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ABSTRACT

Electro-Optical (EO) and Infra-Red (IR) sensors have been jointly deployed in many surveillance systems. In this
work we study the special characteristics of optical flow in IR imagery, and introduce an optical flow estimation
method using co-registered EO and IR image frames. The basic optical flow calculation is based on the combined
local and global (CLG) method (Bruhn, Weickert and Schnorr, 2002), which seeks solutions that simultaneously
satisfy a local averaged brightness constancy constraint and a global flow smoothness constraint. While CLG
method can be directly applied to IR image frames, the estimated optical flow fields usually manifest high level
of random motions caused by thermal noise. Furthermore, IR sensors operating at different wavelengths, e.g.
meddle-wave infrared (MWIR) and long-wave infrared (LWIR), may yield inconsistent motions in optical flow
estimation. Because of the availability of both EO and IR sensors in many practical scenarios, we propose to
estimate optical flow jointly using both EO and IR image frames. This method is able to take advantage of the
complementary information offered by these two imaging modalities. The joint optical flow calculation fuses the
motion fields from EO and IR images using a cross-regularization mechanism and a non-linear flow fusion model
which aligns the estimated motions based on neighbor activities. Experiments performed on the OTCBVS
dataset demonstrated that the proposed approach can effectively eliminate many unimportant motions, and
significantly reduce erroneous motions, such as sensor noise.
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1. INTRODUCTION

Many existing surveillance systems are now equipped with both visible light electro-optical (EO) cameras and
infrared (IR) cameras. However most of these cameras are operated separately, with EO cameras mainly produc-
ing day-light visions, and IR cameras producing night visions. Intuitively we recognize that EO and IR cameras
may provide complementary information if they are used jointly. An EO image mostly represents the intensities
of reflected visible lights from certain object in the field of view, while an IR image captures the thermal profile
of the object. The objective of this work is to study effective methods that can fuse the visual information from
these two types of cameras for motion analysis in the context of surveillance and monitoring.

IR images are normally of low resolution and are lack of distinctive textures. However, it can easily highlight
heated objects regardless of light conditions. IR images are formed on the basis of heat emissivity, conductivity as
well as reflection properties of material surface. On the other hand, EO images provide better color, texture, and
shape features of the target object. But they are very sensitive to illumination variations, which may be caused
by weather, shadow, time of day, and/or multiple light sources etc. Therefore, joint EO/IR systems have become
attractive solutions for providing robust detection and tracking performance under various practical operation
environments. In1,2 Kang et al. introduced an interesting example of joint EO/IR system for surveillance, in
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which a joint probability model for EO and IR features was proposed for data fusion, and a Kalman filter was
used to track objects and resolve occlusions.

Motion estimation is an important component in computer vision and video analysis. The 3D motion of
a scene can be described by a motion field, which specifies the 3D velocities at each point of the scene. In a
captured 2D image, the 3D motion field is only represented by its 2D projection, which can be estimated in the
form of “optical flow”. Optical flow is a velocity field in the image which transforms one image into the next
image in a sequence.3 The velocities in optical flow represent the spatial variations of pixel brightness or color
intensity in the image.

Optical flow estimation has been extensively studied since 1980’s. Existing methods are mostly based on
computing the spatial and temporal image derivatives, which are referred to as “differential methods”. Depending
on the optimization criteria, most methods can be classified into two generally categories.4 The criteria of the
first category are based on local constancy constraints, and the criteria of the second category include certain
global flow energy measures. Example works belonging to the first category include Lucas and Canade (1981),5

Lucas (1984),6 Bigün and Granlund (1988),7 Golland and Bruckstein (1997)8; and works belonging to the
second category include Horn and Schunck (1981),3 Nagel and Enkelman (1983),9 Bruhn et al. (2002),10 Brox
et al. (2004).11 Two benchmark studied were reported by Barron et al. (1994)12 and Galvin et al. (1998)
—citegalvin98, which concluded that local methods may have higher robustness to noise, but can not produce
dense flow field, and global methods can produce dense flow filed but are sensitive to noise. While most of the
optical flow works are based on visible light images, Haussecker and Fleet (2001)13 studied optical flow estimation
on infrared images where brightness constancy may be violated. To the best of authors’ knowledge, no work
have been done on optical flow estimation on joint EO and IR images.

The rest of this paper is organized as follows. In Section 2 we introduce the basic optical flow theory and
two estimation methods. In Section 3 we introduce present detailed discussion on the methods for joint EO/IR
optical flow estimation. The experimental results are provided in Section 4. The paper is concluded in Section
5.

2. OPTICAL FLOW

A fundamental assumption in optical flow estimation is “brightness constancy”, which states that the brightness
of each point of the object in the image is invariant under motion. Given an object point P , at time t, its position
in the image is x = [x, y]t, and its 2D projection of velocity vector in the image is u = [u, v]t. After a time δt,
the new position of this point becomes x + uδt = [x + uδt, y + vδt]t. Let the brightness of this point at time t
be I(x, t), the brightness constancy assumption can be expressed as

I(x, t) = I(x + uδt, t + δt). (1)

u(x, y, t) =
dx

dt
, v(x, y, t) =

dy

dt
(2)

are the components of optical flow vector at P (x, y, t). Equation (1) can be expanded in Taylor series as

I(x, t) = I(x, t) +
∂I

∂x
uδt +

∂I

∂y
vδt +

∂I

∂t
δt + O(δt2). (3)

Assuming small displacements and delay, we have

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
= 0, (4)

which is the main optical flow constraint equation. ∂I
∂x , ∂I

∂y and ∂I
∂t are quantities observed from the image

sequence, and [u, v]t are to be calculated. Apparently equation (4) alone is not sufficient to determine the two
unknowns in [u, v]t, which is known as the “aperture problem”14 , additional constraints are needed.
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2.1. Motion from Color Method

Among various constraints been proposed over the years, one approach appears to have direct relevance to
joint EO and IR video analysis, that is optical flow from color images. Ohta15 and Golland and Bruckstein8

studied multiple constraints based on functions that are extracted from R, G and B color channels. Similar to
brightness constancy assumption, this approach assumes invariance of three color components. More specifically
this assumption implies that the (R, G, B) or (H, S, I) values of a certain point in the image will not change
under motion of this point. This provides three separate constraints.8

∂IR

∂x
u +

∂IR

∂y
v +

∂IR

∂t
= 0, (5)

∂IG

∂x
u +

∂IG

∂y
v +

∂IG

∂t
= 0, (6)

∂IB

∂x
u +

∂IB

∂y
v +

∂IB

∂t
= 0. (7)

The solution to these equations can be expressed as

u = (AtA)−1Atb, (8)

where

A =

⎡
⎣

IRx IRy

IGx IGy

IBx IBy

⎤
⎦ , b =

⎡
⎣

−IRt

−IGt

−IBt

⎤
⎦ . (9)

The necessary condition of this solution is that AtA is not singular. However this condition may easily be
violated because correlations frequently exist among RGB components in nature images. In such cases, Golland
and Bruckstein8 used the condition number of matrix AtA to indicate the confidence of the pseudo-inverse
solution.

2.2. Combined Local and Global Optical Flow Method

The pioneering works by Lucas and Kanade (1981)5 and Horn and Schunch (1981)3 remain to be highly influential
in optical flow field. The Lucas-Kanade method is focused on local flow constraint and the Horn-Schunch method
emphasizes global flow coherence. One of the major progress in recently years is the combined local and global
(CLG) optical flow method by Bruhn, Weickert and Schnorr (2002)10 , which essentially incorporates the Lucas-
Kanade method with the Horn-Schunch method. This approach appears to be very successful. In this section
we review the basic formulations of these methods.

Equation (4) describes the original intensity constancy constraint, which can be re-written as

E =
[

Ix Iy It

]
⎡
⎣

u
v
1

⎤
⎦ = 0. (10)

Because this constraint is not enough for solving [u, v]t, the Lucas-Kanade method employs a squared constraint

E2 =
[

u v 1
]
⎡
⎣

Ix

Iy

It

⎤
⎦ [

Ix Iy It

]
⎡
⎣

u
v
1

⎤
⎦ =

[
u v 1

]
J

⎡
⎣

u
v
1

⎤
⎦ , (11)

where

J =

⎡
⎣

I2
x IxIy IxIt

IyIx I2
y IyIt

ItIx ItIy I2
t

⎤
⎦ (12)
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which is called “motion tensor”. To introduce certain robustness to local noise, Lucas and Kanade defined a
modified energy function

ELK =
[

u v 1
]
(Gρ ∗ J)

⎡
⎣

u
v
1

⎤
⎦ , (13)

where Gρ is a local smooth mask, usually a Gaussian. The Lucas-Kanade method seeks solution [u, v]t to
minimize ELK , which leads to the linear equation

Gρ ∗
[

I2
x IxIy IxIt

IyIx I2
y IyIt

] ⎡
⎣

u
v
1

⎤
⎦ = 0. (14)

Because the system matrix of these linear equations may be singular, especially in flat regions, the Lucas-Kanade
method usually has difficult to produce dense flow fields.

In order to achieve dense flow estimation, the Horn-Schunck method embeds local optical flow constraint in
a global regularization framework. A global energy function is defined as

EHS =
∫

Ω

(
[

u v 1
]
J

⎡
⎣

u
v
1

⎤
⎦ + α(|∇u|2 + |∇v|2))dxdy (15)

where ∇f = [fx, fy]t, and α is the regularizing parameter. Larger α leads to smoother flow fields and vice
versa. The Horn-Schunck method seeks solution [u, v]t that minimize EHS . It can be observed that, in flat
regions where the local constraints having deficiency because of |∇I| ≈ 0, the Horn-Schunck solution will use
the regularizer |∇u|2 + |∇v|2 to fill in the flow information from neighboring fields. Therefore the Horn-Schunck
method can effectively produce dense flow fields.

The combined local and global (CLG) method10 introduces a new energy function which replaces the local
constraint in the Horn-Schunck energy function EHS with the Lucas-Kanade energy function ELK

ECLG =
∫

Ω

(
[

u v 1
]
(Gρ ∗ J)

⎡
⎣

u
v
1

⎤
⎦ + α(|∇u|2 + |∇v|2))dxdy. (16)

The solution [u, v]t that minimizes the ECLG function satisfies the Euler-Lagrange equation

�u − 1
α

(Gρ ∗ (I2
xu + IxIyv + IxIt)) = 0, (17)

�v − 1
α

(Gρ ∗ (IxIyu + I2
yv + IyIt)) = 0, (18)

where � := ∂xx + ∂yy.

The Euler-Lagrange equations can be solved iteratively through the successive overrelaxation (SOR) method.
At each iteration, the flow estimates can be written as4

uk+1
i = (1 − ω)uk

i + ω

∑
j∈N−

i
uk+1

j +
∑

j∈N+
i

uk
j − (h2/α)(J12iv

k
i + J13i)

|Ni| + (h2/α)J11i
(19)

vk+1
i = (1 − ω)vk

i + ω

∑
j∈N−

i
vk+1

j +
∑

j∈N+
i

vk
j − (h2/α)(J21iu

k+1
i + J23i)

|Ni| + (h2/α)J22i
(20)

where i is the current point, Ni is the set of neighbor points of i, N−
i := {j ∈ Ni|j < i} and N+

i := {j ∈ Ni|j > i},
the superscript k indicates the iteration, and Jnmi is the (n,m)-th component of the structure tensor Gρ ∗ J.
ω ∈ (0, 2) is the relaxation parameter controlling the convergence. For k = 0, the initial values for the flow
components are usually set to zeros, i.e. u0

i = 0, v0
i = 0.
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3. JOINT EO AND IR OPTICAL FLOW ESTIMATION

Before optical flow estimation, the EO and IR images have to be carefully registered. The registration of images
from different types of cameras is generally difficult, which involves the selection of features that are invariant
across different cameras. The features can be contours or markers.1 Registration is usually performed through
perspective and affine transforms. The transform parameters are estimated based on the matched features. In
a surveillance system, we may assume that the EO and IR cameras are mounted side-by-side and pointing to
the same direction on a rigid structure, therefore the spatial and temporal constraints between the cameras are
constants and known. Despite such setting, registration error may still occur because of parameter estimation
error.

3.1. Motion from Color Method for EO and IR Images

We first investigate “motion from color” approach for joint EO and IR optical flow estimation. This is because
infrared image can naturally be considered as an additional color component. According to brightness constancy
assumption, we assume that the intensity value of a point in the IR image will not change under the motion of
this point. The IR component provides an additional constraint. From equation (4) we have

∂IEO

∂x
u +

∂IEO

∂y
v +

∂IEO

∂t
= 0, (21)

∂IIR

∂x
u +

∂IIR

∂y
v +

∂IIR

∂t
= 0, (22)

where IEO is the RGB intensity value, and IIR is the IR intensity value of a point. IEO can be calculated as

IEO = 0.299 ∗ IR + 0.587 ∗ IG + 0.114 ∗ IB, (23)

and we define

A =
[

IEOx IEOy

IIRx IIRy

]
, b =

[ −IEOt

−IIRt

]
. (24)

We found that equations (21)-(22) produce more valid solutions than equations (5)-(7), because EO and IR
constraints generally have less correlations than R, G, and B constraints. However the singular problem remains
to be a major weakness of this approach. It is conceivable that in any flat region, partial derivatives over x and
y in both EO and IR components will be close to zero, which creates a singular AtA.

To overcome this problem, we use the condition number of AtA to test its stability. If this number is larger
than threshold, we explicitly set the flow estimation u to zero at this current point.

3.2. CLG Method for EO and IR Images

To adopt the CLG method for joint EO and IR optical flow estimation, we introduce two major modifications.
First, we include a cross regularization mechanism in the CLG process for EO and IR images. Second, we devise
a non-linear spatial flow fusion model which aligns the estimated motion fields from EO and IR images based on
neighbor activities.

3.2.1. Cross-Regularization

We apply the CLG method separately to the EO and IR images. However during the iterative process, we
introduce a cross-regularization mechanism which uses the current IR flow estimates to regularize EO estimation,
and uses the current EO flow estimates to regularize IR estimation.

We first define a modified CLG energy function

EEO IR =
∫

Ω

(
[

uM1 vM1 1
]
(Gρ∗J)

⎡
⎣

uM1

vM1

1

⎤
⎦+α(|∇uM1|2+|∇vM1|2)+β(|∇u−

M2|2+|∇v−
M2|2))dxdy. (25)
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where α and β are the regularization parameters, and M1, M2 indicate two modalities. If M1 is EO, then M2
is IR, and vice versa. [uM1, vM1]t are current flow estimates for either EO and IR images. [u−

M2, v
−
M2]

t are the
flow estimates used in the cross-regularization terms. During the flow estimation for each particular image point
i, [u−

M2, v
−
M2]

t represents a 2-D flow field obtained from M2 image except that the motion vector of the current
point i is from M1 image. With this new energy function, the iterative equations in equations (19)-(20) become

uk+1
M1i = (1 − ω)uk

M1i +

ω
α

∑
j∈N−

i
uk+1

M1j + α
∑

j∈N+
i

uk
M1j + β

∑
j∈N−

i
uk+1

M2j + β
∑

j∈N+
i

uk
M2j − h2(J12iv

k
M1i + J13i)

(α + β)|Ni| + h2J11i
(26)

vk+1
M1i = (1 − ω)vk

M1i +

ω
α

∑
j∈N−

i
vk+1

M1j + α
∑

j∈N+
i

vk
M1j + β

∑
j∈N−

i
vk+1

M2j + β
∑

j∈N+
i

vk
M2j − h2(J21iu

k+1
M1i + J23i)

(α + β)|Ni| + h2J22i
. (27)

3.2.2. Flow Fusion Model

We also realize that cross-regularization alone can not provide the best solution. Each single modality may have
missing information that can not be brought back by regularization. This calls for a spatial correlation model
that can infer the missing information from the other modality. Towards this goal, we define a local activity
measure and a non-linear rule that fuses the two estimated flow fields together.

Given the estimated flow fields [uEO, vEO]t and [uIR, vIR]t, for each image point i, an activity measure is
defined as

Ai =
∑
j∈Ni

(u2
EOj + v2

EOj)(u
2
IRj + v2

IRj), (28)

where Ni is the set of neighboring points of i. The flow estimate for point i can be decided based on a simple
rule

ui =
{

max(uEOi, uIRi), ifAi ≥ Tha

min(uEOi, uIRi), ifAi < Tha
and vi =

{
max(vEOi, vIRi), ifAi ≥ Tha

min(vEOi, vIRi), ifAi < Tha
(29)

where Tha is an activity threshold, and the max and min functions are based on magnitudes. This flow fusion
method can be applied within the iterative flow estimation procedure or after the iterations are completed.
However it is usually simpler to apply this at the end of the iterations.

4. EXPERIMENTAL RESULTS

We use the OTCBVS Dataset 03 “OSU Color-Thermal Database”16 in the experiments. This dataset contains
two surveillance type video sequences, each with an EO sequence and an IR sequence. Frame sizes are both
320×240. Sampling rates are approximately 30Hz. EO and IR images are coarsely registered using homography
with manually-selected points.

In the first experiment, we test the original “motion from color” method8 and our modified method described
in Section 3.1. The threshold on the condition number of the matrix AtA is set at 20. All images are spatially
smoothed using a 5 × 5 Gaussian filter with σ = 2. Flow estimation is based on the 10th frame, both in EO
and IR, and the temporal derivatives are calculated from the 5th and the 15th frames. The results are shown in
Figure (1). Because these are local methods, they can not produce dense flow fields. We can see that the results
are generally noisy, and with many erroneous motions. However the joint EO/IR method clearly provides better
motion fields, with less noisy motion and more accuracy around the moving object.

In the second experiment, we test our proposed joint EO/IR CLG method described in Section 3.2, and
compare it with the original CLG method.10 Flow estimation is based on the 5th frame, and the temporal
derivatives are calculated from the 4th and the 6th frames. Image frames are temporally smoothed using a 5-tap
Gaussian filter with σ = 1.5. The parameters in the CLG algorithm are: α = 10, ω = 1.95, iteration = 50.
In the joint EO/IR CLG method, α = 8 and β = 2. The activity threshold is Tha = 1 in the first sequence,
and becomes Tha = 20 in the second sequence. Activity measure is calculated within a 5 × 5 neighbor set. The
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results on the first sequence are shown in Figure (2) and the results on the second sequence are shown in Figure
(3). From the results we can see that, in general the joint EO/IR CLG method produces better flow estimation
than the CLG results from single modality. In the tests with the first sequence, the CLG performs better on the
IR image than the EO image. This is partially because of strong sunlight and shadow effects in the EO image.
In this case the joint EO/IR CLG method takes advantage of the IR component and produce even smoother
motion filed. In the tests with the second sequence, The CLG performance is reversed, i.e. better on the EO
image than the IR image. This is because the EO image scene is illuminated with diffused light, with very simple
and clear background. In this case the joint EO/IR CLG method produces a flow field similar to the best of
the CLG result. This is expected because the joint EO/IR CLG method is not to generate new information. It
intends to improve the efficiency of information extraction from the same set of data.

5. CONCLUSION

In this work we studied optical flow estimation based on joint EO and IR image sequences. We investigated the
“motion from color” method and the combined local-global method (CLG). During the modification of the CLG
method for joint EO/IR processing, we introduced a cross-regularization mechanism and a non-linear flow fusion
model based on local activity measures. Experimental results demonstrated the effectiveness of the proposed
method. A possible future direction of our research is to develop fusion methods for multi-modal cameras from
different view angles, which may provide more effective solution to 3-D flow field construction and occlusion
elimination.
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(a) EO image
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Figure 1. Optical flow estimation using “motion from color” methods on the first sequence.
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Figure 2. Optical flow estimation using CLG and joint EO/IR CLG methods on the first sequence.
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Figure 3. Optical flow estimation using CLG and joint EO/IR CLG methods on the second sequence.
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