark
https://doi.org/10.1561/1900000020
https://doi.org/10.1561/1900000020

[17] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska,
Carsten Binnig, Ugur Cetintemel, and Stan Zdonik. 2015.
An Architecture for Compiling UDF-centric Workflows. Proc.
VLDB Endow. 8, 12 (Aug. 2015), 1466–1477.

[18] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska,
Ugur Cetintemel, and Stan Zdonik. 2015. Tupleware: “Big”
Data, Big Analytics, Small Clusters. (2015).

[19] Databricks. [n.d.]. Getting Started With Apache Spark
on Databricks. https://databricks.com/product/getting-started-
guide/datasets.

[20] Christos Doulkeridis and Kjetil Norvåg. 2014. A Survey of
Large-scale Analytical Query Processing in MapReduce. The
VLDB Journal 23, 3 (June 2014), 355–380.

[21] Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore:
reusing results of MapReduce jobs. Proceedings of the VLDB
Endowment 5, 6 (2012), 586–597.

[22] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Úl-
far Erlingsson, and Pradeep Kumar Gunda Jon Currey. 2009.
DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. Proc. LSDS-IR
8 (2009).

[23] Marco Fiore, Francesco Mininni, Claudio Casetti, and C-F Chi-
asserini. 2009. To cache or not to cache?. In IEEE INFOCOM
2009. IEEE, 235–243.

[24] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing
queries using materialized views: a practical, scalable solution.
In ACM SIGMOD Record, Vol. 30. ACM, 331–342.

[25] Goetz Graefe and William McKenna. 1991. The Volcano op-
timizer generator. Technical Report. COLORADO UNIV AT
BOULDER DEPT OF COMPUTER SCIENCE.

[26] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A.
Thekkath, Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic
Management of Data and Computation in Datacenters. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI’10). USENIX Association,
Berkeley, CA, USA, 75–88.

[27] Ashish Gupta, Inderpal Singh Mumick, et al. [n.d.]. Mainte-
nance of materialized views: Problems, techniques, and appli-
cations. ([n. d.]).

[28] Himanshu Gupta and Inderpal Singh Mumick. [n.d.]. Selection
of Views to Materialize in a Data Warehouse. ([n. d.]).

[29] Alon Y. Halevy. 2001. Answering Queries Using Views: A
Survey. The VLDB Journal 10, 4 (Dec. 2001), 270–294. https:
//doi.org/10.1007/s007780100054

[30] Joseph M Hellerstein and Michael Stonebraker. 1993. Predi-
cate migration: Optimizing queries with expensive predicates.
Vol. 22. ACM.

[31] Fabian Hueske, Mathias Peters, Matthias J Sax, Astrid Rhein-
länder, Rico Bergmann, Aljoscha Krettek, and Kostas Tzoumas.
2012. Opening the black boxes in data flow optimization. Pro-
ceedings of the VLDB Endowment 5, 11 (2012), 1256–1267.

[32] Yannis E Ioannidis and Raghu Ramakrishnan. 1995. Contain-
ment of conjunctive queries: Beyond relations as sets. ACM
Transactions on Database Systems (TODS) 20, 3 (1995), 288–
324.

[33] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe,
and Ed Lazowska. 2016. SQLShare: Results from a Multi-Year

SQL-as-a-Service Experiment. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD
’16). ACM, 281–293.

[34] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren
Patel. 2018. Selecting Subexpressions to Materialize at Dat-
acenter Scale. Proc. VLDB Endow. 11, 7 (March 2018), 800–
812.

[35] Kamal Kc and Kemafor Anyanwu. 2010. Scheduling hadoop
jobs to meet deadlines. In Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Confer-
ence on. IEEE, 388–392.

[36] Alexander Kiel. 2013. Datomic-a functional database. (2013).
[37] Michael Kinsey and Heather Miller. 2018. Tour of Scala:

Pattern Matching. https://docs.scala-lang.org/tour/pattern-
matching.html.

[38] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shiv-
nath Babu. 2017. ROBUS: Fair Cache Allocation for Data-
parallel Workloads. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (SIGMOD ’17).
ACM, 219–234.

[39] Jeff LeFevre, Jagan Sankaranarayanan, Hakan Hacigumus, Ju-
nichi Tatemura, Neoklis Polyzotis, and Michael J Carey. 2014.
Opportunistic physical design for big data analytics. In Pro-
ceedings of the 2014 ACM SIGMOD International Conference
on Management of Data. ACM, 851–862.

[40] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stan-
ford Large Network Dataset Collection. http://snap.stanford.
edu/data.

[41] Imene Mami and Zohra Bellahsene. [n.d.]. A Survey of View
Selection Methods. ([n. d.]).

[42] Arun Marathe. 2006. Batch Compilation, Recompilation, and
Plan Caching Issues in SQL Server 2005. Technical Report.

[43] Wes McKinney. 2011. pandas: a foundational Python library
for data analysis and statistics. Python for High Performance
and Scientific Computing 14 (2011).

[44] mengxr. [n.d.]. spark-als. https://github.com/mengxr/spark-als.
[45] Hoshi Mistry, Prasan Roy, S Sudarshan, and Krithi Ramam-

ritham. 2001. Materialized view selection and maintenance
using multi-query optimization. In ACM SIGMOD Record,
Vol. 30. ACM, 307–318.

[46] Walaa Moustafa. 2018. Transport: Towards Logical
Independence Using Translatable Portable UDFs.
https://engineering.linkedin.com/blog/2018/11/using-
translatable-portable-UDFs.

[47] Sandhya Narayan, Stuart Bailey, and Anand Daga. 2012.
Hadoop acceleration in an openflow-based cluster. In High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. IEEE, 535–538.

[48] Thomas Neumann. 2011. Efficiently compiling efficient query
plans for modern hardware. Proceedings of the VLDB Endow-
ment 4, 9 (2011), 539–550.

[49] NicoViregan. [n.d.]. country-facts. https://github.com/
NicoViregan/country-facts/.

[50] nodesense. [n.d.]. gl-spark-scala. https://github.com/nodesense/
gl-spark-scala/b.

[51] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George
Kollios, and Nick Koudas. 2010. MRShare: sharing across

https://databricks.com/product/getting-started-guide/datasets
https://databricks.com/product/getting-started-guide/datasets
https://doi.org/10.1007/s007780100054
https://doi.org/10.1007/s007780100054
https://docs.scala-lang.org/tour/pattern-matching.html
https://docs.scala-lang.org/tour/pattern-matching.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://github.com/mengxr/spark-als
https://engineering.linkedin.com/blog/2018/11/using-translatable-portable-UDFs
https://engineering.linkedin.com/blog/2018/11/using-translatable-portable-UDFs
https://github.com/NicoViregan/country-facts/
https://github.com/NicoViregan/country-facts/
https://github.com/nodesense/gl-spark-scala/b
https://github.com/nodesense/gl-spark-scala/b

multiple queries in MapReduce. Proceedings of the VLDB
Endowment 3, 1-2 (2010), 494–505.

[52] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, and Andrew Tomkins. [n.d.]. Pig Latin: A Not-so-
foreign Language for Data Processing.

[53] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker,
and Byung-Gon Chun. 2015. Making Sense of Performance
in Data Analytics Frameworks. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association.

[54] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag,
Malte Schwarzkopf, Holger Pirk, Saman Amarasinghe, Samuel
Madden, and Matei Zaharia. 2018. Evaluating End-to-end Opti-
mization for Data Analytics Applications in Weld. Proc. VLDB
Endow. 11, 9 (May 2018), 1002–1015.

[55] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden.
[n.d.]. Voodoo - a Vector Algebra for Portable Database Perfor-
mance on Modern Hardware. ([n. d.]).

[56] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani,
Alan Halverson, César Galindo-Legaria, and Conor Cunning-
ham. 2017. Froid: Optimization of Imperative Programs in a
Relational Database. Proc. VLDB Endow. 11, 4 (Dec. 2017),
432–444. https://doi.org/10.1145/3164135.3164140

[57] Astrid Rheinländer, Arvid Heise, Fabian Hueske, Ulf Leser,
and Felix Naumann. 2015. SOFA. Inf. Syst. 52, C (Aug. 2015),
96–125. https://doi.org/10.1016/j.is.2015.04.002

[58] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. 2017. Opti-
mization of Complex Dataflows with User-Defined Functions.
ACM Comput. Surv. 50, 3, Article 38 (May 2017), 39 pages.

[59] Prasan Roy, Krithi Ramamritham, S Seshadri, Pradeep Shenoy,
and S Sudarshan. 2000. Don’t trash your intermediate results,
cache’em. arXiv preprint cs/0003005 (2000).

[60] Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh
Bhobe. 2000. Efficient and extensible algorithms for multi
query optimization. In ACM SIGMOD Record, Vol. 29. ACM,
249–260.

[61] Ryuka123. [n.d.]. kugou_music. https://github.com/Ryuka123/
kugou_music/.

[62] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K.
Roy, and Cristina V. Lopes. 2016. SourcererCC: Scaling Code

Clone Detection to Big-code. In Proceedings of the 38th In-
ternational Conference on Software Engineering (ICSE ’16).
ACM, New York, NY, USA, 1157–1168.

[63] sryza. [n.d.]. aas. https://github.com/sryza/aas/.
[64] Dimitri Theodoratos and Timos K. Sellis. [n.d.]. Data Ware-

house Configuration.
[65] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,

Patrick Lam, and Vijay Sundaresan. 2010. Soot: A Java byte-
code optimization framework. In CASCON First Decade High
Impact Papers. IBM Corp., 214–224.

[66] Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplify-
ing Java bytecode for analyses and transformations. (1998).

[67] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott
Shenker, and Ion Stoica. [n.d.]. Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Comput-
ing.

[68] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Clus-
ter Computing. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation
(NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

[69] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H
Katz, and Ion Stoica. 2008. Improving MapReduce perfor-
mance in heterogeneous environments.. In Osdi, Vol. 8. 7.

[70] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo,
and Guy Lohman. 2001. On supporting containment queries
in relational database management systems. In Acm Sigmod
Record, Vol. 30. ACM, 425–436.

[71] Jingren Zhou, Per-Ake Larson, and Hicham G Elmongui. 2007.
Lazy maintenance of materialized views. In Proceedings of the
33rd international conference on Very large data bases. VLDB
Endowment, 231–242.

[72] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag,
and Wolfgang Lehner. 2007. Efficient Exploitation of Simi-
lar Subexpressions for Query Processing. In Proceedings of the
2007 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’07). ACM, New York, NY, USA, 533–544.

https://doi.org/10.1145/3164135.3164140
https://doi.org/10.1016/j.is.2015.04.002
https://github.com/Ryuka123/kugou_music/
https://github.com/Ryuka123/kugou_music/
https://github.com/sryza/aas/
http://dl.acm.org/citation.cfm?id=2228298.2228301

	Abstract
	1 Introduction
	2 Background
	3 Motivating Examples
	3.1 Need 1: Aggressive Identification of Result Caching Opportunities
	3.2 Need 2: Result Caching Support for UDFs

	4 Aggressive Result Caching
	4.1 Challenges and Approach
	4.2 Detecting Subsumption on Analyzed Plans

	5 Transparent UDF Compilation
	5.1 Goals and Solution Overview
	5.2 UDF Translation
	5.3 Correctness and Limitations

	6 Acorn
	6.1 Judicious Predicate Analysis
	6.2 Transparent UDF Translation
	6.3 Generalizing Beyond Spark SQL

	7 Evaluation
	7.1 Methodology
	7.2 Aggressive Caching with Acorn
	7.3 Acorn's UDF Translation
	7.4 Acorn: Putting it all Together

	8 Related Work
	9 Conclusion

