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Part I: Coding Theory
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Storing data on a noisy medium
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Definition: Error-Correcting Code
A (binary) code C C {0,1}" is a subset of length-n strings

» Blocklength: n (the size of encoded messages)
» Dimension/Rate: dim(C) (the efficiency of the code)

» Distance: A(C) (the amount of errors we can correct)

Definition: Dimension/Rate
dim(C)

Definition: Distance
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Pf. Say A(x,y) = A(C), then x+y € C and A(x,y) = [x+y|.



Definition: Linear Code
A code C C IF] is linear if it forms a subspace of IF5.

Definition: Hamming Weight
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Proposition: Linear Code Distance

If C is a linear code then A(C) = mincec |c|
c#0
Pf. Say A(x,y) = A(C), then x+y € C and A(x,y) = |x + y|.

Definition: Parity Check Matrix

Matrix H € FY"¥*" such that H- ¢ = 0 for all c € C.
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e Expander Graphs e

Definition: Vertex Expander
A (dq, do)-regular graph (L, R, E) is a (1-sided) (7, €)-vertex expander
if:

VS CLIS|<vIL] IN(S)| > e€lS].

2-sided expansion means the same for R

Definition: Lossless Expanders

A (d1, dp)-regular graphs is a lossless expander if it is a
(7, (1 — €)dy)-vertex expanders, for some constant o and € (which
depends on 7).

So lossless expanders are optimal vertex expanders.
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e Expander Graphs e

Definition: Vertex Expander
A (dq, do)-regular graph (L, R, E) is a (1-sided) (7, €)-vertex expander
if:

VS CLIS|<vIL] IN(S)| > €lS|.

2-sided expansion means the same for R
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e Expander Graphs e

Definition: Unique-Neighbor Expander
A (dq, do)-regular graph (L, R, E) is a (1-sided) (7, €)-unique-neighbor

expander if:
VS C L |SI<qlLl [U(S)] = €lS].
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e Expander Codes [SS’96] e

Definition: Graph Code

Given a bipartite graph G = (L, R, E), we can define a linear code
Cec C 1F|2L| as:

CGCG:VWER,@C\,:O.

v~w

In other words, the parity check matrix H € ]F‘ZHX'R|

Hyv=1isu~v.

is such that
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Cec C 1F|2L‘ as:
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Pf. |R| linear constraints on a space of dimension |L|.

Theorem: Expander Codes

Suppose G is a (7, €)-unique-neighbor expander (where € > 0), then
A(Cg) = 7.

Pf. Suppose ¢ € Cg is such that |c| < 7. Let S C L be the set of
indices corresponding to 1s in c. Then U(S) > €|S| > 0, which means
there is some parity check (in R) that is adjacent to exactly one bit (in
L) from c. But then this parity check isn't satisfied, which is a
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Theorem: Expander Codes

Suppose G is a (1, €)-unique-neighbor expander (where € > 0), then
A(Cg) = 7.

Pf. Suppose ¢ € Cg is such that |c| < . Let S C L be the set of
indices corresponding to 1s in ¢. Then U(S) > €|S| > 0, which means

there is some parity check (in R) that is adjacent to exactly one bit (in

L) from c. But then this parity check isn't satisfied, which is a
contradiction.
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e Modern Problems in Coding Theory e

A non-exhaustive list of modern problems:

» Local Testability and Decodability
» Quantum Codes

» Efficient Decoding Algorithms

» (Efficient) List Decoding

Definition: Local Testability
Given a code C C [FJ, a local tester is an oracle tester T that given
some word x € IF5 as input:

» |t makes a constant number of queries to indices of x
» If x € C, then Pr[T(x) =1] =1
» If x ¢ C, then Pr[T(x) # 1] = Q(mincec A(x, ¢))
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e Expander Codes Aren’t Locally Testable e

Definition: A Natural Tester

Given a (7, €)-unique-neighbor expander G consider its expander code
C¢. A natural local tester would:

» Pick O(1) parity checks uniformly at random
» Accept is all of the parity checks are satisfied

Theorem: Expander Codes Aren’'t LTC

There exist expander graphs G for which the above natural tester fails,
i.e. given some x ¢ C(G) but close to C(G), Pr[T(x) # 1] = O(1/n).

Pf sketch. This is true for a random graph G.
» Consider G’ by removing a random parity check from G

» There are x € C(G') \ C(G) which are far from C(G)

» These words only fail a single parity check of C(G), so probability of
the tester picking it is low



e Quantum Codes e

The Problem

Are there explicit quantum codes with constant distance and constant
rate?



e Quantum Codes e

The Problem

Are there explicit quantum codes with constant distance and constant
rate?

Theorem: Good Quantum Codes [PK’22]

Good Quantum Codes exist!



e Quantum Codes e

The Problem

Are there explicit quantum codes with constant distance and constant
rate?

Theorem: Good Quantum Codes [PK’22]
Good Quantum Codes exist!

Theorem: Good Quantum Codes [HH’22]
Given a 2-sided lossless expander, good quantum codes exist.
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e Recall: Expander Graphs e

Definition: Vertex Expander

A (di, dp)-regular graph (L, R, E) is a (v, €)-vertex expander if:

VSCLISI<yILl : IN(S)| > els].

Definition: Spectral Expander
A graph G is a A-spectral expander if A»(G) < A, where A(G) is
the second largest eigenvalue of the adjacency matrix of G.

Definition: Ramanujan Graph (Optimal Spectral Expander)
A (di, dp)-regular graph is a Ramanujan graph if it is a
(v/di — 1+ \/da — 2)-spectral expander.




e Properties of Expanders o

Proposition: Vertex to Unique-Neighbor Expanders
Suppose G is a (d1, dp)-regular graph. If G is a (7, d1€)-vertex
expander then it is a (v, d1(2¢ — 1))-unique-neighbor expander.



e Properties of Expanders o

Proposition: Vertex to Unique-Neighbor Expanders

Suppose G is a (d1, dp)-regular graph. If G is a (7, d1€)-vertex
expander then it is a (v, d1(2¢ — 1))-unique-neighbor expander.

Proposition: Random Graphs

Random (d1, da)-regular graphs are 2-sided lossless expanders with
constant probability, i.e. (7, (1 — €)dy)-vertex expanders, for any
constant v and € (which depends on 7).

Pf. Union bound over all subsets of vertices.



e The Problem e

Can we construct explicit (dy, dp)-regular
(O(1), O(1)d1)-unique-neighbor expanders for any constant d, dp?
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e Some Answers e

Theorem: Ramanujan to Vertex Expander [Kahale’95,HMMP'24]
A (dy, do)-regular Ramanujan graph is a 2-sided
(7, d1/2(1 — O(1/ log(1/7)))-vertex expander for any 7.
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Theorem: Ramanujan to Vertex Expander [Kahale’95,HMMP'24]
A (dy, do)-regular Ramanujan graph is a 2-sided
(7,d1/2(1 — O(1/ log(1/7)))-vertex expander for any .

Theorem: 1-sided Expanders [CRVW’02,CRTS’23,Golowich’23]

For any constant di, do, there exist 1-sided explicit (dy, da)-regular
lossless expanders (i.e. (7, (1 — €)dy)-vertex expanders).

Theorem: 2-sided Expanders [HMMP’24] < today

For any constant di, do, there exist 2-sided explicit (dy, da)-regular
(O(1), O(1)dy)-unique-neighbor expanders.

Theorem: 2-sided Expanders [HLMOZ’24] (recent follow up)

For any constant dy, do, there exist 2-sided explicit (dy, da)-regular
(O(1),3/5d;)-unique-neighbor expanders.



e Tripartite Line Product e

Definition: Tripartite Line Product

Let G = (L, M, R, E; U E) be a tripartite graph consisting of a

(kq, dq)-regular graph (L, M, E1), and a (da, kp)-regular graph

(M, R, Ep)-regular graph. Let H = (Ly, Ry) be a bipartite graph with
|[Ly| = dq and |Ry| = d. The tripartite line product G ¢ H is the
bipartite graph on L U R and edges obtained by placing a copy of H on
the neighbors of v for each v € M.
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Let G = (L, M, R, E; U E) be a tripartite graph consisting of a

(ky, d1)-regular graph (L, M, E1), and a (da, kp)-regular graph

(M, R, Ep)-regular graph. Let H = (Ly, Ry) be a bipartite graph with
|[Ly| = dq and |Ry| = d. The tripartite line product G ¢ H is the
bipartite graph on L U R and edges obtained by placing a copy of H on
the neighbors of v for each v € M.
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e Tripartite Line Product e

Theorem: Main [HMMP’24]

Let G = (L, M, E1) and G, = (M, R, E;) be bipartite Ramanujan
graphs, and form the tripartite graph G from them. Let H be a
(O(1), O(1)deg(H))-unique-neighbor expander. Then G H is a
(O(1), O(1)d1)-unique-neighbor expander.



e Tripartite Line Product e

Theorem: Main [HMMP’24]

Let G = (L, M, E1) and G, = (M, R, E;) be bipartite Ramanujan
graphs, and form the tripartite graph G from them. Let H be a
(O(1), O(1)deg(H))-unique-neighbor expander. Then Go H is a
(O(1), O(1)dj)-unique-neighbor expander.

Proof Overview
We use known constructions of Ramanujan graphs for Gy, Gp.

H is a constant-sized gadget, so we use the fact that random graphs
are good unique-neighbor expanders and find one by brute force.
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e Proof Overview: Dream Scenario e

Proof Overview
Let SC L(GoH) = L.

It would be ideal if each v € S has many unique-neighbors given by
each gadget it belongs to.

Alas we might have collisions between gadgets...

o Glkson®



e Proof Overview Detour: Subgraph Density e

Theorem: Subgraph Density of Ramanujan Graphs

Let G = (L, R, E) be a (dy, da)-regular

(vdi — 1+ /da —2)(1+4 O(1/d))-spectral expander. Then, for any
S1 C Land S; C R such that |S1| +|S2| = O(|L| + |R]), the left d;.
and right dr average degrees of the induced subgraph G[S; U S,]
satisfy:

<d7—1><d—R—1)<o( <d1—1><d2—1>)
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Theorem: Subgraph Density of Ramanujan Graphs

Let G = (L, R, E) be a (dy, da)-regular

(vdi — 1+ /da —2)(1+4 O(1/d))-spectral expander. Then, for any
S1 C Land S; C R such that |S1| +|S2| = O(|L| + |R]), the left d;.
and right dr average degrees of the induced subgraph G[S; U S,]
satisfy:

<d7—1><d—R—1)<o( <d1—1><d2—1>)
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Let G; = (L, M, E1) be (k, dy)-regular and G, = (M, R, E3) be

(do, k)-regular Ramanujan graphs, and form the tripartite graph G
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Theorem: Main [HMMP’24]

Let G; = (L, M, E1) be (k, dy)-regular and G, = (M, R, E3) be

(da, k)-regular Ramanujan graphs, and form the tripartite graph G
from them. Let H be a (1/+/d; + da, O(1)deg(H))-unique-neighbor
expander. Then G o H is a (O(1), O(1)d;)-unique-neighbor expander.

Proof Overview

Let SC L(GoH) =Land N = Ng(S)C M.

Step 1: “Most edges from S go into low-degree vertices in M"

» Partition N into low-degree vertices N, (degree in Gy < /dy + db)
and high-degree vertices N, (degree in G; > /di + db)

> Right average degree of G1[S U Np] is at least O(\/dy + do)

» Use the Subgraph Density Theorem to show left average degree of

G1[S U Np] is small (O(v/k1 + ko))
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Theorem: Main [HMMP’24]

Let G; = (L, M, E1) be (k, dy)-regular and G, = (M, R, E3) be

(da, k)-regular Ramanujan graphs, and form the tripartite graph G
from them. Let H be a (1/+/d; + da, O(1)deg(H))-unique-neighbor
expander. Then G o H is a (O(1), O(1)d;)-unique-neighbor expander.

Proof Overview

Let SC L(GoH) =Land N = Ng(S)C M.

Step 1: “Most edges from S go into low-degree vertices in M"

» Partition N into low-degree vertices N, (degree in Gy < /dy + db)
and high-degree vertices N, (degree in G; > /di + db)

> Right average degree of G1[S U Np] is at least O(\/dy + do)

» Use the Subgraph Density Theorem to show left average degree of

G1[S U Np] is small (O(v/k1 + ko))

» Conclude |Np| is small (< .2|N|)



e Proof Overview e

Proof Overview
Step 1: “Most edges from S go into low-degree vertices in M”

» Partition N into low-degree vertices N, (degree in Gy < +/di + db)
and high-degree vertices N, (degree in G; > /di + db)

> Right average degree of G1[S U Ny| is at least O(+\/d; + da)
» Use the Subgraph Density Theorem to show left average degree of

G1[S U Ny is small (O(v/ky + ko))

» Conclude |Np| is small (< .2|N|)
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Proof Overview
Step 1: “Most edges from S go into low-degree vertices in M”

» Partition N into low-degree vertices N, (degree in Gy < /dy + db)
and high-degree vertices N, (degree in G; > /di + db)

> Right average degree of G1[S U Np] is at least O(\/dy + dy)

» Use the Subgraph Density Theorem to show left average degree of

G1[S U Ny] is small (O(v/ky + ko))

» Conclude |Np| is small (< .2|N|)
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Proof Overview
Let SCL(GoH)=Land N = Ng(S) C M.
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unique-neighbors of S within some gadget
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Let SC L(GoH)=Land N= Ng(S) C M. Also let T be the set of
unique-neighbors of S within some gadget

Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small

(ISv] < Vdi + &)
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Proof Overview
Let SC L(GoH)=Land N= Ng(S) C M. Also let T be the set of
unique-neighbors of S within some gadget

Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small
(ISv] £ Vdi + o)

» So we can use the unique-neighbor property of H to conclude that
Go[N N T] has high average left degree (a constant that depends on
the expansion of H, di and k)
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Proof Overview
Let SC L(GoH)=Land N= Ng(S) C M. Also let T be the set of
unique-neighbors of S within some gadget

Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small
(ISv] < Vdr + o)

» So we can use the unique-neighbor property of H to conclude that
Go[N N T] has high average left degree (a constant that depends on
the expansion of H, di and k)

» Use the Subgraph Density Theorem to show right average degree of
G[NU T] is small (< 1.1)
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Proof Overview
Let SC L(GoH)=Land N= Ng(S) C M. Also let T be the set of
unique-neighbors of S within some gadget

Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small
(ISv] < Vdr + o)

» So we can use the unique-neighbor property of H to conclude that
Go[N N T] has high average left degree (a constant that depends on
the expansion of H, di and k)

» Use the Subgraph Density Theorem to show right average degree of
G[NU T] is small (< 1.1)

» Conclude that the number of collisions is small, i.e. large number of
unique-neighbors
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Proof Overview
Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small
(ISvl < Vdi + d2)

» So we can use the unique-neighbor property of H to conclude that
Go[N N T] has high average left degree

» Use the Subgraph Density Theorem to show right average degree of
Go[NU T is small (< 1.1)

» Conclude that the number of collisions is small
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Proof Overview
Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small
(|Sv] € Vi + &)

» So we can use the unique-neighbor property of H to conclude that
Go[N N T] has high average left degree

» Use the Subgraph Density Theorem to show right average degree of
Go[NU T is small (< 1.1)

» Conclude that the number of collisions is small
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Proof Overview
Step 2: “Low-degree vertices don't cause collisions”

» If v € Ny is low-degree, then S, = SN N(v) is small
(|Sv] € Vi + &)

» So we can use the unique-neighbor property of H to conclude that
Go[N N T] has high average left degree

» Use the Subgraph Density Theorem to show right average degree of
Go[NU T is small (< 1.1)

» Conclude that the number of collisions is small




Thanks!
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