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• Why codes? •

Sending a message through a noisy channel
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• What is a Code? •

Definition: Error-Correcting Code

A (binary) code C ⊆ {0, 1}n is a subset of length-n strings

I Blocklength: n (the size of encoded messages)

I Dimension/Rate: dim(C ) (the efficiency of the code)

I Distance: ∆(C ) (the amount of errors we can correct)

Definition: Dimension/Rate

dim(C ) = log2 |C | R =
dim(C )

n

Definition: Distance

∆(x , y) =
1

n ∑
i

1[xi 6= yi ] ∆(C ) = min
x,y∈C ,x 6=y

∆(x , y)
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• Linear Codes •

Definition: Linear Code

A code C ⊆ Fn
2 is linear if it forms a subspace of Fn

2.

Definition: Hamming Weight

|x | = 1

n ∑
i

1[xi = 1]

Proposition: Linear Code Distance

If C is a linear code then ∆(C ) = minc∈C
c 6=0
|c |

Pf. Say ∆(x , y) = ∆(C ), then x + y ∈ C and ∆(x , y) = |x + y |.

Definition: Parity Check Matrix

Matrix H ∈ F
(n−k)×n
2 such that H · c> = 0 for all c ∈ C .
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• Expander Graphs •

Definition: Vertex Expander

A (d1, d2)-regular graph (L,R,E ) is a (1-sided) (γ, ε)-vertex expander

if:

∀S ⊆ L, |S | 6 γ|L| |N(S)| > ε|S |.

2-sided expansion means the same for R

Definition: Lossless Expanders

A (d1, d2)-regular graphs is a lossless expander if it is a

(γ, (1− ε)d1)-vertex expanders, for some constant γ and ε (which

depends on γ).

So lossless expanders are optimal vertex expanders.
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Definition: Unique-Neighborhood

Given a graph G = (V ,E ) and a set S ⊆ V , U(S) is the set of

neighbors of S adjacent to exactly one vertex in S
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• Expander Codes [SS’96] •

Definition: Graph Code

Given a bipartite graph G = (L,R,E ), we can define a linear code

CG ⊆ F
|L|
2 as:

c ∈ CG : ∀w ∈ R,
⊕
v∼w

cv = 0.

In other words, the parity check matrix H ∈ F
|L|×|R |
2 is such that

Hu,v = 1 is u ∼ v .



• Expander Codes [SS’96] •

Definition: Graph Code

Given a bipartite graph G = (L,R,E ), we can define a linear code

CG ⊆ F
|L|
2 as:

c ∈ CG : ∀w ∈ R,
⊕
v∼w

cv = 0.

In other words, the parity check matrix H ∈ F
|L|×|R |
2 is such that

Hu,v = 1 is u ∼ v .



• Expander Codes [SS’96] •

Proposition: Graph Code Dimension

dim(CG ) > |L| − |R |.

Pf. |R | linear constraints on a space of dimension |L|.

Theorem: Expander Codes

Suppose G is a (γ, ε)-unique-neighbor expander (where ε > 0), then

∆(CG ) > γ.

Pf. Suppose c ∈ CG is such that |c | < γ. Let S ⊆ L be the set of

indices corresponding to 1s in c . Then U(S) > ε|S | > 0, which means

there is some parity check (in R) that is adjacent to exactly one bit (in

L) from c . But then this parity check isn’t satisfied, which is a

contradiction.
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• Modern Problems in Coding Theory •

A non-exhaustive list of modern problems:

I Local Testability and Decodability

I Quantum Codes

I Efficient Decoding Algorithms

I (Efficient) List Decoding

Definition: Local Testability

Given a code C ⊆ Fn
2, a local tester is an oracle tester T that given

some word x ∈ Fn
2 as input:

I It makes a constant number of queries to indices of x

I If x ∈ C , then Pr[T (x) = 1] = 1

I If x /∈ C , then Pr[T (x) 6= 1] = Ω(minc∈C ∆(x , c))
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• Locally Testable Codes •

The Problem

Are there explicit codes with constant distance, constant rate and

locally testable? (aka LTCs)

Theorem: LTCs exist [DELLM’22]

LTCs exist!

Theorem: LTCs exist [HH’22]

Given a 1-sided lossless expander, LTCs exist.
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• Expander Codes Aren’t Locally Testable •

Definition: A Natural Tester

Given a (γ, ε)-unique-neighbor expander G consider its expander code

CG . A natural local tester would:

I Pick O(1) parity checks uniformly at random

I Accept is all of the parity checks are satisfied

Theorem: Expander Codes Aren’t LTC

There exist expander graphs G for which the above natural tester fails,

i.e. given some x /∈ C (G ) but close to C (G ), Pr[T (x) 6= 1] = O(1/n).

Pf sketch. This is true for a random graph G .

I Consider G ′ by removing a random parity check from G

I There are x ∈ C (G ′) \ C (G ) which are far from C (G )

I These words only fail a single parity check of C (G ), so probability of

the tester picking it is low
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• Quantum Codes •

The Problem

Are there explicit quantum codes with constant distance and constant

rate?

Theorem: Good Quantum Codes [PK’22]

Good Quantum Codes exist!

Theorem: Good Quantum Codes [HH’22]

Given a 2-sided lossless expander, good quantum codes exist.
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Part II: Expanders



• Recall: Expander Graphs •

Definition: Vertex Expander

A (d1, d2)-regular graph (L,R,E ) is a (γ, ε)-vertex expander if:

∀S ⊆ L, |S | 6 γ|L| : |N(S)| > ε|S |.

Definition: Spectral Expander

A graph G is a λ-spectral expander if λ2(G ) 6 λ, where λ2(G ) is

the second largest eigenvalue of the adjacency matrix of G .

Definition: Ramanujan Graph (Optimal Spectral Expander)

A (d1, d2)-regular graph is a Ramanujan graph if it is a

(
√
d1 − 1 +

√
d2 − 2)-spectral expander.
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• Properties of Expanders •

Proposition: Vertex to Unique-Neighbor Expanders

Suppose G is a (d1, d2)-regular graph. If G is a (γ, d1ε)-vertex

expander then it is a (γ, d1(2ε− 1))-unique-neighbor expander.

Proposition: Random Graphs

Random (d1, d2)-regular graphs are 2-sided lossless expanders with

constant probability, i.e. (γ, (1− ε)d1)-vertex expanders, for any

constant γ and ε (which depends on γ).

Pf. Union bound over all subsets of vertices.
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• The Problem •

Can we construct explicit (d1, d2)-regular

(O(1),O(1)d1)-unique-neighbor expanders for any constant d1, d2?



• Some Answers •

Theorem: Ramanujan to Vertex Expander [Kahale’95,HMMP’24]

A (d1, d2)-regular Ramanujan graph is a 2-sided

(γ, d1/2(1−O(1/ log(1/γ)))-vertex expander for any γ.

Theorem: 1-sided Expanders [CRVW’02,CRTS’23,Golowich’23]

For any constant d1, d2, there exist 1-sided explicit (d1, d2)-regular

lossless expanders (i.e. (γ, (1− ε)d1)-vertex expanders).

Theorem: 2-sided Expanders [HMMP’24] ← today

For any constant d1, d2, there exist 2-sided explicit (d1, d2)-regular

(O(1),O(1)d1)-unique-neighbor expanders.

Theorem: 2-sided Expanders [HLMOZ’24] (recent follow up)

For any constant d1, d2, there exist 2-sided explicit (d1, d2)-regular

(O(1), 3/5d1)-unique-neighbor expanders.
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• Tripartite Line Product •

Definition: Tripartite Line Product

Let G = (L,M,R,E1 ∪ E2) be a tripartite graph consisting of a

(k1, d1)-regular graph (L,M,E1), and a (d2, k2)-regular graph

(M,R,E2)-regular graph. Let H = (LH ,RH ) be a bipartite graph with

|LH | = d1 and |RH | = d2. The tripartite line product G �H is the

bipartite graph on L∪ R and edges obtained by placing a copy of H on

the neighbors of v for each v ∈ M.

L H G ◇ HM R
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• Tripartite Line Product •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) and G2 = (M,R,E2) be bipartite Ramanujan

graphs, and form the tripartite graph G from them. Let H be a

(O(1),O(1)deg(H))-unique-neighbor expander. Then G �H is a

(O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

We use known constructions of Ramanujan graphs for G1, G2.

H is a constant-sized gadget, so we use the fact that random graphs

are good unique-neighbor expanders and find one by brute force.
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• Proof Overview: Dream Scenario •

Proof Overview

Let S ⊆ L(G �H) = L.

It would be ideal if each v ∈ S has many unique-neighbors given by

each gadget it belongs to.

Alas we might have collisions between gadgets...
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• Proof Overview Detour: Subgraph Density •

Theorem: Subgraph Density of Ramanujan Graphs

Let G = (L,R,E ) be a (d1, d2)-regular

(
√
d1 − 1 +

√
d2 − 2)(1 +O(1/d))-spectral expander. Then, for any

S1 ⊆ L and S2 ⊆ R such that |S1|+ |S2| = O(|L|+ |R |), the left dL
and right dR average degrees of the induced subgraph G [S1 ∪ S2]

satisfy:

(dL − 1)(dR − 1) 6 O

(√
(d1 − 1)(d2 − 1)

)
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• Proof Overview •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) be (k , d1)-regular and G2 = (M,R,E2) be

(d2, k)-regular Ramanujan graphs, and form the tripartite graph G

from them. Let H be a (1/
√
d1 + d2,O(1)deg(H))-unique-neighbor

expander. Then G �H is a (O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) be (k , d1)-regular and G2 = (M,R,E2) be

(d2, k)-regular Ramanujan graphs, and form the tripartite graph G

from them. Let H be a (1/
√
d1 + d2,O(1)deg(H))-unique-neighbor

expander. Then G �H is a (O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) be (k , d1)-regular and G2 = (M,R,E2) be

(d2, k)-regular Ramanujan graphs, and form the tripartite graph G

from them. Let H be a (1/
√
d1 + d2,O(1)deg(H))-unique-neighbor

expander. Then G �H is a (O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) be (k , d1)-regular and G2 = (M,R,E2) be

(d2, k)-regular Ramanujan graphs, and form the tripartite graph G

from them. Let H be a (1/
√
d1 + d2,O(1)deg(H))-unique-neighbor

expander. Then G �H is a (O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) be (k , d1)-regular and G2 = (M,R,E2) be

(d2, k)-regular Ramanujan graphs, and form the tripartite graph G

from them. Let H be a (1/
√
d1 + d2,O(1)deg(H))-unique-neighbor

expander. Then G �H is a (O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Theorem: Main [HMMP’24]

Let G1 = (L,M,E1) be (k , d1)-regular and G2 = (M,R,E2) be

(d2, k)-regular Ramanujan graphs, and form the tripartite graph G

from them. Let H be a (1/
√
d1 + d2,O(1)deg(H))-unique-neighbor

expander. Then G �H is a (O(1),O(1)d1)-unique-neighbor expander.

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Proof Overview

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Proof Overview

Step 1: “Most edges from S go into low-degree vertices in M”

I Partition N into low-degree vertices N` (degree in G1 6
√
d1 + d2)

and high-degree vertices Nh (degree in G1 >
√
d1 + d2)

I Right average degree of G1[S ∪Nh] is at least O(
√
d1 + d2)

I Use the Subgraph Density Theorem to show left average degree of

G1[S ∪Nh] is small (O(
√
k1 + k2))

I Conclude |Nh| is small (6 .2|N |)



• Proof Overview •

Proof Overview

Let S ⊆ L(G �H) = L and N = NG (S) ⊆ M.

Also let T be the set of

unique-neighbors of S within some gadget

Step 2: “Low-degree vertices don’t cause collisions”

I If v ∈ N` is low-degree, then Sv = S ∩N(v) is small

(|Sv | 6
√
d1 + d2)

I So we can use the unique-neighbor property of H to conclude that

G2[N ∩ T ] has high average left degree (a constant that depends on

the expansion of H, d1 and k)

I Use the Subgraph Density Theorem to show right average degree of

G2[N ∪ T ] is small (6 1.1)

I Conclude that the number of collisions is small, i.e. large number of

unique-neighbors
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