
Bicubical Directed Type Theory

Matthew Zachary Weaver

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Advisers: Daniel R. Licata & Andrew W. Appel

November 2024

© Copyright by Matthew Zachary Weaver, 2024.

All rights reserved.

Abstract

In homotopy type theory, each type is equipped with an abstract notion of path, corre-

sponding to the morphisms of a ∞-groupoid. Voevodsky’s univalence axiom states that the

type of paths between types is equivalent to the type of equivalences between types, and can

be seen as extending type theory with a generic program for lifting equivalences between

types along any type family. Defining this lifting for all dependent types is quite subtle,

but univalence has now been given a computational interpretation in various cubical type

theories.

A natural question is whether there are any directed analogues of homotopy type the-

ory, where types are equipped with a notion of directed morphism and correspond to higher

categories, generalizing groupoids. In such a setting, one possible directed analogue of univa-

lence would circumscribe a class of type constructors that represent covariant functors, and

provide a means to automatically lift a function or directed morphism along such a type con-

structor. Directed type theory with directed univalence has some potential applications to

computer science that are not possible in ordinary homotopy type theory, such as providing

a convenient language for coding the functorial specification of abstract syntax.

One approach to directed type theory, developed by Riehl and Shulman, is based on equip-

ping each type with both a notion of path and a separate notion of directed morphism [62].

While ordinary homotopy type theory has models in simplicial sets, the Riehl-Shulman type

theory is modeled in bisimplicial sets, capturing these two notions of path and directed mor-

phism. While this suffices for formalizing mathematics, for applications to computer science

we would like a computational interpretation of the type theory, and it is not yet known

whether there are constructive models of homotopy type theory in simplicial sets.

Thus we instead consider a cubical setting, and give a constructive model of a directed

type theory with directed univalence in bicubical sets. We formalize much of this using Agda

as the internal language of a topos, following Orton and Pitts [58].

iii

First, building on the cubical techniques used to give computational models of homotopy

type theory, we show that there is a universe of covariant discrete fibrations with a partial

directed univalence principle asserting that functions are a retract of morphisms in this

universe. To complete this retraction into an equivalence, we refine the model using Coquand,

Ruch, and Sattler’s work on constructive sheaf models [28]. We introduce the cobar modality

and by restricting to fibrant types that are also cobar modal, we are able to complete our

construction of directed univalence.

We then describe a generalization of the fibrant Riehl-Shulman extension types defined

in [62]. We prove this in the setting of an arbitrary presheaf category with respect to a

new notion of fibrancy that is given by a generic filling problem. This abstraction is general

enough to capture all of the current presheaf models of type theories and their classifications

of types specified by filling problems. In addition, this result extends the potential syntax

of these type theories to be able to internally express any of these filling problems as fibrant

types. We use this to then define a type theory in which the user can internally define

classifying universes for any such filling problem.

Lastly, we overview our implementation of bicubical directed type theory focusing on a

few interesting design decisions in regards to its syntax. As opposed to exposing the connec-

tions for the directed interval we chose to instead include inequality cofibrations directly in

the syntax and omit connections, resulting in a syntax that is sufficiently expressive while

providing substantial benefits computationally.

iv

Acknowledgements

I would like to thank the incredible number of people that helped me through this grueling

but rewarding journey.

My time at Penn as an undergraduate was a wonderful and enjoyable time in my life, and

everything I learned from the PL Club and my undergraduate research advisor Stephanie

Weirich ensured I was prepared for my time in graduate school. In a similar vein, I greatly

appreciate the Princeton PL Group and how it was a welcoming and supportive community,

making my time in the office consistently fun.

I would like to thank Carlo Angiuli, Steve Awodey, Evan Cavallo, Thierry Coquand,

Favonia, Bob Harper, Anders Mortbërg, Reed Mullanix, Emily Riehl, Mitchell Riley, Robert

Rose, Christian Sattler, Jon Sterling, Dimitris Tsementzis, Jonathan Weinberger and every-

one else who collaborated and provided feedback throughout the entirety of my PhD.

Thank you Zak Kincaid and Dave Walker for serving on my committee.

I also thank Andrew Appel for doing so much for me throughout my years at Princeton;

from ensuring I kept one eye grounded in applications despite my work living in the abstract

clouds to forcing me to finally finish my dissertation and graduate, your support made this

thesis possible.

Finally, I thank Daniel Licata for truly being the most encouraging advisor I could ever

ask for.

This material is based on research sponsored by The United States Air Force Research

Laboratory under agreement numbers FA9550-16-1-0292, and FA9550-21-0009 (Tristan

Nguyen, program manager). The U.S. Government is authorized to reproduce and dis-

tribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either expressed

or implied, of the United States Air Force Research Laboratory, the U.S. Government.

v

To my mom and dad for their endless support

vi

Contents

Abstract . iii

Acknowledgements . v

List of Figures . xi

1 Introduction 1

1.1 A Motivating Example . 2

1.2 A Subjective Treatise on Research in Type Theory 5

1.3 Technical Contributions . 16

1.4 Related Work . 20

2 Background 22

2.1 Homotopy Type Theory . 23

2.1.1 Key Facts and Definitions . 24

2.2 Categorical Logic . 25

2.2.1 Syntactic Categories and Internal Languages 26

2.2.2 Cartesian Closed Categories and STLC 28

2.2.3 Topoi and Dependent Type Theory 38

2.3 Cubical Type Theory . 54

2.3.1 Cube Categories . 56

2.3.2 Defining Cubical Type Theory . 61

2.3.3 Key Facts and Definitions . 66

vii

2.4 Directed Type Theory . 67

2.4.1 The Simplex Category . 69

2.4.2 Defining Bisimplicial Directed Type Theory 72

3 Bicubical Directed Type Theory 76

3.1 Axioms for Bicubical Type Theory . 77

3.1.1 Soundness in Bicubical Sets . 80

3.2 The “Types” of Types . 85

3.2.1 Directed Morphism Type . 86

3.2.2 Discrete Types . 87

3.2.3 Covariant Discrete Fibrations . 92

3.2.4 Segal Types . 96

3.2.5 Inner Fibrations . 97

3.3 The Universe Ucov . 99

3.3.1 Ucov is Path Univalent . 102

3.4 The Universe Uinner . 104

3.4.1 Uinner is Path Univalent . 106

4 Directed Univalence 108

4.1 The Directed Univalence Retraction . 109

4.1.1 Morphisms to Functions . 109

4.1.2 Functions to Morphisms . 109

4.1.3 Reflection . 113

4.2 Cobar Modal Types . 114

4.2.1 Universes and Closure Properties of Lex Modal Types 115

4.2.2 The Cobar Construction . 118

4.2.3 Universes and Closure Properties of Cobar Modal Types 126

4.2.4 Completing Directed Univalence . 130

viii

4.2.5 The Equivalence Axiom in Bicubical Sets 136

5 Fiberwise Fibrancy and Internal Universes 140

5.1 Fiberwise Filling in a Topos . 143

5.1.1 Filling Operations . 143

5.1.2 Contextual Filling and its Closure Conditions 150

5.2 A Type Theory with Internally Definable Universes 153

5.2.1 Judgement Forms . 153

5.2.2 Typing Rules . 154

5.2.3 Syntax for Internal Universes . 156

5.2.4 Encoding the Fill Type and Fiberwise Reasoning 161

5.2.5 Semantics of Internally Definable Universes 167

5.2.6 Applications of Internally Definable Universes 169

6 Implementation 171

6.1 Bicubical Directed Type Theory Without Connections 172

6.1.1 Covariant Fibrations Without Connections 173

6.2 Sample Code in Directed CoolTT . 175

7 Future Work 179

7.1 Directed Higher Inductive Types . 179

7.2 More Implementation(s) . 180

7.2.1 Computational Univalence and Challenge of Cobar 180

7.2.2 Internal LOPS Universes . 181

7.3 Applications in Verification . 181

7.3.1 Functorial Semantics . 181

7.3.2 The Structure Preservation Principle 182

7.4 Model Categorical Semantics . 185

ix

Bibliography 187

x

List of Figures

2.1 Inference rules for the simply typed lambda calculus 37

2.2 Axioms for cofibrations in cubical type theory 62

3.1 Axioms for the undirected interval . 77

3.2 Cofibration axioms . 78

3.3 Axioms for the directed interval . 79

4.1 Axioms and definitions for descent operator 115

4.2 Depiction of u(i0, i1, i2)(f, g, h) . 122

4.3 Additional axioms and definitions for cobar operator 125

4.4 Closure conditions and properties of the various universes (part 1) 133

4.4 Closure conditions and properties of the various universes (part 2) 134

4.4 Closure conditions and properties of the various universes (part 3) 135

5.1 Instantiating the types of common filling operations using the generalized

definition . 148

5.2 Rules for internal LOPS universes . 158

5.3 Instantiating the types of common filling operations as filling data in the syntax159

5.4 Typing rules for fiberwise filling operations 161

5.5 Closure conditions for fiberwise filling operations 163

5.6 Equations defining fiberwise filling closure condition terms 164

5.7 Combined notation for fiberwise filling closure conditions 165

xi

5.8 Summary of topos semantics for internal LOPS universes 168

xii

Chapter 1

Introduction

In homotopy type theory [11,74,76], each type is equipped with an abstract notion of path,

corresponding to the morphisms of a higher groupoid. Voevodsky’s univalence axiom states

that the type of paths between types is equivalent (a generalization of isomorphic) to the

type of equivalences between types. This can be seen as extending type theory with a generic

program for lifting equivalences between types along any type family: given an equivalence

A ≃ B and any family of types C : U → U , one can automatically construct an equivalence

C(A) ≃ C(B). Defining this lifting for all dependent types is quite subtle, but univalence

has been given a computational interpretation via cubical type theories [7, 10,13,24].

A natural question is whether there are any directed analogues of homotopy type the-

ory, where types are equipped with a notion of directed morphism and correspond to higher

categories, generalizing groupoids. In such a setting, one possible directed analogue of uni-

valence would circumscribe a class of type constructors that represent covariant functors,

and provide a means to automatically lift a function A → B to a function C(A) → C(B),

generalizing e.g. the Functor type class of Haskell to dependent types. By analogy with uni-

valence, such a lifting would result from a universe classifying covariant type families that

satisfies a directed univalence principle stating that the directed morphisms in this universe

are equivalent to functions. On the mathematical side, directed type theory provides a more

1

general language for synthetic mathematics. On the computational side, one potential ap-

plication is to defining abstract syntax [31, 41, 45]; others might arise from the connections

between directed homotopy theory and concurrency [30,37,52].

1.1 A Motivating Example

The benefits of using directed type theory for the formal verification of computation struc-

tures are quite promising. Beyond the internal categorical structures providing a concise way

to package the information and enforce invariants, one can also leverage the abstract results

from category theory to significantly decrease the amount of work required to accomplish

the same results when compared to existing verification approaches. One notable instance

of this is taking advantage of the fact that the universe is closed under many type formers.

For example, given type families A and B in C → U, one can always always define the

type family A × B : C → U, and its directed structure is uniquely determined from A and

B. Thus, the user of such a type theory must provide the additional directed structure when

there is nontrivial information in the definition of the type theory, but having done so one

can then build up larger types that inherit the directed structure via universal properties

without the user needing to provide anything extra.

Before the technical details, we sketch a motivating example of defining abstract syntax

in a directed type theory, building on [31, 41, 45]. This sketch will use a directed higher

inductive type, which we do not formally study in this thesis. We write HomA (x, y) for the

directed morphism type, representing a morphism from x to y—this should be thought of

like the PathA (x, y) or identity IdA(x, y) type of homotopy type theory, except in general we

always have identity morphisms for every type, but not necessarily composition or inverses.

Those types A whose morphisms have (homotopy) unique composites (and so correspond to

categories) are called Segal [62].

2

For this example, we will define the syntax of the untyped lambda calculus with scoped

de Bruijn variables. By doing so within directed type theory, we can encode the weakening

substitution that introduces a new variable to the scope as an intrinsic component to the

structure of the types we define; furthermore, by solely providing the function that describes

how to weaken variables in the context, the type theory automatically identifies the unique

function that soundly weakens lambda terms without any additional input from the user.

The first idea in our example is to represent object-language contexts by a type whose

elements represent contexts, and whose morphisms represent object-language substitutions

or renamings. As a concrete example, we use the untyped lambda calculus, indexed by

contexts denoting how many free variables are present, and take the substitutions to be

weakenings only. The type of contexts should be defined as a Segal directed higher inductive

type:

data Ctx : USegal where
empt : Ctx
ext : Ctx → Ctx
wk : (G : Ctx) → Hom Ctx G (ext G)

The general idea for the above definition is that we have directed higher inductive types

based on the syntax for higher inductive types described in [19]; the definition is “directed”

as the wk constructor generates a morphism in Hom Ctx G (ext G) as opposed to a path. This

declaration is intended to mean that the elements of Ctx are in bijection with the natural

numbers, with directed morphisms generated by wkn : HomCtx (n, n + 1) corresponding to

weakening. We declare Ctx to be Segal by defining it as an element of the universe USegal.

This indicates that it represents a category and thus must have freely generated composites;

e.g. wk1 ◦ wk0 : HomCtx (0, 2) represents weakening the empty context with two variables.

Because functions such as ext can also act on morphisms, we also have morphisms like

ext(wk0) : HomCtx (1, 2) that weakens in the middle of a context.

We then define a type family Var : Ctx → Ucov representing the variables in each context.

Before doing so, let us first inspect the type of Var: The type theory automatically enforces

3

that all functions preserve morphisms, and thus in addition to providing a type of “variables

in context G for each context G,” the type family Var takes morphisms in Ctx (i.e. weakenings)

to morphisms in the universe Ucov; the fact that Var lands in the covariant universe Ucov in

particular indicates that these morphisms between types in the universe are given by actual

functions between the types at each end of the morphism as a result of directed univalence.

For this to all workout, a particular transport function from n to n+1 is given in the definition

of Var for the weakening axiom—the inl injection—which is turned into a morphism in UCov

using directed univalence. The elimination form for a Segal higher inductive type would then

send compositions of weakenings to compositions of these injections. As a result, the type

family Var automatically includes the code for shifting a de Bruijn index.

Var : Ctx → UCov
Var empt = 0
Var (ext G) = (Var G) + 1
Var (wk G) = dua inl

data Tm (G : Ctx) : UCov where
var : Var G → Tm G
abs : Tm (ext G) → Tm G
app : Tm G → Tm G → Tm G

Finally, we define a type family of lambda terms Tm : Ctx → Ucov that is constructed

from a base case Var that maps into Ucov, and otherwise is a sum of products of inductive

occurrences. Because Ucov is closed under products, sums, and (conjecturally) certain induc-

tive types, Tm will automatically land in Ucov. This means that, while the definition of Tm

looks identical to what one would write in standard type theory, the usual code for lifting

weakening to terms is written automatically by the transport functions for these types. We

use this by

dtransport Tm (wk G) : Tm G → Tm (ext G)

to, for example, weaken a term with one extra variable, where dtransport is an operation de-

fined for any type family that lands in Ucov. General facts about directed transport will imply

4

that these substitution actions commute with composition, which is needed in metatheory

and in defining typing judgments, program logics, or dependent types.

For this example, we need a universe Ucov (Sections 3.3 and 4.2.1) with directed univalence

(Chapter 4), closed under products, sums, and inductive types, which is itself a category

(Segal, Section 3.2.4 and [62]); and we also need directed higher inductive types. Of these,

we leave the closure of Ucov under inductive types and the mechanism of directed higher

inductive types to future work, and focus on defining a universe Ucov supporting directed

univalence.

1.2 A Subjective Treatise on Research in Type Theory

As a necessary disclaimer—despite the punchy title of this section—this is not an attempt

to define what is “good” or “correct” research in type theory, and certainly is far from a

comprehensive perspective on the subject; the description below is simply the framework I

have maintained in my head throughout the development of this work. I hope by explaining

how I personally organize my thoughts when approaching my research, you as the reader

might gain some useful insights that will improve your own understanding of the content

that is to follow throughout the remainder of my thesis.

Defining a type theory, in particular one of a more theoretical, categorical nature, tends

to follow a common structure: 1. add new structure to the semantics of types beyond them

simply being sets; 2. add syntax to the theory allowing one to describe and interact with

the additional structure; 3. define a property classifying which types are the “good,” “well-

behaved” types with respect to this additional structure; 4. define a universe classifying the

types that respect the property; 5. derive a universal theorem classifying the new structure for

the universe that fundamentally leverages the property of types that the universe classifies.

Let’s pull this apart and go a bit deeper into what I mean by this dense summary of the

framework.

5

Semantic Structure

The first step in this style of research is to select a semantic setting for ones types. Of course,

typically one has a goal of what types should represent and with it a candidate in mind, but

the key observation is that the type theory will enrich the notion of type beyond simply a set

of terms. In this thesis, our types are semantically given by bicubical sets with the goal of

types representing ∞-categories, but to explain this framework let us consider a much more

tangible example: quotients of sets.

Imagine we are trying to define a type theory that finally handles quotients perfectly,

saving us once and for all from “setoid hell.”1 Naïvely, how might we start? As everything

leading up to this paragraph has anticipated, we first choose to enrich our notion of types!

Instead of semantically interpreting our types as sets, let us instead choose to interpret them

as a set paired with a relation: using type theoretic inspired notation, each type is represented

as a pair (A,R) of the form ΣA : Set.P(A× A). A is the set representing the terms of the

type, and R ⊆ A × A is the relation indicating which terms are equated in the quotient.

With this, we have selected a semantic domain and thus now have the mathematical setting

in which we will build up our new type theory.

To help make these ideas more concrete, we will consider the type of untyped lambda

terms as a running example throughout this treatise. First, let us look at how one could

represent the semantic representation of the type of named lambda calculus terms with

the relation representing alpha-equivalence. We will use N to denote the countably infinite

set of names, conveniently coinciding with the notation of natural numbers. The set of

named lambda terms LC is then given as the least fixed point of the function F X =

N +X ×X + N ×X. While this may give a formal mathematical definition of the set, its
1The term “setoid hell” has been used to describe the challenges that traditionally occur when trying

to program or write mechanized proofs involving quotients. To represent quotients one uses setoids: types
equipped with a binary relation representing which terms are equated by the quotient. When working with
setoids, one must prove that every function preserves the setoid relation and it quickly becomes very tedious
and exhausting, motivating the apt description of “setoid hell.”

6

contents become more clear if we give the names var, app and abs to the three inclusions

and make explicit the result of the least fixed point.

var x ∈ LC for all x ∈ N
app f t ∈ LC for all f ∈ LC and t ∈ LC
abs x t ∈ LC for all x ∈ N and t ∈ LC

Having defined the set, we now must equip it with a relation RLC ⊆ LC × LC. We do so

with the following rules.

(t, t) ∈ RLC for all t ∈ LC
(app f t, app f ′ t) ∈ RLC for all (f, f ′) ∈ RLC and t ∈ LC
(app f t, app f t′) ∈ RLC for all f ∈ LC and (t, t′) ∈ RLC

(abs x t, abs x t′) ∈ RLC for all x ∈ N and (t, t′) ∈ RLC

(abs x t, abs y t[var y/x]) ∈ RLC for all y ∈ N fresh in t ∈ LC

In the above rules, the notation t[t′/x] represents the term resulting from substituting the

term t′ for the variable x in the term t. We also use the standard definition for when a

variable is fresh in a lambda term. Combining the two definitions, we now have defined the

terms of the lambda calculus up to alpha-equivalence within our semantic domain as the

pair (LC, RLC).

Structural Syntax

Adding structure to the semantic interpretation of types begins the process of defining a new

types theory, but in actuality doesn’t change much. Assuming it is an appropriate domain

(i.e. a topos, see Section 2.2.3), we know it supports dependent type theory, and thus

automatically the theory contains all of the type formers and structure we are accustomed

to having. So what is the problem? While the new structure is semantically present, it is

invisible to the type theory and thus doing absolutely nothing; we may as well interpret the

type theory into sets. To fix this problem, we must extend the syntax with new primitives

that provide the theory access to the structure we have added.

What syntactic elements might we want in quotient type theory? For starters, we prob-

ably would want a way to project out the relation of any given type and be able to ask

7

whether two terms are related with respect to the relation. With that in mind, we add the

following formation rule:

Γ ⊢ A : Type Γ ⊢ a0 : A Γ ⊢ a1 : A
Γ ⊢ a0 ∼A a1 : Type

Given two terms a0 and a1 in A, we have a type representing the proposition of whether a0

is related to a1 by the relation. We also likely want to be able to be able to get an answer

to whether the two terms are related, and thus should add an introduction rule as well.

As this is imaginary, we will not worry about any computational challenges one may have

about decidability. We also will not worry about the precise semantic interpretation of the

syntax, and just assume we have a perfect interpretation function J−K that translates any

syntax we need into the semantic domain. With these aspirational assumptions and use of

hand-waving, we can add the following introduction rule to our type theory:

(Ja0K, Ja1K) ∈ π2(JAK)
Γ ⊢ ∗ : a0 ∼A a1

If two terms are related semantically we have a syntactic witness to the proposition asking

whether they are related. Of course, were we defining a real type theory we would need this

to be precise and likely want to expose more structure in a more intelligent way, but the

point of this example is to provide intuition on the research framework and not actually do

novel research, and so we continue to the third step.

Returning to our example, assume we have a type LC of lambda terms such that JLCK =

LC. Also assume the terms of LC are built from constructors var : Nat → LC, app : LC →

LC → LC, and abs : Nat → LC → LC (where Nat is the type of natural numbers) that

interpret to align with the named inclusions var, app abs from the semantic domain. Based

upon the above rules, we always have a witness ∗ : t ∼LC t for ever term t : LC, there is a

witness ∗ : app f t ∼LC app f t′ whenever we have a witness to t ∼LC t
′, and so on. Given how

we defined the witness term for relations, note that the type theory is assuming an oracle
8

can always solve whether two terms are related in order to type-check the witness, and in the

case of alpha-equivalence for lambda terms we know it is relatively straightforward to define

such an oracle algorithmically. Given this additional syntax, the type theory can now talk

about whether or not two lambda terms represented within LC are alpha-equivalent as the

relation is now accessible to the surface syntax. Making this fully concrete, the type theory

“knows” the following types are inhabited.

abs 0 0 ∼LC abs 1 1
app (abs 0 1) 2 ∼LC app (abs 3 1) 2
abs 0(app1 0) ∼LC abs 2 (app 1 2)

The Property

At this point the type theory has additional structure and the structure is even visible to a

user of the theory. What else is required before calling the project complete? In practice,

the structure that is most convenient or natural to add to the types is often too general for

their desired interpretation, and thus there are many types semantically we wish to exclude

from the theory. The types we are actually interested in—the goal of what types should

represent in this new theory—are those types that additionally satisfy a property pertaining

to the new structure. Given this is the case, we then must identify the property and restrict

our type theory to those satisfying the structure; in doing so, we must also show that every

type former we wish to include preserves the property so that we cannot ever create a type

that no longer satisfies the property.

The observant reader may have already identified the property missing from our quotient

type theory before reaching this point: To define a type theory of quotiented sets, we need

types to not just be pairs of a set with an arbitrary relation but specifically those sets that

are paired with an equivalence relation. To spell this out, we restrict to types A that satisfy

the following three predicates expressed syntactically within the type theory:

isRefl A : Πa : A. a ∼A a
isSymm A : Πa0 a1 : A. a0 ∼A a1 → a1 ∼A a0
isTrans A : Πa0 a1 a2 : A. a0 ∼A a1 → a1 ∼A a2 → a0 ∼A a2

9

The types we restrict our theory to are those whose relations are reflexive, symmetric and

transitive.

Definition 1.2.1. A type A equipped with witnesses of the above predicates indicating its

binary relation is reflexive, symmetric and transitive is called an equivalence type.

A key aspect of this step is that, while we define this restriction on types syntactically

in the logic, it also interprets into a meaningful property semantically. Expanding the above

syntactic restriction definitionally, we see that the rules interpret to the following statements.

JisRefl AK : ∀a ∈ π1(JAK), (a, a) ∈ π2(JAK)
JisSymm AK : ∀a0, a1 ∈ π1(JAK), (a0, a1) ∈ π2(JAK) ⇒ (a1, a0) ∈ π2(JAK)
JisTrans AK : ∀a0, a1, a2 ∈ π1(JAK), (a0, a1) ∈ π2(JAK) and (a1, a2) ∈ π2(JAK)

⇒ (a0, a2) ∈ π2(JAK)

Looking at the above interpretations, we can see that by definition we restrict to types A

such that π2(JAK) is an equivalence relation over the set π1(JAK). In setting up the theory

with such a clear connection to semantic domain with a direct interpretation of the property,

we make it easy to ultimately interpret definitions and proofs given within the type theory

into the semantics, allowing one to extract any type theoretic results for safe usage with the

mathematics of the semantic domain at large, in our case here being sets equipped with an

equivalence relation.

To ensure we can do this restriction and still use our type formers without worry, we then

must prove lemmas such as,

Lemma 1.2.2. For every equivalence type A and every type family B : A→ Type such that

all types B a in the family are equivalence types, the type Σa : A.B a is also an equivalence

type.

As the novel type theory we currently are defining is not real, we shall skip writing such

proofs and simply assume they exist.

10

Returning to our example of the lambda calculus, anyone following this approach will

have to have proven that the notion of alpha-equivalence is indeed reflexive, symmetric and

transitive, and thus we can safely add witnesses for isRefl LC, isSymm LC and isTrans LC to

the syntax concluding that LC is an equivalence type in this theory.

The Universe

The penultimate step of this research framework is to collect all of our well-behaved types into

a common universe. While initially this may seem nearly trivial, doing so in such a way that

is constructive can be quite challenging depending on the semantic setting and the choice

of property that defines which types are well-behaved. A secondary task that commonly

accompanies this step is then showing that the universe itself satisfies the property, allowing

us to create a “tower” of universes (i.e. Ui : Ui+1), and in doing so providing a solution to

any potential size issues. At this point, assuming all type former preserve the property, we

have finally arrived at a type theory that can syntactically forget about ill-behaved types

along with the fully-general universe Type containing both the “good” and “bad” types; we

have enough syntactic justification to define the entire theory with respect to our new (tower

of) universe(s) U(i), and from our previously proven lemmas we know all reachable syntax

remains within our intended setting of types with the additional structure that also satisfy

the property.

In line with our increasingly casual treatment of quotient type theory up to this point,

let’s assume we can define a universe Ueqv that contains all of the equivalence types. Given

we have assumed the presence of proofs stating that every type former imaginable preserves

equivalence relations, we know it is inhabited by desired types, including the running example

of lambda terms LC. Let us also assume that Ueqv’s relation is also an equivalence relation,

and thus we can safely define a Grothendieck tower of universes. We have solved setoid hell!

That being said, there is still one step remaining before this result is complete.

11

The Universal Property

While at this point we have a fully functioning type theory with all of the additional structure

we intended, one open question remains: What does this additional structure look like for

the universe? As every type in the type theory is enriched with the structure we set out to

add, the universe is no exception; however, there is no indication within the type theory of

what the structure is doing, and of whether or not it is useful for a user of the theory. All we

know is that the universe has the structure and that said structure on the universe satisfies

the property indicating it is well-behaved. To ameliorate this, the final step is to classify the

structure of the universe with a general theorem. Ideally it connects the structure in the

universe to a more traditional type, often along an equivalence or something similar. The

canonical example of doing this is univalence in homotopy type theory: For any two types

A and B, the type of paths in the universe between A and B is equivalent to the type of

equivalences between A and B.

PathU (A,B) ≃ (A ≃ B)

The property translates the structure we have added to the universe into something tangible

that can be leveraged inside the type theory. This is generally the most challenging step of

the research project, but also the most rewarding as it typically provides a very powerful

tool that fundamentally motivates adding all of the new structure to the notion of what it

means to be a type in the first place.

What might the equivalence relation on Ueqv be? To answer this question, we will use

the following definition of type equivalence.

Definition 1.2.3. Given types A and B, the type of equivalences between A and B, written

A ≃ B contains pairs (f, g) where f is a function A→ B and g a function B → A such that

for every a : A, we have a witness that a ∼A (g ◦ f) a and for every b : B we have a witness

that b ∼B (f ◦ g) b.

12

For the sake of most naturally aligning with the real and proven results that will follow in

this thesis, let us claim that it satisfies the following notion of quotient univalence: For any

two types A and B in Ueqv, the type asking whether A is related to B in Ueqv is equivalent

that asking whether A is equivalent B.

· ⊢ qua : ΠA B : Ueqv.(A ∼Ueqv B) ≃ (A ≃ B)

Note that we can use quotient univalence on itself to conclude a stronger version: (A ∼Ueqv

B) ∼Ueqv (A ≃ B). The quotient relation of the universe coincides with the notion of

equivalence of types. We have now concluded our work on quotient type theory!

Before leaving this example behind, let us think a bit more on why we even cared to

prove quotient univalence. Obviously our sketch of quotient type theory was not mathemat-

ically sound in the least and missing many details; one particular detail missing is that—in

our perfect imaginary world void of setoid hell—all of syntactic constructions (and in par-

ticular functions) would not only preserve the property of being an equivalence relation,

but specifically the structure of the relations themselves; this is necessary as we certainly

need our quotient type theory to actually respect quotients, and thus functions must send

related terms in the domain to related terms in the codomain. An important implication of

this follows from the observation that, when constructing a type in the universe, often one

does so in a non-empty context that contains types with non-trivial quotient relations (i.e.

dependent types exist). Upon defining such a type, which we will wrap up neatly with the

context into a type family B : A → Ueqv, we can automatically use the fact that functions

respect equivalence relations to conclude that whenever we have a proof of a0 ∼A a1 we also

have a proof that B a0 ∼Ueqv B a1. Before proving quotient univalence this did not mean

much, but with quotient univalence we now know how to interpret the relation on the uni-

verse and thus can push this further and conclude the much stronger assertion that the type

B a0 is equivalent to B a1: Related terms in the domain of a type family are always sent to

13

equivalent types automatically equipped with functions that can transport terms back and

forth between one another.

What does this mean for our example? To demonstrate, let us assume we also defined

a second type of locally nameless lambda terms, lnLC. Locally nameless lambda terms are

simply lambda terms where free variables are named, but all bound variables are referred

to using De Bruijn indices. In the case of locally nameless lambda terms, alpha-equivalence

is a non-issue as naming is determined uniquely by the structure of the term (as all bound

variables are De Bruijn), and thus the type lnLC is equipped with the trivial reflexive relation.

Let us assume we have defined the equivalence (f, g) : LC ≃ lnLC.

We will now use quotient univalence to transport a proof of progress of the untyped

lambda calculus defined over the type of locally nameless lambda terms to type of named

lambda terms. Why might one want to do this? In this case the proof is rather easy to define

directly over named lambda terms, but often when proving properties of more expressive and

realistic languages it is desirable to not complicate proofs with alpha-equivalence related

issues and work with De Bruijn indices, but one also wants the final theorem statement to

be about the named version of the language as it is the closest mathematical representation

to the actual programming language. For this to work, let us assume we have defined a type a

type of lambda algebras LAlg, which can equivalently be thought as the signature of a module

containing the abstract interface used for defining lambda terms, and defined two terms of

type LAlg, alg and lnalg, that instantiate the signature for both LC and lnLC respectively.

The relation given by quotient univalence between LC and lnLC then lifts to define a witness

relating the terms alg and lnalg. Let us also assume we have defined an abstract notion of

the step relation for lambda algebras along with a predicate P : LAlg → Ueqv that states the

property of progress: every lambda term can either step or is a variable or a function. We

can use the fact we automatically know the function P preserves relatedness to conclude that

P alg is related to P lnalg, and then use quotient univalence to extract the corresponding

equivalence which in particular contains a function with type P lnalg → P alg: Given a proof

14

p of type P lnalg stating that the locally nameless lambda terms satisfy progress, we can

automatically generate the corresponding proof of type P alg concluding the same property

for the named lambda terms.

The key takeaway of this example is that, by adding more structure to the type theory

in an intelligent and organized manner, we did additional labor as the researchers when

defining the theory that ultimately gives the user of it access to more true statements about

their terms and types for free. I hope that in working through this light-hearted example

the pattern of research in type theory I personally use as a fundamental framework will now

be more visible and intuitive to you, particularly while reading this thesis.

A Note on Actual Quotient Type Theories

While my example of quotient type theory in this section is not serious, there are a few

rigorous type theories that approach this problem that are quickly worth mentioning. First,

extensional type theory is type theory with equality reflection, meaning any propositional

equality can be internalized into a judgmental one [51]; this logically consistent approach

solves the challenge of maneuvering around propositional equality proofs at the cost of decid-

able type checking. That being said, the NuPRL proof assistant is a working implementation

of computational type theory that satisfies equality reflection resulting in a type theory with

many extensional properties [25], and has been followed by a number of spiritual successors

[8,38]. On the intensional side of things, and the closest to the fake theory described in this

section, Martin Hofmann’s thesis Extensional Concepts in Intensional Type Theory explores

an actual approach to setoid type theory [40]. Most recently, XTT is a type theory with

uniqueness of identity proofs for its propositional equality that is based on Cartesian cubical

type theory [72].

15

1.3 Technical Contributions

Directed type theory presents a number of unique challenges beyond those found in homotopy

type theory, and as such a number of techniques have been explored to account for these

nuances. Most notably, in directed type theory a universe of covariant type families will not

contain all of the usual types of type theory—e.g., Π is contravariant, not covariant, in its

domain. One approach that has been taken by directed type theory is to employ some kind of

modal typing discipline, tracking variances or preventing certain uses of variables [45,52,54],

so that being a covariant family is part of the typing of a term. Another approach, recently

developed by Riehl and Shulman [62], is based on instead equipping each type with both a

notion of path and a separate notion of directed morphism (representing the arrows in a

category). In this approach, all existing homotopy type theory can be interpreted using the

path structure on each type, providing a rich language of possible constructions. Being a

covariant family is an internally definable property of a type, represented by another type

that can be inhabited for a variety of type constructors—i.e. covariance is a type class.

While ordinary homotopy type theory has models in simplicial sets, the Riehl-Shulman

type theory is based on a model in bisimplicial sets, Set∆
op×∆op

, where the two copies of the

simplex category ∆ represent these two notions of path and directed morphism. While this

suffices for formalizing mathematics, for applications to computer science we would like a

computational interpretation of the type theory, and a constructive account of even ordinary

homotopy type theory in simplicial sets has not fully been worked out (see [34] for some

progress in this direction).

In this thesis, in place of a bisimplicial model of directed type theory, we consider a

bicubical one, so that we can exploit the techniques that have been used to give constructive

interpretations of ordinary homotopy type theory. We give a model of directed type theory

with directed univalence in bicubical sets. This model is constructive in the sense of being

defined in a constructive metatheory; we leave a more explicit operational semantics to

16

future work. We have formalized2 much of the model in Agda using the internal language

approach to presheaf models of homotopy type theory [14, 47, 57, 58]. In this approach, an

extensional type theory (or Agda with some axioms as a substitute [40]) is used to describe

cubical-set level constructions, and the main task is to program the definitions/proofs of

the Kan operations, which describe how to transport in each type family. Bicubical sets is

also a presheaf topos, and thus we too can leverage this technique for our work on bicubical

directed type theory.

Chapters 3 and 4 focus on defining bicubical type theory and constructing directed uni-

valence. First, Section 3.1 describes the axioms we add to the Agda proof assistant to

work in its internal language and justifies their soundness with respect to the category of

bicubical sets. In Sections 3.2 and 3.3, we use this internal language to define numerous

classes of types including covariant discrete fibrations (covariant functors valued in types

that themselves have trivial morphism structure) and universes containing the types of a

couple of these classes (including one for the covariant discrete fibrations). In Section 4.1,

we show that functions are a reflection of morphisms in this universe: every morphism de-

termines a function, and vice versa; converting a function to a morphism and back is the

identity; but for the other round-trip there seems to be only a morphism in one direction,

not a path. This reflection is most of the directed univalence equivalence between functions

and morphisms, but to complete the equivalence, it is necessary to invert this morphism,

yielding a path. To do this, Cavallo, Riehl and Sattler’s proof of directed univalence in the

bisimplicial model [21, 68] uses a fact about the Reedy model structure on bisimplicial sets,

that weak equivalences (and therefore homotopy equivalences between bifibrant objects) are

objectwise—this means that if a morphism is an equivalence for each object of the directed

category separately, then it is an equivalence. For our constructive model, we use a cubical,

not simplicial, directed category (specifically, the “Dedekind” cube category with faces, de-

generacies, symmetries, diagonals, and connections, but no reversals) so that we can build
2See the agda/directed directory of https://github.com/mzweav/phd, starting with Thesis.agda and

Summary.agda.

17

https://github.com/mzweav/phd

universes of covariant fibrations constructively [47]. This cube category is not Reedy [67],

so the proof for bisimplicial sets does not immediately apply to bicubical sets. However,

for bisimplicial sets, the Reedy model structure coincides with the injective model struc-

ture (see e.g. [63, Example 7.8]), and the injective perspective applies to bicubical sets,

allowing us to port this aspect of Cavallo, Riehl and Sattler’s proof. Recently, Shulman [71]

gave a new characterization of the fibrations in the injective model structure as objectwise

fibrations equipped with an algebra for the cobar construction (see e.g. [60, 70]). Coquand,

Sattler and Ruch [26, 28] give a constructive analogue of this definition as a special case of

sheaf models (though the precise connection with the injective model structure remains to

be worked out). In Section 4.2, we describe an Agda formalization of this approach, and

check that the axioms describing this extension are true in bicubical sets. We then add an

axiom covEquivAx that is true for this refined notion of fibration, and use it to complete the

directed univalence equivalence for a refined covariant universe. We can summarize the key

results contained in Chapters 3 and 4 using the framework from Section 1.2.

Semantic Structure bicubical sets (Section 3.1)
Structural Syntax interval types, cofibration logic, extension and glue types

(Section 3.1)
The Properties covariant composition, Segal types and cobar modal types

(Sections 3.2 and 4.2)
The Universes the universes of modal Segal types and modal covariant

types (Sections 3.3, 3.4 and 4.2.3)
The Universal Property constructive directed univalence (Sections 4.1 and 4.2.4)

Chapter 5 describes a generalization of the fibrant Riehl-Shulman extension types defined

in [62], and then leverages this notion to define a type theory in which users can freely define

constructive LOPS universes [47] within the syntax. In Section 5.1, we show that any

variables of types corresponding to representables in the presheaf model that are quantified

by a Π-type can freely be used in boundary conditions of extension types and as a part of

cofibration witness types while preserving the fibrancy of the resulting type; furthermore,

one can also quantify over variable cofibrations freely and use the variable cofibrations as

well in any extension type boundary or cofibration witness type. This is made possible by
18

opening up our reasoning about fibrancy to consider when types are fibrant with respect to

only a portion of the context. We prove this in the setting of an arbitrary presheaf category

with respect to a new notion of fibrancy that is given by a generic filling problem. This

abstraction is general enough to capture all of the current presheaf models of type theories

and their classifications of types specified by filling problems. Having defined this new theory

of “fiberwise, contextual fibrancy,” we then define a syntax for a type theory that includes

a constructor for LOPS universes in Section 5.2.3. Not only does this constructor allow

the user to define and inhabit new universes classifying types for any notion of fibrancy

given by the generic filling problem from within the syntax, but these universes can even be

nested within one another, i.e. the user can carve a new LOPS universe out of an existing

one, resulting in the universe of types from the first universe that additionally satisfy the

fibrancy condition used to define the new universe. Considering an implementation that

incorporates this universe constructor, the solutions to the filling problems that accompany

each type former can be provided internally as library code and no longer must be manually

incorporated as part of the implementation; this would substantially decreases the effort

for implementing proof assistants based on types theories of this form, while allowing for

more flexibility in the filling algorithms. This also makes it possible for users to provide

codes for fibrant types that could not be covered by the generic cases hard-coded into the

implementation when using the approach where the LOPS construction is not exposed.

Lastly, in Chapter 6 we overview our implementation of bicubical directed type the-

ory: directed cooltt [3]. While modeled by the theory described in Chapters 3 and 4, the

implementation contains a few interesting design decisions in regards to its syntax. Most

notably, as opposed to exposing the connections for the directed interval we chose to instead

include inequality cofibrations directly in the syntax and omit connections, resulting in a

syntax that is sufficiently expressive for any use case we have considered while resulting in

an implementation with a substantially more computationally efficient cofibration solver.

19

1.4 Related Work

Our proof of the directed univalence reflection does not overlap very much with Cavallo,

Riehl and Sattler’s directed univalence for bisimplicial sets [21,68]—for example, we use the

“glue” types used to define univalence in constructive cubical models [24], while their proof

uses a dual type (called “weld” types in [55]), and we use the LOPS construction [47] to build

universes constructively; however, for completing the reflection to an equivalence, we do use

a lemma from their proof, which follows from objectwise homotopy equivalences inducing

homotopy equivalences.

Buchholtz and Weinberger [17, 18] give some extensions of the Riehl-Shulman directed

type theory, such as adding opposite categories, defining cartesian fibrations, and defining a

universe of simplicial spaces inside of cubical spaces via a sheaf condition. In future work, we

plan to investigate whether the techniques we develop here can be used to give a constructive

account of directed univalence for a universe of cartesian fibrations (categories and functors,

instead of groupoids and functors) as well.

North uses a distinct approach to define a type theory for ∞-categories in which the

morphism types interpret directly into Cat [53]. The focus of North’s work is to define a

directed type theory compatible with expressing not only ∞-categories, but also directed

spaces. This shift in priority results in a number of different design decisions, but the

biggest from the perspective of this thesis is that—as with the other definitions of directed

type theory (besides that described in this thesis)—it is not constructive.

Bicubical sets have also been used for type theory with parametricity: in Nuyts’ approach

to parametricity for (non-homotopy) type theory [55], both cube categories are Cartesian,

and there is an inclusion from one interval the other. Here, we do not take an inclusion

from the directed interval to the interval to be part of the cube category (but paths can be

turned into morphisms in Kan types). In Cavallo and Harper’s approach to parametricity

for homotopy type theory [20], the cube category used for paths is Cartesian, while the cube

category used for relations is semi-Cartesian (affine logic). In contrast, our directed cube

20

category also supports diagonals and connections to encode the simplicial shapes used by

Riehl and Shulman [62].

In his thesis, Nuyts explores generalized notions of fibrancy that covers a notion of con-

textual fibrancy similar to that described in Chapter 5 [56, Chapter 8]. His definition of

fibrancy is much more abstract and thus captures a much larger class of concepts than that

which we consider, with contextual fibrancy simply being an example. By focusing specifi-

cally on contextual fibrancy, we develop much more specialized and powerful results for this

specific case. In addition, we differ by representing these ideas mostly within the internal

logic of presheaf categories, while Nuyts’ work is defined externally using the language of

weak factorization systems.

Additionally, a group lead by Riehl began some initial investigations into the notion of

fibrancy versus fiber-wise (or contextual) fibrancy in the setting of bisimplicial directed type

theory at the 2017 Mathematics Research Community at the Snowbird Resort in Utah.

Recently, Kudasov implemented Rzk: A proof assistant based upon Riehl and Shulman’s

bisimplicial directed type theory [4]. Rzk has proven to be a wonderful setting in which

to formalize ∞-category theory synthetically, being used for ongoing formalizations of sim-

plicial homotopy type theory [5, 6]. The primary downside to Rzk that is rectified by our

implementation is that it is based on the bisimplicial model of directed type theory, and

thus is inherently nonconstructive; while Rzk is consistent as a logic, it contains terms that

cannot compute and thus the proof assistant cannot double as a programming language

with normalization or canonicity. By basing directed cooltt on our bicubical model, our

proof assistant is built on top of a constructive logic that ultimately can be equipped with

a normalization/canonicity proof and a compiler, opening the potential use-space to include

both formalizing mathematics (as Rzk supports) and applications in computer science, such

as software verification.

21

Chapter 2

Background

This thesis builds upon a gargantuan mountain of prior work from numerous theories of

mathematics, the scale of which makes painting a sufficiently detailed image a task incapable

of fitting within a thesis of reasonable length. As such, I decided on an approach of picking

and choosing the most central foundational themes of my thesis, and go into detail in those

places I find the readily available literature (or more accurately the references I personally

have encountered throughout my studies) lacking or outdated.

As a result of this decision, this chapter is structured as follows. First, in Section 2.1, I

simply cover the bare minimum of the fundamentals of homotopy type theory; for a more

comprehensive introduction to the field, I would direct you to the canonical reference, The

HoTT Book [74], along with Rijke’s textbook [64]. The mosts comprehensive section is

Section 2.2, containing a dense but relatively complete introduction to categorical logic,

incrementally building up the knowledge required to understand the inner workings of the

internal language of a topos and its connection to dependent type theory. Finally, Section 2.3

introduces the basics of cubical type theory and Section 2.4 describes the prior work on

directed type theory, the combination of which gave birth to the research explored in the

remainder of my thesis.

22

2.1 Homotopy Type Theory

An important observation was made at the end of the 20th century: Intuitionistic type

theory—while always considered until that point as a logic for reasoning over sets—was fully

consistent with more general interpretations. Historically, the intended model of intuitionistic

type theory was extensional, meaning that all proofs of equality are themselves always equal;

this new direction of work broke away from this idea, resulting in not only new models of

intuitionistic type theory, but entirely new type theories that fundamentally take advantage

of this newfound flexibility surrounding the meaning of equality. In the 1990’s the rules

of intuitionistic type theory were found fully consistent when interpreting types as setoids,

and then shown to also be consistent when interpreting types as groupoids; furthermore,

the universe of this groupoid type theory exhibits what today we would call a univalence

principle [40,42]. In the following decade this idea expanded to cover ∞-groupoids, and with

this jump in dimension the notion of homotopy levels of types was introduced along with

the univalence axiom [11, 76, 77]. At this point, research in higher-dimensional type theory

became an increasingly studied topic [33,35,36,46,48,75,78], and somewhere along the way

this body of work created the field of homotopy type theory: the study of extensions of

Martin-Löf type theory where types no longer represent sets or even groupoids; types can

model topological spaces.

Given homotopy type theory is a rather extensive topic, and the HoTT Book [74] and

Rijke’s textbook [64] already provides an accessible and rigorous introduction to the basic

ideas of homotopy type theory, I will not attempt to force an abridged summary into the

span of a few pages in this section; instead, the remainder of this section works as an index,

containing a few of the most fundamental facts, definitions and notations from homotopy

type theory used throughout this thesis.

23

2.1.1 Key Facts and Definitions

Definition 2.1.1. The homotopy fiber, or hfiber, of a function f : A → B at a point b : B

is the type classifying the inverse image of b up to homotopy.

HFiber(f, b) := Σa : A.PathB (f a, b)

Definition 2.1.2. A type A is contractible if one can provide a term a0 : A and, for any

other term a : A, a path from a0 to a.

iscontr A := Σa0 : A.Πa : A.PathA (a0, a)

Definition 2.1.3. Given types A and B, a function f : A → B is an equivalence if there

exists a g : B → A such that f and g are inverses up to homotopy:

isEquiv f := Σg : B → A.PathA→A (g ◦ f, Id A)× PathB→B (f ◦ g, Id B)

Two types A and B are equivalent if there exists an equivalence f : A→ B.

Equiv A B := Σf : A→ B.isEquiv f

Definition 2.1.4 (Univalence). A universe U is univalent if the type theory contains a term

of the following type.

ΠA,B : U.Equiv (PathU (A, B)) (Equiv A B)

24

2.2 Categorical Logic

Just as there are many different ways to define a topos (a mathematical structure we shall

incrementally define over the course of this section), the question of “What is a type theory?”

has many answers. While many are correct, the perspective most relevant to this thesis is

that (dependent) type theory is the internal language of a topos. Conversely, the most

useful interpretation of a topos for reading this thesis is that it is a category into which

one can faithfully interpret dependent type theory. In this section, we will build up our

understanding of categorical logic to ultimately explore the connection between topoi and

type theory, focusing on the foundation needed for the techniques we utilize throughout the

thesis.

For this section, we assume the reader is proficient with the basic definitions of category

theory (e.g. category, functor, natural transformation), and ideally has some exposure to

the concepts of limits and adjunctions. Should one wish to freshen up one’s background

before jumping into this tutorial on categorical logic—or if one desires a reference to aid

their read through—we recommend Riehl’s book Category Theory in Context [61];1 the first

four chapters of the text provide more than enough of a foundation to comfortably jump

into the basics of categorical logic as we describe within the following pages.

To begin with, let us first view one (likely incomprehensible) definition of a topos.

Definition 2.2.1. A topos is a Cartesian closed category that has all finite limits and

contains a subobject classifier.

Even ignoring the fact it builds upon a number of other definitions we have yet to de-

fine, there clearly is a large, nontrivial leap between this succinct definition of a topos and

the realization that any topos provides sufficient structure into which one can always in-

terpret dependent type theory. Let us work through the reasoning together and develop
1The text is freely (and legally) available online for personal use at https://emilyriehl.github.io/

files/context.pdf.

25

https://emilyriehl.github.io/files/context.pdf
https://emilyriehl.github.io/files/context.pdf

our understanding of one of the many observations that makes topoi such a fruitful class of

categories.

To start with, we will first explore the very basic ideas of categorical logic in Section 2.2.1.

We then will shift our focus to the categorical logic of type theory by uncovering how every

Cartesian closed category provides a model of the simply types lambda calculus in Sec-

tion 2.2.2. Finally, in Section 2.2.3 we will conclude this introduction of categorical logic by

first extending our model to locally Cartesian closed categories to capture the behavior of

dependent type theory, and then defining topoi and modeling extensional dependent type

theory in their internal language.

2.2.1 Syntactic Categories and Internal Languages

In order to discuss the connections between syntax and category theory in a mathematically

sound way, we first must fix a formal definition of the notion of syntax.

Definition 2.2.2. For the purposes of this section, a syntax for a type theory is given by

a set of contexts Σ and for every pair of contexts ∆,Γ ∈ Σ a set of substitutions ∆ ⊢ Γ

closed under identity and composition. Composition of substitutions must be associative, as

must the identity substitution be both a left and right unit to composition. We often will

refer to the syntax by just the set Σ of contexts when it is clear to do so. To denote γ as a

substitution in ∆ ⊢ Γ, we write ∆ ⊢ γ : Γ.

This particular notion of a type theory reduces its structure to a singular typing judgment

for context substitutions; as most type theories contain a product type there generally is

no meaningful distinction between the contexts and the types (at most differing by a strict

isomorphism), and thus the judgment is equivalently the typing judgment for terms. Another

important note to make is that the contexts are not limited to being simply a list or telescope

of types (as is the case in this thesis, where we instead have multiple lists/telescopes for

different classes of types), and even if contexts are given as lists of types they need not

26

represent the standard product of the types but instead can be some monoidal product (as

is required for e.g. linear type theory).

Definition 2.2.3. Given a syntax Σ, the syntactic category has as objects the contexts, and

for ∆,Γ ∈ Σ, the morphisms from ∆ to Γ are given by the set of substitutions ∆ ⊢ Γ.

Clearly, the syntactic category is always a category, as the definition of a syntax has

the category axioms built in (as any reasonable notion of substitution should indeed include

identity substitutions, should compose, and the order of computing compositions of substi-

tutions should not have any effect on the resulting substitution). The benefit of thinking

of our syntax as a category is that it opens up the potential to identify abstract categorical

structures that appear within the rules that define the type theory, and thus allows us to

leverage existing mathematics about the categorical structures to conclude facts about the

syntax and its properties more easily. The intuition that comes from this perspective also

flows in the other direction, as often categorical constructions are helpful to inspire new

syntax that will inherit the behavior and properties known from the mathematics. One

notable example of this pathway from mathematics to syntax is the creation of homotopy

type theory and all of the theories that have been built upon its foundation (and therefore

includes this thesis).

Definition 2.2.4. Given a category C, its internal language is a syntax with contexts being

the objects in C, and for ∆,Γ ∈ C the substitutions ∆ ⊢ Γ are given by the the morphisms

from ∆ to Γ in C.

To cover our bases, first observe that the above definition does yield a syntax, as the

properties required of the substitution sets in the definition of a syntax match those imposed

on the hom-sets of a category.

This formal definition, while correct, is in many ways too general and misses the more

subtle meaning often associated with the term “internal language” in the same way the

formal definition of syntax also leaves out many of the details we associate with the usage
27

of the word. The high level idea is this: The internal language of a category is a type

theory where contexts/types are given by the objects of the category and terms are given

by the morphisms; moreover, and what the generic definition above omits, we often include

a syntactic system of inference rules describing (a subtheory of) the internal language that

is generated directly from the various universal constructs contained within the category.

This selection of inference rules is generally not unique, fixed, nor complete for a given

category (although there are standard choices for the most common classes of categories

used in categorical logic, as we will see in the following few sections). That being said, it

is this notion of the internal language that is the most important conceptually as it truly

describes a fully syntactic representation of the logic contained within the structure of the

category, providing a clear, consistent interface between a syntactic logic and the category

that describes the logic. We will quickly make this idea concrete in Section 2.2.2.

2.2.2 Cartesian Closed Categories and STLC

The first milestone on our journey towards understanding how topoi model dependent type

theory will be to uncover how the internal language of any Cartesian closed category contains

the simply typed lambda calculus. In order to do that, we begin by exploring categories with

binary products.

The Internal Language of A Category with Binary Products

As we mentioned in the previous section, the internal language in practice can be represented

by a system of syntactic inference rules corresponding to universal constructions in the

category; but what do we mean by universal constructions? While it is only one class of such

things, a common and intuitive example of universal constructions is limits. A limit defines an

object determined from some data that is in particular paired with a unique structural way to

map into the object along with morphisms describing how to project out the data used in its

definition. These three pieces neatly align with syntactic counterparts: a formation rule, an

28

introduction rule, and some elimination rules; in addition, the equations that are given with

the limit give the standard β-reduction rules, and the uniqueness property accompanying

how to define morphisms into the object allow one to always derive an η-expansion rule.

To make this idea concrete, let us consider the canonical example of a limit: the binary

product. Assume our category C is closed with respect to binary products. Then, for any

two objects A and B in C, there is an object A×B (the formation rule) with two projection

maps π1 ∈ C(A×B,A) and π2 ∈ C(A×B,B) (the elimination rules). Lastly, for any Γ ∈ C

and pair of maps a ∈ C(Γ, A) and b ∈ C(Γ, B) there is a unique map (a, b) ∈ C(Γ, A × B)

such that (a, b) followed by π1 equals a and (a, b) followed by π2 equals b (the introduction

rule). We summarize the product with the commuting diagram below:

Γ

A A×B B

a
(a,b)

b

π1 π2

Conveniently, these rules naturally can be represented as inference rules in the internal

language. We will write A ∈ Type to denote the judgment that A is a type in the syntax.

A ∈ Type B ∈ Type
A×B ∈ Type

Γ ⊢ a : A Γ ⊢ b : B
Γ ⊢ (a, b) : A×B

Γ ⊢ p : A×B

Γ ⊢ π1 p : A
Γ ⊢ p : A×B

Γ ⊢ π2 p : B

To help our syntactic representation match our intuition, we write f g to denote the mor-

phism f ◦ g (as e.g. π1 p in the above rule represents the morphism π1 ◦ p ∈ C(Γ, A)).

An important additional step is to now consider the equations that hold for products in

the internal language. In particular, given the rules thus far look like the standard definition

of products in type theory, we also anticipate that the β-rules should hold.

Γ ⊢ (a, b) : A×B

π1(a, b) = a

Γ ⊢ (a, b) : A×B

π2(a, b) = b

29

Conveniently, the commuting diagram above describing the product precisely expresses the

two equations for the β-rules. Furthermore, as π1 ◦ (π1, π2) = π1 = π1 ◦ idA×B and π2 ◦

(π1, π2) = π2 = π2 ◦ idA×B we use uniqueness to conclude that (π1, π2) equals the identity

map on A× B. When represented syntactically in the internal language, this is simply the

η-rule:
Γ ⊢ p : A×B

(π1 p, π2 p) = p

Thus, the internal language of a category with binary products supports the standard infer-

ence rules of binary product types.

As the key takeaway of this example, we typically think of the internal language of a

category with binary products as not simply being the opaque typing judgment from the

formal definition of “internal language” given in Definition 2.2.4, but the formal judgment

paired with the above syntactic inference rules.

The Internal Language of a Cartesian Category

Definition 2.2.5. A Cartesian category is a category closed under all finite products. Note

this includes the nullary product 1, yielding the terminal object. Equivalently, a Cartesian

category is a category containing a terminal object that is closed under binary products.

Let us now consider the internal language of a Cartesian category. For starters, we will

include every rule pertaining to products, as indeed a Cartesian closed category contains all

binary products. Additionally, as it contains a terminal object 1, we add the standard rules

for the unit type:

1 ∈ Type
Γ ⊢

Γ ⊢ ∗ : 1
Γ ⊢ x : 1
x = ∗

The unit type is a type (as it is an object in the category); for any context Γ there is a term

∗ in the unit type (as for any object there is a morphism to the terminal object); and any

term of the unit type is equal to the canonical term ∗ (as the terminal morphism is always

unique).

30

As potentially a more important consequence than unit and product types themselves,

the combination of binary products and a terminal object allows one to define the typical

structural rules for (non-dependent) contexts. While contexts and types alway coincide in

the formal notion of internal language as defined in Definition 2.2.4, there is more flexibility

in the syntactic inference rules (as deciding the selection of rules involves the subjective

choice of notation) and thus we will add a new syntactic judgment Γ ⊢ to indicate Γ is a

context in the syntax. Using just the basic structure of products and the terminal object,

we can derive the following rules for contexts and variables.

· ⊢
Γ ⊢ A ∈ Type

Γ, A ⊢

Γ, A ⊢
Γ, A ⊢ var : A

Γ ⊢ b : B A ∈ Type
Γ, A ⊢ wkA b : B

1. There is an empty context (the terminal object).

2. Given a context and a type we can extend the context with said type; we write Γ, A

as an alternative syntax for Γ× A.

3. We can project out the outermost variable from the context.

4. Given a term in a context we can always weaken the context and still have the analogous

term of the same type (with an explicit substitution applied to the term, as the internal

language effectively uses DeBruijn indices given how we defined context extension).

To help with syntactic intuition, we write var to denote π2 when used to project the outermost

variable of the context, and wkA b to denote b ◦ π1 when weakening a term b by adding new

variable of type A to the context.

Contexts exists not only to provide scope for open terms in a theory, but in particular to

indicate the structure of substitutions for open variables; as such, we also should anticipate

the internal language to be able to express variable substitutions now that contexts are

31

structured. Let us first write down and explain the rule we will add to the internal language

before justifying it categorically.

Γ, A ⊢ b : B Γ ⊢ a : A

Γ ⊢ b[a] : B

As the internal language effectively uses DeBruijn indices and thus has no notion of variables,

we write b[a] to express that a is being substituted into b for the outermost variable. We

now define the morphism b[a] ∈ C(Γ, B) as b ◦ (idΓ, a).

Γ Γ× A B
(idΓ,a)

b[a]

b

Lastly, having defined weakening and substitution, we would hope to be able to conclude

that if we weaken a term and then apply a substitution to replace the variable abstracted

by weakening, we then recover the original term.

Lemma 2.2.6. The following inference rule holds in the internal language of a Cartesian

category.
Γ ⊢ a : A Γ ⊢ b : B

(wkA b)[a] = b

Proof. Unfolding our definitions, we depict the morphism (wkA b)[a] as shown here.

Γ Γ× A Γ B
(idΓ,a)

(wkA b)[a]

π1

wkA b

b

As π1 ◦ (idΓ, a) = idΓ, it follows that indeed (wkA b)[a] = b.

32

The Internal Language of a Cartesian Closed Category

While the “Cartesian” moniker afforded us structural contexts, we now will see how the addi-

tion of “closed” contributes functions to the internal language of Cartesian closed categories.

To help us understand the definition of a Cartesian closed category, let us first define the

concept of an adjunction.

Definition 2.2.7. Given two categories C and D and two functors F : C → D andG : D → C,

the pair of functors F and G form an adjunction between C and D if for every object C ∈ C

and every D ∈ D there is a bijection of homsets C(C,G D) ≃ D(F C,D). We call F the left

adjoint and G the right adjoint, and we denote that F and G are an adjoint pair with the

notation F ⊣ G.

Definition 2.2.8. A Cartesian closed category is a Cartesian category C paired with a

functor [−,−] : Cop×C → C such that for every object A ∈ C, −×A ⊣ [A,−] form an adjoint

pair. Furthermore, the isomorphism from the adjunction λ : C(Γ × A,B) ≃ C(Γ, [A,B]) is

natural in Γ, A and B. We call the functor [−,−] the internal hom. Notationally, we will

often write BA to denote the object [A,B].

To provide some quick intuition, we can use the adjunction to quickly justify the name

of the internal hom functor:

C(A,B) ≃ C(1× A,B) ≃ C(1, BA)

There is a natural isomorphism between the elements of the hom-set C(A,B) and the global

elements of the object BA.2

As expected, the internal language contains all of that described for Cartesian categories.

Let us now consider the what is at this point the most interesting construction to incor-

porate into the internal language: the presence of the internal hom. The formation rule is
2For those unfamiliar, the global elements of an object A in a category C containing a terminal object 1

are given by the elements of the hom-set C(1, A). Conceptually, they are the categorical generalization of
the set-theoretic notion of what it means to be an “element” of the object A.

33

straightforward, although note that we will change our syntax, using A→ B in place of BA.

A ∈ Type B ∈ Type
A→ B ∈ Type

The introduction rule is also rather easy to translate. For any context Γ and types A

and B (i.e. any three objects in the category), the adjunction of the internal hom provides

the bijection λ : C(Γ× A,B) ≃ C(Γ, BA). Rewriting the action of the bijection from left to

right in the syntax of the internal language yields the following rule.

Γ, A ⊢ b : B
Γ ⊢ λb : A→ B

Recalling our notational choice for Γ, A to be synonymous with the product, this is the

standard introduction rule for function types: if b is a term of type B in a context extended

by A, then there is a term λb binding A from the context with type A→ B.

Let us now work in the opposite direction, and write down the elimination rule we

expect, and then justify it using the structure of the Cartesian closed category. The standard

elimination rule for functions is shown below:

Γ ⊢ f : A→ B Γ ⊢ a : A

Γ ⊢ f@a : B

In order for this to hold in the internal language, we need to provide a construction that

takes as input morphisms f ∈ C(Γ, BA) and a ∈ C(Γ, A), and outputs the morphism f@a ∈

C(Γ, B). To do this, let us consider λ−1f ∈ C(Γ × A,B) taking f across the internal hom

adjunction the opposite direction than that we used for the introduction rule. With this, we

do get a morphism that lands in B, but we still need to fix the domain so it starts in Γ. As we

have yet to use the morphism corresponding to the argument, it seems like a likely candidate

to help complete our solution. Using the universal property of the product, we can define

(idΓ, a) ∈ C(Γ,Γ × A) (the same morphism used to define substitution for the outermost

34

variable in the context), and thus we can compose to construct a candidate morphism for

application: λ−1f ◦ (idΓ, a), or equivalently (λ−1f)[a].

Γ Γ× A B
(idΓ,a)

f@a

λ−1f

Just because the morphism proposed above “type checks” does not make it correct; we

need to ensure it actually is the morphism corresponding to what we think of as function

application. As an initial sanity check it does seem to do the right thing conceptually: First,

λ−1 is unwrapping the body of the function, and then the morphism we precompose with is

the substitution that swaps in a for the variable previously bound by the function. To verify

this intuition, let us first derive the β-rule for function application.

Lemma 2.2.9. The following inference rule holds for the internal language of any Cartesian

closed category.
Γ ⊢ λb : A→ B Γ ⊢ a : A

λb@a = b[a]

Proof. Unfolding the definition, we can rewrite λb@a as (λ−1λb)[a], and as λ−1 is indeed the

inverse of λ, we conclude that the β-rule holds.

To complete our derivation that functions are contained in the internal language, we

must show it supports one last equation: η-expansion. In particular, we want to ensure the

following.

Lemma 2.2.10. In the internal language of any Cartesian closed category, the following

inference rule holds true.
Γ ⊢ f : A→ B

λ((wkA f)@var) = f

Proof. To begin, let us unfold the definition of (wkA f)@var.

Γ× A Γ× A× A B
(idΓ×A,π2) λ−1(f◦π1)

35

We claim λ(λ−1(f ◦ π1) ◦ (idΓ×A, π2)) = f . First, let us take advantage of the bijection of

the adjunction, and instead prove the equation after applying λ−1 to both sides: λ−1(f ◦

π1)◦ (idΓ×A, π2) = λ−1f . Now, recall that in the definition of a cartesian closed category, the

bijection must be natural in all of the arguments, and in particular for this proof the zone

representing the context (separate from the domain type). From this, we know the following

square commutes in Set.

C(Γ, BA) C(Γ× A,B)

C(Γ× A,BA) C((Γ× A)× A,B)

−◦π1

λ−1

−◦(π1,idA)

λ−1

Applying the corresponding equation to our morphism f ∈ C(Γ, BA), we conclude λ−1(f ◦

π1) = λ−1f ◦ (π1, idA). Finally, consider the diagram in C below.

Γ× A (Γ× A)× A

B

λ−1f

(idΓ×A,π2)

λ−1(f◦π1)

(π1◦π1,π2)

First, note that the equation we derived from naturality above concludes that the diagram

commutes from the top right (ignoring the morphism (idΓ×A, π2)). Second, the equation we

wish to prove is that the diagram commutes from the top left (ignoring (π1, idA)). Precom-

posing the two equal morphisms beginning at the top right of the diagram by (idΓ×A, π2) gives

us that λ−1(f ◦ π1) ◦ (idΓ×A, π2) = λ−1f ◦ (π1, idA) ◦ (idΓ×A, π2). Lastly, using the universal

property of products, we can conclude that (π1, idA) is a retract of (idΓ×A, π2), and thus the

composition (π1, idA) ◦ (idΓ×A, π2) is the identity map and λ−1(f ◦ π1) ◦ (idΓ×A, π2) = λ−1f .

Moving the equation through the bijection of the adjunction and rewriting with our notation,

we have indeed proven the η-expansion rule for functions: λ((wkA f)@var) = f .

36

The Type judgment:

1 ∈ Type
A ∈ Type B ∈ Type

A×B ∈ Type
A ∈ Type B ∈ Type

A→ B ∈ Type

The Context judgment:

· ⊢
Γ ⊢ A ∈ Type

Γ, A ⊢

The Term judgment:

Γ, A ⊢
Γ, A ⊢ var : A

Γ ⊢ b : B A ∈ Type
Γ, A ⊢ wkA b : B

Γ, A ⊢ b : B Γ ⊢ a : A

Γ ⊢ b[a] : B
Γ ⊢

Γ ⊢ ∗ : 1

Γ ⊢ a : A Γ ⊢ b : B
Γ ⊢ (a, b) : A×B

Γ, A ⊢ b : B
Γ ⊢ λb : A→ B

Γ ⊢ p : A×B

Γ ⊢ π1 p : A
Γ ⊢ p : A×B

Γ ⊢ π2 p : B
Γ ⊢ f : A→ B Γ ⊢ a : A

Γ ⊢ f@a : B

The Equality judgment:

Γ ⊢ a : A Γ ⊢ b : B
(wkA b)[a] = b

Γ ⊢ x : 1
x = ∗

Γ ⊢ (a, b) : A×B

π1 (a, b) = a

Γ ⊢ (a, b) : A×B

π2 (a, b) = b

Γ ⊢ p : A×B

(π1 p, π2 p) = p

Γ ⊢ λb : A→ B
λb@a = b[a]

Γ ⊢ f : A→ B

λ((wkA f)@var) = f

Figure 2.1: Inference rules for the simply typed lambda calculus

The Simply Typed Lambda Calculus

As we all know, the simply typed lambda calculus is the minimal core of purely typed

functional programming languages, along with that of any syntactic type theory. We can

describe the logic using four judgments: A ∈ Type stating that A is a type, Γ ⊢ stating that

Γ is a context, Γ ⊢ a : A stating that a is a term with type A in context Γ, and a1 = a2

stating when two terms are equal. The inference rules in Figure 2.1 define the simply typed

lambda calculus (with products).

37

Not only does Figure 2.1 represent a relatively standard syntactic formulation of the

simply typed lambda calculus, but we have shown that every single rule is consistent with

the internal language of any arbitrary Cartesian closed category; furthermore, not that

we will work through the construction here, the syntactic category of the simply typed

lambda calculus is also a Cartesian closed category. As a result of these facts, we justify the

canonical claim: “The simply typed lambda calculus is the internal language of Cartesian

closed categories.”

2.2.3 Topoi and Dependent Type Theory

Dependent Types in the Internal Language

Unsurprisingly, the key conceptual jump from the simply typed lambda calculus to dependent

type theory is that types can depend on the variables in the context. Semantically this forces

a shift in how we represent the types in category theory, as the objects in categorical logic

represent contexts and now types in an open context are no longer contexts themselves

(although the objects in our category can equivalently be thought of as closed types which

do still coincide with contexts, as we can think of a dependent context as an iterated Σ-type);

in order to model types from a category C depending on a context represented by Γ ∈ C we

will actually shift our setting to the slice category C/Γ.

As a quick refresher, recall that an object in the slice category C/Γ is given by an object

A ∈ C paired with a morphism α ∈ C(A,Γ), and a morphism f ∈ C/Γ((A,α), (B, β)) is a

morphism f ∈ C(A,B) such that the following commutes.

A B

Γ

f

α β

A dependent type in context Γ is represented as an object (A,α) ∈ C/Γ. That being said,

unlike with our previous work with the categorical semantics of simple types, the object A

38

is no longer a direct representation of a syntactic type “γ : Γ ⊢ A γ ∈ Type,” as the syntactic

“A” is open, while the object A still represents a closed type. Instead, A represents what we

call the total space of the dependent type, meaning the collection of all A γ for every γ : Γ

all grouped together. The morphism α are the projection indicating how A depends on Γ.

A key consequence of our category C ultimately being a topos is that it allows us to simplify

this picture and work with something more familiar: Assuming C is a topos (or to be more

precise, just a locally Cartesian closed category containing a terminal object), any object in

the slice category (A,α) is isomorphic to the object (Σ γ : Γ.α−1(γ), π1), the pair consisting

of 1. the dependent sum representing the closure of the dependent type family paired with

its context and 2. the projection that returns the context. The inverse image of α at γ,

written α−1(γ) above, will be formally defined shortly as an instance of Definition 2.2.11.

Given this isomorphism, without loss of generality (in most cases, which we will make precise

shortly), we can think of the objects representing dependent types as always maintaining

the form Σ γ : Γ.A γ structurally, and simplify our notion of morphisms to those shown

in the commutative diagram below where f can be thought of as a family of morphisms

fγ ∈ C(Aγ,B γ).

Σ γ : Γ.A γ Σ γ : Γ.B γ

Γ

(π1,f)

π1 π1

While knowing one can always refactor a dependent type into this form is certainly helpful

conceptually—particularly when first approaching categorical logic assuming a preexisting

background in syntactic type theory (and for this reason I will be maintaining this practice

for the remainder of this section)—in practice one often does not refactor and instead works

with arbitrary objects in the slice category and simply retains the conceptual idea of the

dependent type as its total space and context projection.

Having shown how to represent dependent types within category theory, the natural

progression is to now ask “how does one represent terms of dependent types?” Specifically,

let us consider what the categorical analogue of the judgment γ : Γ ⊢ a : A γ will be. For
39

starters, we know that our dependent type will be represented as the object of C/Γ given

by the dependent sum Σ γ : Γ.A γ paired with its first projection, and in the spirit of

categorical logic a should be a morphism into this object from that representing the context;

but which object in C/Γ represents the context? It turns out the correct answer to this

question is Γ paired with its identity morphism: (Γ, idΓ). In particular, this means that

terms a satisfying the judgment γ : Γ ⊢ a : A γ correspond to morphisms for which the

diagram below commutes.

Γ Σ γ : Γ.A γ

Γ

(idΓ,a)

idΓ π1

Analyzing this picture, we begin to see how using the slice category C/Γ captures the meaning

of types depending on context Γ. As we had when working in Cartesian closed categories,

the term a is a morphism out of the context Γ into the object representing our type. That

being said, a morphism from Γ to the total space of our dependent type A would not be

sufficient for the purposes of dependent type theory, as a term in context γ : Γ not only

must land in A, but specifically in the portion of A that corresponds to it depending on γ;

for example, it should not be the case that zeroIsEven represents a witness to the judgment

x : N ⊢ zeroIsEven : IsEven x when zeroIsEven always lands in IsEven 0, as 0 does not

always equal x given x being in the context signifies quantifying over all potential values

of type N. As IsEven 0 is a type scoped by the empty context, the syntactic judgment

· ⊢ zeroIsEven : IsEven 0 corresponds to the triangle below.

1 IsEven 0

1

zeroIsEven

id1 ∗

In general, to ensure terms agree with the dependency from context, terms must be a mor-

phism into the total space of the dependent type such that it preserves its “location” in the

context, encoded by the fact the triangle commutes.

40

As a quick remark on common practices, we can simplify the triangle corresponding to

γ : Γ ⊢ a : A γ by collapsing the identity morphism to an equivalent statement: (idΓ, a) is a

section in the diagram below.
Σ γ : Γ.A γ

Γ

π1(idΓ,a)

One often uses this representation to denote terms of dependent types instead of the triangle,

given it is more compact. As a secondary comment, in situations where one cannot or

prefers not to force the structure of the object representing the (dependent) type to that of

a dependent sum, this picture is particularly concise. A term a of the type (A,α) ∈ C/Γ

corresponds to any section of α.
A

Γ

αa

The last mechanization needed to model dependent types is to define the action of context

substitutions on types and terms. We syntactically know the following rules.

Γ ⊢ A ∈ Type ∆ ⊢ σ : Γ

∆ ⊢ A[σ] ∈ Type
Γ ⊢ a : A ∆ ⊢ σ : Γ

∆ ⊢ a[σ] : A[σ]

If A is a type in context Γ and σ is a substitution from ∆ to Γ, then the substitution induces

an action on types, supplying us A[σ]: a type in context ∆. Similarly, if a is a term of type

A in context Γ, the substitution also induces a term a[σ] of type A[σ] in context ∆. As our

dependent types are expressed as objects of a slice category and terms as morphisms of the

slice category, both substitution actions correspond to needing a functor from C/Γ to C/∆

for every morphism from ∆ to Γ in C (for all object ∆ and Γ). The functor that captures

the correct behavior for context substitution (i.e matches our expectations from syntactic

type theory) is called the base change functor.

41

Definition 2.2.11. Given a category C closed under pullbacks and a morphism f ∈ C(A,B),

the base change functor f ∗ : C/B → C/A is defined by sending an object x ∈ E(X,B) to its

pullback along f .

To illustrate the behavior of the base change functor, consider weakening a dependent

type B in context Γ by a type A in context Γ. Specifically, this corresponds to applying the

action of the projection wkA : Γ, A → Γ to B. The substitution action is depicted in the

following pullback square.

wk∗A (Σ γ : Γ.B γ) Σ γ : Γ.B γ

Γ, A Γ

wk∗A π1 π1

wkA

Unfolding the definition of the pullback, we can easily workout the resulting type is (isomor-

phic to) Σ (γ, a) : (Γ, A).B γ, and the morphism into Γ, A is the projection π1. Syntactically,

this corresponds to the following inference.

Γ ⊢ A ∈ Type Γ ⊢ B ∈ Type

Γ, A ⊢ B[wkA] ∈ Type

Another important example of the action of substitution is that given by substituting in

a value for the context. Consider a type B depending on a type A, along with a closed term

a : A. The base change along the substitution yields the following square.

B a Σx : A.B x

1 A

(a,idB a)

∗ π1

a

In the case where we haven’t already refactored our dependent type into the Σ closure of

the context, the base change of an arbitrary object (B, β) ∈ C/A along a ∈ C(1, A) yields

42

the inverse image β−1(a), indeed being one of the fundamental constructions with which we

define the refactorization itself. We also can generalize this to the base change along the

substitution of a term a for the outermost variable of the context Γ, A as shown here.

Σγ : Γ.B γ a Σγ : Γ.Σx : A γ.B γ x

Γ Σγ : Γ.A γ

(π1,a,π2◦π2)

(idΓ,a)

Note that both vertical arrows are the projections to their codomain.

Quantifiers as Adjoints in Locally Cartesian Closed Categories

In order for a category to support dependent types, the property one needs is that the

category is locally Cartesian closed.

Definition 2.2.12. A category C is locally Cartesian closed if for every object A ∈ C the

slice category C/A is Cartesian closed.

What is arguably the most obvious consequence for the internal language of a locally

Cartesian closed family is that the internal hom in the slice category provides a way to

define function types between types that depend on the same context. In particular, the

internal hom in the category C/Γ translates into the following inference rule (along with the

expected rules for lambda introduction, function elimination, etc. . .).

γ : Γ ⊢ A γ ∈ Type γ : Γ ⊢ B γ ∈ Type
γ : Γ ⊢ A γ → B γ ∈ Type

While certainly the above rule is useful and necessary for dependent type theory, expec-

tations would include the more general rule for Π-types. Thinking back on the pattern for

defining function types in the internal language of Cartesian closed categories, the crux of

the categorical structure utilized is that the internal hom functor [A,−] is the right adjoint

43

to the product functor − × A, which we can equivalently think of as the context weaken-

ing functor. Might a similar pattern apply in the dependent setting? As the dependent

analogue of weakening, we do already have the base change functor along the morphism

wkA ∈ C(Σ γ : Γ.A γ,Γ) (i.e. the first projection): wk∗A : C/Γ → C/(γ : Γ, A γ). One might

choose to investigate whether this functor happens to have a right adjoint itself, which we

will denote by ΠA : C/(γ : Γ, A γ) → C/Γ. Certainly the domain and codomain of this

functor seem correct, as the formation rule for Π-types with domain A take as input a type

depending on the context γ : Γ, A γ and output a type binding A in context Γ. We also

can surmise the adjunction would provide the structure needed to derive the correct behav-

ior for terms of Π-types based upon our experience deriving the rules for function types in

the STLC. Thankfully, it is the case that such an adjunction always exists for any locally

Cartesian closed category; more generally, one can prove the following.

Theorem 2.2.13 ([32, §1.3], [69, §2.4]). A category C with all pullbacks is locally Cartesian

closed if and only if for every morphism f the base change functor f ∗ has a right adjoint Πf .

While the right adjoint exists for the base change functor for every morphism in C, the

Π-types we are accustomed to in syntax are always those arising from the base change along

context weakening wkA ∈ C((γ : Γ, A γ),Γ). The adjunction yields the following natural

bijection.

λ : C/(Γ, A)(wk∗A X,B) ≃ C/Γ(X,ΠA B)

If we instantiate the object X at (Γ, idΓ) ∈ C/Γ, this bijection tells us that the terms of type

ΠA B in context Γ are precisely given by terms of type B in context Γ, A. Furthermore, given

the machinery to represent dependency given by the slice categories, the type A can depend

on the context Γ and B can depend on Γ and the type A. Following the same arguments as

for function types in the internal language of Cartesian closed categories, we can conclude

the inference rules below are consistent in the internal language of a locally Cartesian closed

44

category.
γ : Γ ⊢ A γ ∈ Type γ : Γ, x : A γ ⊢ B γ x ∈ Type

γ : Γ ⊢ Πx : A γ.B γ x ∈ Type

γ : Γ, x : A γ ⊢ b : B γ x

γ : Γ ⊢ λb : Πx : A γ.B γ x

γ : Γ ⊢ f : Πx : A γ.B γ x γ : Γ ⊢ a : A γ

γ : Γ ⊢ f@a : B γ a

In the rule for function application, f@a is given by λ−1f [a] where [a] substitutes x : A γ

for a (itself given by the base change functor for the morphism (idΓ, a) ∈ C(Γ,Σγ : Γ.A γ)).

The equations for β-reduction and η-expansion follow from the adjunction analogously to

the derivations in Cartesian closed categories.

Having concluded that locally Cartesian closed categories support Π-types, let us now

consider Σ-types. In the case where the locally Cartesian closed category contains a terminal

object, the following theorem holds.

Theorem 2.2.14 ([32, §1.3], [69, §2.4]). Consider a locally Cartesian closed category C

containing a terminal object (and thus C is closed under all finite limits). For any morphism

f , the base change functor f ∗ has a left adjoint Σf .

If the notation didn’t give it away, the left adjoint to base change ends up providing

the categorical analogue of the Σ-type constructor. From the adjunction, we can identify

that, for f ∈ C(∆,Γ) one way to compute the action of Σf : C/∆ → C/Γ is simply by post

composition: Σf (A,α) = (A, f ◦ α). As with Π-types, the rule is more general than needed

syntactically, and in practice we only utilize the adjunction when instantiated at a context

weakening morphism. Let us take a look at what happends when we consider terms of ΣA B

in context Γ.
γ : Γ, x : A γ,B γ x

γ : Γ, A γ

γ : Γ

(γ,x)

γ

(γ,a,b)

As we can see, by postcomposing with the weakening morphism we lose the dependency

on A γ in the slice category; as a result, the section corresponding to terms of type ΣA B

45

in context Γ are pairs of any term a : A in context Γ with a compatible b : B a over Γ.

This indeed aligns with the Σ-types found in syntactic type theory, with all of the expected

inference rules.
γ : Γ ⊢ A γ ∈ Type γ : Γ, x : A γ ⊢ B γ x ∈ Type

γ : Γ ⊢ Σx : A γ.B γ x ∈ Type

γ : Γ ⊢ a : A γ γ : Γ ⊢ b : B γ a

γ : Γ ⊢ (a, b) : Σx : A γ.B γ x

γ : Γ ⊢ p : Σx : A γ.B γ x

γ : Γ ⊢ π1 p : A γ

γ : Γ ⊢ p : Σx : A γ.B γ x

γ : Γ ⊢ π2 p : B γ (π1 p)

There is one subtle challenge that arises when considering the semantic interpretation of

Σ-types we have so far ignored: The Coherence Problem. Let us look above at the rules for

Σ-types. First, in the formation rule, we require B γ x to be a type family scoped by the

context γ : Γ, x : A γ. Then, in the introduction rule, we wish to type the second argument

of the pair as γ : Γ ⊢ b : B γ a. Syntactically, we know that normalization will ensure

that B γ a is the same type as (B γ x)[a] (the type B γ x where a is substituted in for x).

That being said, semantically there is no guarantee that the categorical interpretations of

B γ a will be strictly equal to the interpretation of B γ x pulled back along the base change

that substitutes in a (although they will certainly be isomorphic). This creates a problem,

as in the last paragraph I claimed that the introduction rule is sound, which requires the

interpretation of (a, b) to be a section of the interpretation of γ : Γ ⊢ Σx : A γ.B γ x ∈ Type,

and that only is the case when the interpretations of the two aforementioned types are

identical. While I will not cover the various workarounds in this section, thankfully there are

a number of results that solve this issue. Hoffman demonstrates how to solve this for modeling

dependent type theory in locally Cartesian closed categories [39], and while more challenging

for homotopical models of type theory, Lumsdaine and Warren have also developed a general

solution [49] inspired by that used in Voevodsky’s simplicial model of homotopy type theory

[44].

46

Topoi

We have arrived at our destination: topoi! Let’s start by going over the last missing piece

of the puzzle that makes up the definition of a topos.

Definition 2.2.15. Given a category C, a subobject classifier is a monomorphism true ∈

C(1,Ω). Its domain is the terminal object, and we denote the morphism by true and its

codomain Ω. The subobject classifier must satisfy the following: For every monomorphism

m ∈ C(A,B) in C, there exists a unique map χm ∈ C(B,Ω) such that the following square is

a pullback.
A 1

B Ω

m true

χm

We call the morphism χm the characteristic map or classifying map of m. In practice, when

it is clear how m describes A as a subobject of B, one often denotes the characteristic map

by χA and omits m.

The canonical example of a subobject classifier is that in the category of sets. Thankfully,

it is quite straightforward. In Set, the subobject classifier is given by the morphism true ∈

Set({∗}, {0, 1}) sending the unit element to 1. As any subobject A of B in Set is given by

a subset of B (paired with the injection m : A→ B specifying how A is a subset of B), the

characteristic map χm is the function that sends those elements in the image of m to 1, and

the rest to 0. Starting with a characteristic map χ ∈ Set(B, {0, 1}), let us work in the other

direction and build up the corresponding monomorphism. Using the standard construction

of the pullback in set, the resulting subobject is defined as

{(b, ∗) | b ∈ B and χ(b) = 1}

with the monomorphism sending the pair (b, ∗) to b. As uniqueness in category theory is

only ever up to isomorphism, we can just as well consider defining the subobject pullback to

47

instead be given by

{b ∈ B | χ(b) = 1}

with the subobject monomorphism being the inclusion into B. From this, it is clear to

see how maps into the subobject classifier correspond to all subsets, as quite literally the

hom-set Set(B, {0, 1}) is the power set of B, with the pullback picking out which subset

corresponds to the given element of the power set. The characteristic maps out of B fully

classify all monomorphisms into B, as again in category theory everything is only defined

up to isomorphism; any subobject A given by a mono m is isomorphic to (i.e. in bijection

with) the set {b ∈ B | ∃a ∈ A,m(a) = b} as m is an injection.

As we now know what a subobject classifier is, we finally have defined all of the terms

required to return to the definition of a topos.

Definition 2.2.1. A topos is a Cartesian closed category that has all finite limits and

contains a subobject classifier.

Given a topos is a Cartesian closed category, we already know how it supports the basics

of type theory. One would additionally hope it is a locally Cartesian closed category, thus

supporting Π-types, which is thankfully also the case. A simple way to confirm this is by

observing the following theorem.

Theorem 2.2.16 ([50, Chapter IV.7, Theorem 1]). Given a topos E and an object X ∈ E,

the slice category E/X is also a topos.

As every topos is Cartesian closed, we can trivially conclude our desired property.

Corollary 2.2.17. Every topos is locally Cartesian closed.

Furthermore, as topoi contain all finite limits, they certainly contain a terminal object, as is

required to contain Σ-types in the internal language and thus support the basics of dependent

type theory.

48

The additional structure present in a topos beyond a locally Cartesian closed category is

that is contains a subobject classifier; with this inclusion, we can now define the dependent

type theory that corresponds to the internal language of a topos.

Propositions and the Subobject Classifier

We now extend dependent type theory with a new type, Prop, the universe of logical propo-

sitions. This universe of propositions is extensional in that all proofs of the same proposition

are strictly equal. As a simple example, consider the case where we have two natural num-

bers x, y : N in scope. In extensional type theories, the proposition x = y exists as a type

and has a code in the universe of propositions. Unlike with intensional type theories, it must

be the case that any two proofs p1, p2 : x = y are always equal. This notion of proposition

(loosely) coincides with the propositions found in the proof assistant Coq [2].

The definition of the subobject classifier directly provides the rules one would expect in

the internal language for the universe of propositions. In particular, the type Prop corre-

sponds to the object Ω, propositions φ in context Γ are the morphisms φ ∈ E(Γ,Ω), and

decoding a proposition φ into a dependent type Γ ⊢ [φ] ∈ Type is the object in E/Γ given

by the pullback of φ along the subobject classifier morphism true.

The only rules missing at this point are that providing a grammar of how to express the

logical propositions syntactically, and how each syntactic connective is modeled in the topos

E ; as one would hope, the subobject classifier does indeed contain simple analogues to all

standard logical connectives. To express them, the easiest approach is to utilize the bijection

between morphisms into the subobject classifier and monomorphisms.

The first two propositions we will consider here are rather trivial: ⊤ and ⊥. As ⊤

should represent the total subobject and thus correspond to the identity morphism on the

context, we interpret the syntactic ⊤ as its classifying map. Similarly, as ⊥ should be the

empty subobject and thus represent the inclusion of the initial object into the context, ⊥ is

interpreted as its classifying map.

49

Let us now consider conjunction. We hope for the following.

Γ ⊢ φ : Prop Γ ⊢ ψ : Prop
Γ ⊢ φ ∧ ψ : Prop

Γ ⊢ pφ : [φ] Γ ⊢ pψ : [ψ]

Γ ⊢ (pφ, pψ) : [φ ∧ ψ]

Γ ⊢ p : [φ ∧ ψ]
Γ ⊢ π1 p : [φ]

Γ ⊢ p : [φ ∧ ψ]
Γ ⊢ π2 p : [ψ]

For the formation rule, consider two morphisms φ, ψ ∈ E(Γ,Ω). Using the square brackets

as notation to denote the subobject pullback, we can construct the following pullback.

[φ ∧ ψ] [ψ]

[φ] Γ

As pullbacks preserve monomorphisms, all of the arrows in the diagrams are monos, and thus

we can define the classifying map of the morphism from pullback into Γ as the definition

of conjunction φ ∧ ψ ∈ E(Γ,Ω), with the pullback itself being the interpretation [φ ∧ ψ] of

the conjunction proposition. The expected logical rules corresponding to conjunction follow

from how it is defined as a pullback.

The logical connection of disjunction follows a similar pattern; for φ and ψ given as

above, we construct φ ∨ ψ as the pushout below.

[φ ∧ ψ] [ψ]

[φ] [φ ∨ ψ]

Γ

50

The universal property of the pushout gives us the mono including [φ ∨ ψ] into Γ induced

by the inclusions of [φ] and [ψ].

Γ ⊢ φ : Prop Γ ⊢ ψ : Prop
Γ ⊢ φ ∨ ψ : Prop

Γ ⊢ p : [φ]
Γ ⊢ ι1 p : [φ ∨ ψ]

Γ ⊢ p : [ψ]
Γ ⊢ ι2 p : [φ ∨ ψ]

Γ, [φ] ⊢ aφ : A Γ, [ψ] ⊢ aψ : A Γ, [φ ∧ ψ] ⊢ aφ = aψ
Γ, [φ ∨ ψ] ⊢ (aφ, aψ) : A

When constructing a map out of a disjunction piecewise, the maps out of each disjunct must

be definitionally equal on their intersection (i.e. their conjunction) to ensure the maps are

coherent and thus can be combined.

Lastly, we can use the subobject classifier to model strict, extensional/judgmental equal-

ity between two terms of a type. Given a type A in context Γ, and two terms a0 and a1

of type A, we can define the monomorphism classified by the proposition a0 =A a1 as the

equalizer shown below.

[a0 =A a1] Γ A
a0

a1

As with our other connectives, the standard rules from type theory for extensional equality

with equality reflection follow from the categorical definition, depicted below.

Γ ⊢ A ∈ Type Γ ⊢ a0 : A Γ ⊢ a1 : A
Γ ⊢ a0 =A a1 : Prop

Γ ⊢ a : A
Γ ⊢ refl a : [a =A a]

Γ ⊢ a0 : A Γ ⊢ a1 : A Γ ⊢ p : [a0 =A a1]
a0 = a1

Γ ⊢ a0 : A Γ ⊢ a1 : A Γ ⊢ p : [a0 =A a1]

p = refl a0

Do note that the conclusions of the latter two rules are judgemental equalities.

51

Why Topoi?

While certainly it is great to see that dependent type theory can be interpreted into topoi,

what motivates the clear fascination with them among type theorists? Why not only con-

sider locally Cartesian closed categories, given they are sufficient for intensional type theory

and many type theories of interest are indeed intensional? A simple answer to the latter

question could be that the locally Cartesian categories one would consider happen to be

topoi regardless, but thankfully I have a much more satisfying response that answers both

questions: The internal language of a topos is sufficiently expressive to not only contain

the dependent type theory one wishes to define, but the logic simultaneously supports that

which is required for the meta-reasoning about the type theory. In other words, one can work

directly in the topos, using the standard constructions from category theory to directly prove

theorems about the properties of the type theory. Using this approach, one can immediately

take advantage of what already is known to be true about the basic syntactic constructions

of dependent type theory “for free,” as from what we have shown in this section we know

them to be true in every topos; furthermore, working in this way guarantees the results are

compatible with the categorical semantics and are conveniently agnostic to any particular

logical foundation of math so long as it supports defining topoi and the specific topos being

considered. Studying type theory in this way depends heavily on the presence of a subobject

classifier within the type theory as we will soon see, and thus justifies the need for a topos

and not just a locally Cartesian closed category.

While far from being a complete exposition on the topic, let us briefly summarize the

technique we leverage in this thesis. For a more detailed discourse, consider reading the

research by Orton and Pitts that inspired our approach [57,58]. The premise is that we wish

to define a new dependent type theory. The idea is relatively simple: Assume/require that

the type theory can be modeled by some topos. As this is the case, we know the topos has

at minimum the constructions corresponding to the basics of dependent type theory. For

any new primitives required by the type theory, hypothesize their existence as objects and

52

morphisms in the category, and hypothesize anything else needed to interpret the additional

constructions desired to be part of the type theory. Having listed all of the requirements

needed of the topos, one then must identify a topos (or class of topoi) that contains this

additional structure and supports all of the hypotheses, ensuring that the type theory indeed

has a categorical interpretation and thus is consistent with respect to the topos logic. Then,

using just the internal logic given by the fundamental constructions of a topos along with

the new structure hypothesized, one can generally state the properties one wishes to prove

about the type theory and prove them directly using the internal logic. While properties

corresponding to the existence of a certain term or type are obviously a construction within

the topos at large, meta-properties are often given by strict propositions, and thus are

expressed by elements of the subobject classifier.

Working directly within the internal logic of a topos has an added significant benefit. The

internal logic of a topos aligns nearly precisely to the logics contained in proof assistants such

as Agda, given one postulates uniqueness of identity proofs and then ignores the “fancier”

features. Also, one can postulate axioms within the proof assistant corresponding to the

hypotheses added. Upon postulating these hypotheses, the proof assistant then acts as a

synthetic setting to study the model of the type theory with the assistant’s primitive type

formers corresponding to the actual structure in the topos. Not only does this incredibly

shallow embedding make the possibility of including machine checked proofs in this style

of research more accessible, but often having the help of a proof assistant ends up being

fundamentally necessary: Many of the constructions and propositions one wishes to prove

include subtle details that are quite challenging to track with the human brain, and thus

1. the feedback given by the proof assistant mid-proof informing the user of precisely what

goals remain makes writing the proof much faster, and 2. the type checker confirming a

proof is correct results in a significantly more trustworthy end result, as without it small

errors (personally) seem unavoidable.

53

2.3 Cubical Type Theory

Cubical type theory [7, 10, 13, 24] provides a constructive model of homotopy type theory.

The main idea is to organize the higher dimensional path structure found in homotopy type

theory in such that it is always represented by hypercubes. This choice of working with cubes

stems from the fact that they have a number of properties that make it much easier than

simplices (i.e. triangles, the default in categorical homotopy theory) for the mathematics to

be done constructively, and they behave more naturally when considering the type theory

computationally as a programming language.

To summarize the theory efficiently before diving into the details, let us instantiate the

framework described in Section 1.2 to cubical type theory.

Semantic Structure extend sets to cubical sets
Structural Syntax interval type, cofibration logic, extension and glue types
The Property Kan composition (types families that behave like spaces)
The Universe the universe of Kan fibrations (the universe of types behav-

ing like spaces)
The Universal Property constructive/computational univalence

Semantic Structure As cubical type theory is a direct extension of dependent type theory,

we first expand our setting from the “standard” model of dependent type theory in the topos

of sets to the topos of cubical sets (i.e. the topos of presheaves over a cube category). We

go into more detail of what makes up a cube category (as there are many) in Section 2.3.1.

Structural Syntax Having placed cubical type theory inside of the topos of cubical sets,

we then expose the additional semantic structure now available by adding a few new items

to the syntax.

The primary addition is a new type I, called the interval type. Corresponding to the

generating object of the cube category, it allows the syntax to express n-cubes as n-ary

products of the type I; furthermore, it provides syntax to access the n-cubes inside of any

54

type A as functions In → A via Yoneda. Most notably, paths in a type A can now be

represented as functions I → A.

In conjunction to the interval type itself, we add syntax for propositions pertaining to

the interval type, providing a way to discuss specific boundaries of cubes. Given we have

a language for describing the shapes of boundaries, we also add extension types, which are

types that are restricted with a specification of what its inhabitants must equal along such

a boundary shape; for example, the path type PathA (a0, a1) is defined as a Π-type from the

interval into an extension of A that specifies that when the function is evaluated at the 0

point of the interval the term returned by the function must equal a0, and at 1 the functions

must return a1.

As a final addition to the syntax, we add a new type former for glue types that in effect

allow one to “glue” a path between types to an equivalence of types. These new types prove

to be fundamental to the construction of the universal property defined in the last step of

this framework.

The Property Given the goal for cubical type theory is to be a model of homotopy type

theory, we wish to classify types that behave as topological spaces. Using the new syntax for

the interval type and its boundary propositions, one can define a type predicate classifying

Kan fibrations, which informally can be thought of as types that indeed act the same as

spaces. Kan types satisfying this predicate are automatically equipped with a structure that

allows paths to be composed, including at higher dimensions.

The Universe The next step is to define a universe of Kan fibrations UKan, which one

typically does using the LOPS construction [47].

The Universal Property Lastly, using all of the pieces from the previous four steps, one

can classify the paths for the universe of Kan fibrations as an internal, user written term:

univalence : ΠA B : UKan.Equiv (PathUKan
A B) (Equiv A B). For every pair of Kan types

55

A and B, the type of paths between A and B is itself equivalent to the type of equivalences

between A and B. Note that the definition of equivalence is given in Definition 2.1.3.

Furthermore, as all of the above work is done constructively and univalence is written as

a term inside of the type theory, it is a program that computes the equivalence and not just

a property that is justified externally by the semantics.

2.3.1 Cube Categories

We begin our foray into (bi)cubical type theories by first explaining what we mean by a

cube category. To summarize in a sentence, a cube category is a free monoidal category

(and in practice almost always a free Cartesian category) generated by an interval object I

and a few generating morphisms. As such, they contain countably many objects In which

we think of geometrically as representing the n-dimensional cube. Taking this in mind, the

epimorphisms In+1 ↠ In represent the ways to surject an n + 1-cube onto an n-cube and

are called degeneracies, the monomorphisms In ↪→ In+1 represent the injections of the n-

dimensional cube into the boundaries of n + 1-cube and are called boundary maps and the

isomorphisms In
∼−→ In are the symmetries of the n-cube. The variation between the different

cube categories is simply the choice of which degeneracies, boundary maps, and isomorphisms

are included as morphisms. Buchholtz and Morehouse present a detailed account of cube

categories and their generators [16] which we use as the basis of our summary in this section.

The Cubical Interval

The one thing all cube categories have in common is that they are generated by the interval

object with its endpoint morphisms. Most often we refer to the interval object as I. Given

we wish to think of this object as being an interval, we also always include two morphisms

0, 1 ∈ hom(1, I)—where 1 is the the nullary product (and generally the terminal object as

well)—representing the inclusions of the two endpoints of the interval. We call these the face

maps.

56

We generally also include the degeneracy morphism ϵ ∈ hom(I, 1) that is the unique map

to the nullary product as a terminal object, representing the collapse of the interval to the

point. The following picture summarizes this minimal choice of generators.

I

1

ϵ 10

To ensure 1 is indeed the terminal object, we add equations saying that precomposing

the degeneracy map with either endpoint inclusion is the identity on 1: η ◦ 0 = η ◦ 1 = id1.

Diagonals and Exchange

The first choice one makes in defining a cube category is whether it is just monoidal or also

Cartesian. In particular, this comes down to whether the generators include the exchange

map σ ∈ hom(I2, I2) that swaps the two dimensions, and the diagonal map δ ∈ hom(I, I2)

that geometrically including the interval into the square along the diagonal. While certainly

one can include one without the other, all of the cube categories we use in this thesis are

Cartesian and thus automatically must include both.

I2

I

σ

δ

For the addition of these maps to work as intended when freely generating the category,

they must be accompanied by equations dictating how they compose. In particular, we know

that swapping two dimensions twice should be the identity, so σ2 = idI. Furthermore, to

encode that σ indeed is swapping the dimensions, we define equations for how it composes

with both projection maps: π1 ◦ σ = π2 and π2 ◦ σ = π1. We must also add equations for

57

how the diagonal composes with the face maps: δ ◦ 0 = 0 × 0 and δ ◦ 1 = 1 × 1. Put more

simply, these equations hold if and only if I2 is the standard binary product I × I.

Connections

We now move onto the more interesting structural morphisms some cube categories include.

The first class of morphisms are the connections : _ ∧_,_ ∨_ ∈ hom(I2, I). Geometrically,

the two correspond to collapsing the square onto the diagonal as shown below:

_ ∧ _ _ ∨ _

These maps are accompanied by many more equations than the previous morphisms we

have discussed, and are listed below. For intuition, we think of ∧ as taking the minimum

of the two dimensions, and ∨ as taking the maximum. More precisely, the connections are

adding the structure of a distributive lattice bounded by 0 and 1. Taking inspiration from

standard lattice structure notation, we write x∧ y for the morphism (_∧_) ◦ (x× y) where

x and y are morphisms with codomain I (and analogously we do the same for ∨).

x ∧ 0 = 0
x ∧ 1 = x
x ∧ x = x
x ∧ y = y ∧ x

x ∧ (x ∨ y) = x
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ 0 = x
x ∨ 1 = 1
x ∨ x = x
x ∨ y = y ∨ x

x ∨ (x ∧ y) = x
x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

58

While most often cube categories with connections include both _ ∧ _ and _ ∨ _, one

can choose to have only one without the other simply by omitting the equations that involve

the excluded connection.

Reversals

The last generating morphism we consider is the reversal. As its name suggests, it reverses

the direction of the interval, swapping the two endpoints: ρ ∈ hom(I, I). The first equations

accompanying the reversal are straightforward: reversing twice is the same as doing nothing,

so ρ2 = idI; reversing swaps the endpoints, so ρ ◦0 = 1 and ρ ◦1 = 0; reversing a degenerate

interval is still degenerate, so η ◦ ρ = η (and thus the terminal object 1 is indeed a terminal

object). Lastly, in the the presence of diagonal maps we must also add that the reversal of

the diagonal is the same as the diagonal of the square in which we reverse both dimensions:

δ ◦ ρ = (ρ× ρ) ◦ δ.

Important Cube Categories

While there is work using more sparse collections of generators [23, 43], in this thesis every

cube category considered will at minimum contain the always required required face maps,

along with degeneracies, diagonals and exchange; as mentioned previously, this indicates

that the cube categories are free Cartesian generated categories, and not just free monoidal.

The smallest free Cartesian generated category from the interval, including just these maps,

is called the Cartesian cube category. A model of cubical type theory defined over Cartesian

cubical sets is describe in ABCFHL [7]. While our work on directed type theory is agnostic

to the choice of the cube category used for the underlying homotopy structure so long as it

is freely Cartesian, we implicitly work with the constraint that our work is defined using the

minimal choice of the Cartesian cubes, ensuring we do not ever mistakingly use homotopical

cube structure specific to the more expressive cube categories.

59

The second cube category we will discuss, and that appearing the most within this thesis,

is the Dedekind cube category. In addition to the Cartesian morphisms, it also contains both

connections. The primary reason we need to use this category in the setting of directed type

theory is that connections allow us to define inequality: x ⩽ y is the equalizer of x and

x∧ y (or equivalently y and x∨ y). This cube category is also particularly nice to work with

mathematically—particularly in the context of synthetic category theory—due to a second,

strictly isomorphic definition of the category: the Dedekind cube category is the full category

of PoSet containing all finite products (including the nullary product) of the interval poset

2. As a reminder, the interval poset is the partial order on two elements 0 and 1 where 0

is strictly less than 1. As such, we can think of the n-dimensional Dedekind cube as the

product poset 2n, and all morphisms between Dedekind cubes as the order preserving maps

on the posets. Furthermore, PoSet itself is a full subcategory of Cat with its inclusion

interpreting elements as object and the inequality relation as morphisms, and thus we can

equivalently think of the Dedekind cubes as the full subcategory of Cat generated by all

finite products of the interval category 2, drawn below:

0 −→ 1

As variants of the Dedekind cubes, we have the semi-Dedekind cube categories, also

called the semilattice cube categories, which is the cube categories containing only one of

the connections. Given there are two connections, we have both the meet-semi-Dedekind

cubes (containing ∧) and the join-semi-Dedekind cubes (containing ∨). Defining cubical type

theory over these categories has been a particularly fruitful choice, as Cavallo and Sattler

derived a Quillen-equivalence between the type theoretic model structure on (join-)semi-

Dedekind cubical type theory and the Kan-Quillen model structure on simplicial sets (itself

Quillen-equivalent to Top) [22].

60

As a final note, we will quickly define the DeMorgan cubical sets, which is that generated

by all of the morphisms described in this section. While it has proven itself useful as the

basis of the CCHM model of cubical type theory [24], we do not use it in this thesis.

Below is a table summarizing the cube categories we describe in this section.

Cube Category Generating Morphisms

Cartesian 0, 1, ϵ, δ, σ

semi-Dedekind 0, 1, ϵ, δ, σ,∨ (or ∧)

Dedekind 0, 1, ϵ, δ, σ,∧,∨

DeMorgan 0, 1, ϵ, δ, σ,∧,∨, ρ

2.3.2 Defining Cubical Type Theory

In the internal language approach described at the end of Section 2.2.3, models of cubical

type theories are described by axioms in an extensional type theory that serves as the internal

language of a presheaf 1-topos. This means that we use type theoretic syntax (formalized

in Agda, with postulates for function extensionality and uniqueness of identity proofs [40])

to describe constructions in cubical sets. In homotopy type theory based on Martin-Löf

intensional type theory [74], all types are fibrant, which roughly means that all types have a

transport function for paths. In the internal language approach, types instead denote “raw”

cubical sets, which do not necessarily have such transport functions. Being fibrant is an

internally definable structure on a type, in the style of type classes: for any type (family) A,

there is another type classifying fibration structures on A.

How do we define the notion of a type being fibrant? To do so, we first need the language

to discuss the boundaries of cubes. We do so by defining the cofibrations.

Definition 2.3.1. In cubical type theory, cofibrations are a special class of strict propositions

that describe boundaries and subshapes of spaces.3

3While the term does originate from model category theory, and in particular the cofibrations in the type
theory are the cofibrations of the model category that models the type theory, it is important to note that
this is not the definition of a cofibration in model category theory.

61

In the internal language approach [57,58], an Agda type iscof identifies those propositions

which are cofibrations; the axioms about cofibrations needed in [7] are shown in Figure 2.2.

This hypothesizes a predicate iscof, which determines when a proposition is a cofibration,

and says that cofibrations are closed under conjunction, disjunction, equality on the interval,

and universal quantification over the interval. We write Ωcof for the type of cofibrations, and

JαKcof for the underlying proposition of a cofibration. Here, Ω is the type of strict propositions

in Type0, i.e. types α such that Πx, y : α, x = y. Conjunction ∧ and universal quantification

Π coincide with the standard Agda types, while we postulate a “squashed” disjunction ∨

where any two proofs are equal.

iscof : Ω → Ω

Ωcof : Type
Ωcof := Σα : Ω.iscof α

J_Kcof : Ωcof → Ω
JαKcof := fst α

iscof⊥ : iscof ⊥
iscof∧ : Πα β : Ωcof.iscof JαKcof ∧ JβKcof
iscof∨ : Πα β : Ωcof.iscof JαKcof ∨ JβKcof

iscofIeq : Πi j : I.iscof(i = j)
iscof∀I : Πα : I → Ωcof.iscof(Πi : I.Jα iKcof)

Figure 2.2: Axioms for cofibrations in cubical type theory

Having defined our cofibrations, we now define a few basic types that act as the foundation

of working with this newly exposed structure.

Definition 2.3.2. Given a cofibration α, a partial type A is a term of the function type

[α] → U where [α] is the type of witnesses to the cofibration α. We write α ⊢ A to denote

A is a partial type defined along α.

Definition 2.3.3. Given a cofibration α and a (potentially partial) type α ⊢ A, a partial

term a is a term of the function type [α] → A. We write α ⊢ a : A to denote a is a partial

term of type A defined along α.

62

Definition 2.3.4. Given a type A, a cofibration α and a partial term α ⊢ aα : A, the

boundary type (also called extension type) A[α 7→ aα] is the type containing terms a : A such

that, when α is true, a is judgmentally equal to aα.

For disjunctions, we use the notation A[α1 7→ a1, α2 7→ a2] to denote the extension type

A[α1 ∨α2 7→ a] where ax is the restriction of a to αx. The disjunction α1 ∨α2 represents the

pushout of the pullback of α1 and α2, which requires that a1 and a2 be strictly equal along

the intersection α1 ∧ α2. When using the term of an extension type x : A[α 7→ a], we often

will omit the projection from A[α 7→ a] to A and write x : A as well.

As an example of how this new syntax fits together, we can use the above constructions

to define the path type for cubical type theory.

Path : ΠA : Type.A→ A→ Type
Path A a0 a1 := Πi : I.A[i = 0 7→ a0, i = 1 7→ a1]

In practice we generally write the type we are considering paths in as a subscript and thus

we use the notation PathA a0 a1 to refer to the type defined above.

At this point, we can define the properties classifying the “well-behaved” types in cubical

type theory.

Definition 2.3.5. A type A has a homogeneous composition filling structure when it is

equipped with a term witnessing the following predicate.

hasHCom A := Πr r′ : I.Πα : Cof.
Πt : I → [α] → A.
Πb : A[α 7→ t r].
A[α 7→ t r′, r = r′ 7→ b]

This says that a type A has a homogenous composition structure when for any partial path

t in A and any total point b in A at that strictly equals the path t at location r, we have a

way to derive a new point in A which restricts to t r′ and b where they are defined.

In the presence of a witness hcomA : hcomFill A, we often write hcomz:r→r′

A [α 7→ t z] b to

denote the term hcomA r r′ α (λz.t z) b.

63

Definition 2.3.6. A type family A : Γ → U has a coercion structure when it is equipped

with a term witnessing the predicate Πp : I → Γ.hasCoe(A◦p) where hasCoe is defined below.

hasCoe A := Πr r′ : I.
Πb : A r.
A r′[r = r′ 7→ b]

This says that a type family A : Γ → Type has a coercion structure when for any path p in

Γ and any total point b over the path p in A at r, we can get a new point in A over p at any

location r′ along the path which equals b should r equal r′.

In the presence of a witness coeA : hcomFill A, we often write coez:r→r′
A b to denote the

term coeA r r′ b.

Definition 2.3.7. A type family A : Γ → U has a Kan composition structure when it is

equipped with a term witnessing Πp : I → Γ.comFillI(A ◦ p) where comFillI is defined below.

comFillI A := Πr r′ : I.Πα : Cof.
Πt : (Πi : I.[α] → A i).
Πb : A r[α 7→ t r].
A r′[α 7→ t r′, r = r′ 7→ b]

This says that a type family A : Γ → Type is Kan when for any path p in Γ, any partial path

t over p in A and any total point b over the path p in A at r, we can get a new point in A

over p at any location r′ along the path, which restricts to t and b where they are defined.

When a type family is equipped with a Kan composition structure, we call it a Kan fibration

or sometimes even just a fibration.

In the presence of a witness comA : comFillΓ A, we often write comz:r→r′
A p [α 7→ t z] b to

denote comA p r r′ α (λz.t z) b.

Proposition 2.3.8 ([7, 27]). A type has a Kan composition structure if and only if it has

both a homogeneous filling structure and a coercion structure.

Having defined the “well-behaved” types, we then group all of the Kan fibrations together

into the universe of Kan fibrations, UKan, using the technique described in [47]. This universe
64

is closed under Π, Σ, path, identity, natural number, boolean, some higher inductive types,

and the universe itself is fibrant and univalent [7, Section 3].

Lastly, we can now derive univalence for the universe UKan as a constructive term within

the type theory itself. As a reminder, univalence is a term of the following type.

ΠA B : UKan.Equiv (Equiv A B) (PathUKan
A B)

For a full explanation of how it is derived, one can read through [7, 24]. To summarize

the main ideas, one must first understand a new type former introduced in [24] specifically

for the purpose of constructing univalence: the glue type. Glue types are formed from a

cofibration α, a partial type T : α → Type, a type B : Type, and a partial equivalence

e : Πp : α.Equiv (T p) B. The type Glue[α 7→ (T, e)]B is isomorphic to Σt : (JαKcof →

T).B[α 7→ e t] but when α is satisfied Glue[α 7→ (T, e)]B is strictly equal to T . Assuming the

input types T and B are Kan fibrations the glue type is as well. We can thus use the glue

type to define the key function that underlies the construction of univalence: ua : ΠA B :

UKan.Equiv A B → PathUKan
(A,B). The definition of ua is actually relatively simple.

ua A B e i := Glue[i = 0 7→ (A, e), i = 1 7→ (B, idB)] B

As with extension types (Definition 2.3.4) we simply use commas to denote we have a dis-

junction of cofibrations, so in particular the glue type used in the definition of ua is defined

over the cofibration i = 0∨ i = 1. The inverse to ua is given using coercion (which we know

we can always do in UKan) and ultimately the two function can be shown to form the desired

equivalence, concluding the definition of univalence.

65

2.3.3 Key Facts and Definitions

As a final installment in this introduction to cubical type theory, below is a glossary of

additional definitions and theorems that are particularly foundational and/or widely used in

this thesis.

Definition 2.3.9. Given types A and B we have an isomorphism between A and B when

we can define functions f : A → B and g : B → A such that the composition g ◦ f strictly

equals the identity function on A and f ◦ g strictly equals the identity function on B. Note

that this notion coincides with that of isomorphic objects in the presheaf category. We write

A ≃ B to denote the types are isomorphic

Lemma 2.3.10. Given types A, B and C such that we have an equivalence between A and

B and an isomorphism between B and C, we can construct an equivalence between A and

C.

Definition 2.3.11. A Riehl-Shulman extension type, often abbreviated to RS extension type,

is a type of the form Π⃗i : In.A[α 7→ a], where the cofibration α used in the extension type is

entirely scoped by the interval variables i⃗ abstracted by the Π-type. Do note that in settings

with more than one interval type the codomain of the Π-type may be a mixed product of

the various interval types.

Definition 2.3.12. A type A has a contractible filling structure when it is equipped with a

term witnessing the following predicate.

cfill A := Πα : Cof.
Πaα : [α] → A.
A[α 7→ aα]

In the presence of a witness cfillA : cfill A, we often write cfillA [α 7→ t] to denote cfillA α t.

The following definitions pertain to categorical models of homotopy type theory, and

thus are statements based in the internal language of the topos. For more background on

categorical logic and internal languages in general, see Section 2.2.
66

Definition 2.3.13. A type family A : Γ → U has a transport structure when it is equipped

with a term witnessing the following predicate.

hasTransp A := Πp : PathΓ (γ0, γ1).
A γ0 → A γ1

Lemma 2.3.14 ([24]). Assume we have a type A equipped with a homogenous composition

structure. The type A is contractible if and only if it can be equipped with a contractible

filling structure; furthermore, the types iscontr A and cfill A are equivalent (as they are

interderivable and both are homotopy propositions).

2.4 Directed Type Theory

Directed type theory extends homotopy type theory with a second directed notion of paths,

providing a synthetic logic for studying ∞-categories as opposed to ∞-groupoids. In this

thesis, we build most directly off of Riehl and Shulman’s bisimplicial model of directed type

theory [62]. In their work, Riehl and Shulman extend the simplicial model of homotopy type

theory by adding a second copy of the simplex category to the presheaves which is then used

to encode the new directed structure. From this, they then use the techniques originally

developed for homotopy type theory to build up the structures and definitions required to

synthetically study ∞-category theory within the type theory.

Let’s first summarize the structure of bisimplicial directed type theory through the lens

of the framework described in Section 1.2.

67

Semantic Structure extend simplicial sets to bisimplicial sets
Structural Syntax directed interval type, cofibration logic for new directed

structure
The Properties 1. the Segal condition (types that behave like ∞-categories)

2. covariant composition (types families behaving like co-
variant space-indexed presheaves)

The Universe the universe of Covariant fibrations (the universe of type
families behaving like covariant space-indexed presheaves)

The Universal Property directed univalence

Semantic Structure As an extension of homotopy type theory, bisimplicial directed type

theory begins with the “standard” model of homotopy type theory in simplicial sets, and

extends the semantic structure to bisimplicial sets, i.e. presheaves over the product of the

simplex category with itself. The new second copy of the simplex category is ultimately

used to contain the additional directed structure. For a brief introduction to the simplex

category, see Section 2.4.1.

Structural Syntax The syntax is equipped with a new interval type corresponding to

the directed interval, and the syntax for the cofibration logic is extended to account for

propositions describing the boundaries of shapes described using the new interval type.

The Properties Unlike with the type theories described up to this point, directed type

theory contains multiple properties classifying classes of types with varying structures. First

is the Segal condition, which is a predicate on types identifying those that semantically

correspond to ∞-categories. A refinement of the Segal condition is often used called the

Rezk condition, which classifies univalent ∞-categories.

The final proposition we consider here is the covariant condition, which picks out the

type families/fibrations whose fibers are ∞-groupoids (i.e. spaces, having trivial directed

structure) and depend on the directed structure in the context covariantly. These type

families are also called left fibrations. It is (a version of) this property that gives us the

transport operation used in the motivating example in Section 1.1.

68

The Universe The covariant universe Ucov classifies the covariant/left fibrations.

The Universal Property Cavallo, Riehl and Sattler prove that the directed path struc-

ture for the universe Ucov satisfies directed univalence [21, 68]: For every pair of types A

and B in Ucov, the type of directed paths HomUcov A B is equivalent to the type of functions

A→ B.

2.4.1 The Simplex Category

As a quick primer for those readers unfamiliar, let us define the simplex category ∆. First,

from a conceptual level, the idea is that it has countably many objects, the n-th of which

is called the n-simplex and corresponds to the n-dimensional triangle (or pyramid). Geo-

metrically, one can think of the n-simplex as the structure built out of n + 1 points, each

connected to the other n points with the n-dimensional volume between all of them filled

in. Specifically, the 0-simplex is the point, the 1-simplex is two points connected by a line

(given by adding a new point outside of the 0-simplex and connecting it to the first point

with a line), the 2-simplex is three points connected into a triangle that is then filled in

(given by adding a new point outside of the 1-simplex, connecting it to the other points and

filling in the area in the middle), the 3-simplex is four points connected into a pyramid with

four triangular faces with its volume filled in (given by adding a new point outside of the

2-simplex, connecting it to the other three points and filling in the volume in between them

all), and so on. Its utility stems from the fact that, topologically, all spaces are equivalent

to one that is triangulated (i.e. broken down into a bunch of n-dimensional triangular pieces

glued together along their boundaries); a triangulated spaces can be thought of as a presheaf

over the simplex category, with each object being sent to the set containing all components

of the space of the shape the object represents.

There are a few equivalent ways to formally define the simplex category. The first two

are easy to write down, but are not particularly insightful conceptually: First, the simplex

69

category is that with the natural numbers as objects, and the morphisms from m to n are

given by the order preserving maps from (the canonical) finite set with m + 1 elements to

that with n+1 elements. The second common formation of this definition is that the simplex

category is the full subcategory of PoSet (itself a full subcategory of Cat) consisting of the

(nonempty) finite total orders.

Having gone over the concise yet unintuitive definitions, let us now define the simplex

category in a more concrete fashion. First, we denote the objects as [n] for every natural

number n. We still consider morphisms ∆([m], [n]) as the order preserving maps from the

finite set {0, 1, . . . ,m} to {0, 1, . . . , n}; that being said, we provide simple generators from

which all such maps can be built from via composition. The first class of generators are the

face maps, denoted by δni : [n − 1] ↪→ [n] for 0 ≤ i ≤ n (and n ≥ 1). The map δni is the

(order preserving) injection that for j < i is defined as δni (j) = j, and for j ≥ i is defined as

δni (j) = j + 1. In other words, δni is the unique order preserving injection from [n− 1] to [n]

that skips the i-th element of [n]. The other class of generators needed are the degeneracy

maps, written as σni : [n + 1] ↠ [n] for 0 ≤ i ≤ n. The map σni is the (order preserving)

surjection that for j ≤ i is defined as σni (j) = j, and for j > i is defined as δni (j) = j − 1.

Equivalently, σni is the sole order preserving surjection from [n + 1] to [n] that sends two

elements to i-th element of [n]. Two morphisms given by compositions of face maps and

degeneracies are equal if the two resulting functions on finite sets are (extensionally) equal.

The benefit of this generative classification of the morphisms of the simplex category is

that it provides a simple basis by which to understand the geometric interpretation of the

category. To begin with, we think of the object [n], the n-simplex, geometrically as the

n-dimensional object built out of n + 1 points, with each point labeled/ordered with the

natural numbers 0 through n+ 1. The first four simplices are depicted below.

70

0-simplex

0

1-simplex

0 1

2-simplex

0 1

2

3-simplex

0 1
2

3

A morphism f ∈ ∆([m], [n]) geometrically represents the continuous map from them-simplex

to the n-simplex induced by mapping the vertices according to the function f . For example,

the face map δ31 ∈ ∆([2], [3]) is the map including the triangle to that on the back left side

of the pyramid as depicted above (and thus the triangular face of the pyramid that does not

include vertex 1; the inclusion is oriented such that vertex 0 of the triangle is mapped onto

vertex 0 of the pyramid, 1 goes to 2, and 2 to 3. In general, the face maps pick out one of the

(n− 1)-dimensional faces of the n-simplex by mapping the (n− 1)-simplex onto that face in

the unique orientation that preserves the total order on vertices. As a second example, the

degeneracy σ1
0 ∈ ∆([2], [1]) is the map from the triangle to the line segment that sends both

the vertices 0 and 1 of the triangle to the 0 end of the line segment, and sends 2 to the other

side of the line segment, effectively collapsing the triangle into a line segment by squishing

vertices 0 and 1 of the triangle together. This pattern generalizes such that degeneracy maps

are always given by collapsing the n + 1-simplex into the n-simplex by pinching a pair of

vertices that are adjacent with respect to the order together, surjecting it onto the n-simplex

in the unique way that preserves the total order on vertices. Given all maps are simply

compositions of face maps and degeneracy maps, building up the geometric interpretation

of an arbitrary simplicial morphism breaks down into stringing together a sequence of face

inclusions and vertex collapses.

While the simplex category is obviously important to understand for the (bi)simplicial

models of homotopy type theory and directed type theory, it also plays an important role in

Section 4.2.2 when we define the cobar operator.

71

2.4.2 Defining Bisimplicial Directed Type Theory

Bisimplicial directed type theory extends homotopy type theory resulting in a logic for

synthetic ∞-categories modeled in bisimplicial sets defined initially in [62]. Unpacking this

one sentence summary, this means that types are represented by presheaves over ∆ × ∆

such that all types are fibrant (i.e. satisfy the Kan condition with respect to the first copy

of ∆), and some presheaves/types (that in particular satisfy a certain additional property

pertaining to the second copy of ∆, the Segal condition) are themselves ∞-categories, with

all constructions in the logic automatically respecting and preserving their topological and

categorical structure. The first copy of the simplex category is used by the presheaves to

encode the topological structure of types identically to homotopy type theory, while the

second new copy of the simplex category captures the directed structure of the types. In

higher category theory, Segal bisimplicial sets are often used as one of the primary models of

∞-categories and their definition in bisimplicial directed type theory is precisely the same,

connecting the type theory to its semantics and the surrounding body of work in higher

category theory automatically; this also makes selecting bisimplicial sets as a setting for

directed type theory an obvious and ideal choice from the perspective of mathematics and

higher category theory. Let’s now work through the basics of the theory as described in [62].

To define a type theory that interprets into bisimplicial sets, one must add a small amount

of syntax to that of homotopy type theory. The primary addition is the directed interval

type: 2, along with two terms 02 and 12 representing the two endpoints of the interval.

Semantically, this type corresponds to the yoneda embedding of the 1-simplex from the

second copy of the simplex category (i.e. the object ([0], [1])).

As is always the case when adding syntax for a representable to a type theory based in

homotopy theory, we also add new syntax to allow for cofibrations describing boundaries of

shapes built out of the directed interval. In particular, we add a new atomic proposition for

interval inequality: Given two terms x and y in 2, there is a cofibration x ≤ y. Along with

72

the proposition existing itself, we know quite a few facts to hold about it.

x : 2 ⊢ 02 ≤ x

x : 2 ⊢ x ≤ 12

x, y : 2 ⊢ x ≤ y ∨ y ≤ x

· ⊢ 12 ≤ 02 ≡ ⊥

To summarize these rules, terms of the directed interval form a nontrivial total order bounded

below by 02 and above by 12. Semantically, this corresponds to the total order on vertices

within a simplex. Having added this cofibration proposition, one can now express any

representable of the new copy of the simplex category within the syntax, as the n-simplex is

simply Σ(x1, . . . , xn) : 2n.x1 ≤ . . . ≤ xn.

As mentioned, directed type theory is unique in classifying a few important groups of

types using multiple properties. The first class is that of Segal types, consisting of those types

that semantically are interpreted as ∞-categories. In order to define the Segal condition, we

first must define a few special extension types. The first is the morphism type. Analogous to

how path types are defined in cubical type theory, given a type A and two terms a0, a1 : A,

we define the morphism type as the extension type

HomA (a0, a1) := Πi : 2.A[i = 02 7→ a0, i = 12 7→ a1].

The second type we need is the type of directed triangles. Given a type A, three terms

a0, a1, a2 : A and three morphisms f : HomA (a0, a1), g : HomA (a1, a2) and h : HomA (a0, a2),

the type of triangles is given by

Hom2
A(f, g, h) := Π(i, j) : 22.i ≤ j → A[i = 02 7→ f, j = 12 7→ g, i = j 7→ h].

73

Using these, we can define the Segal condition. In plain English, a type A is Segal if for every

pair of compatible morphisms in A there is a unique (up to homotopy) triangle corresponding

to their composition. Formally, we represent this predicate as follows.

isSegal A := Πa0, a1, a2 : A.
Πf : HomA (a0, a1).
Πg : HomA (a1, a2).
iscontr Σh : HomA (a0, a2).Hom

2
A(f, g, h)

The other class of types we will discuss are the covariant fibrations. Semantically, they

correspond to left fibrations and represent space indexed covariant presheaves (and thus in

particular have categorically trivial fibers). Their definition is quite straightforward: A type

family A : Γ → U is covariant if for every morphism f : HomΓ (γ0, γ1) and every term

a0 ∈ A γ0, there is a unique morphism in A over f starting at a0. To make this formal, we

must first define the dependent version of the morphism type. For A : 2 → U, a0 : A 02 and

a1 : A 12, we define the hom-over type as follows.

HomOA (a0, a1) := Πi : 2.A i[i = 02 7→ a0, i = 12 7→ a1].

Using this, we define the covariant predicate for any type family A : Γ → U.

isCov A := Πγ0, γ1 : Γ.
Πf : HomΓ (γ0, γ1).
Πa0 : A γ0.
iscontr Σa1 : A γ1.HomOA◦f (a0, a1)

Given the fact we have multiple properties of interest, multiple universes classifying each

property are also possible; that being said, the one of most interest here is the universe of

covariant fibrations, Ucov, defined in [21, 68]. As it classifies the covariant fibrations, the

types inhabiting Ucov themselves have trivial categorical structure, but depend and preserve

the categorical structure of their contexts covariantly.

74

A very exciting result about bisimplicial directed type theory is that the universe of

covariant fibrations satisfies directed univalence. Directed univalence classifies the directed

paths in the universe of covariant fibrations by demonstrating their equivalence to function

types: For any two types A and B in Ucov, the type of morphisms HomUcov (A, B) is equivalent

to the function space A → B. More formally, Cavallo, Riehl and Sattler prove that, in the

model of bisimplicial sets, there is a morphism corresponding to the following term in the

logic [21,68].

directedUnivalence : ΠA,B : Ucov. Equiv (HomUcov (A, B)) (A→ B)

Unfortunately, the proof of directed univalence from Cavallo, Riehl and Sattler is not

constructive; if you are interested in learning how to define directed univalence in such a

way that it is constructive, keep reading! Chapter 3 defines a constructive model of directed

type theory in bicubical sets, and Chapter 4 constructively defines directed univalence in the

bicubical model.

75

Chapter 3

Bicubical Directed Type Theory

This chapter is joint work with my advisor Daniel Licata and is based primarily on of work
presented at the 35th Annual ACM/IEEE Symposium on Logic in Computer Science and is
published in the corresponding proceedings [83]. Versions of this work have also been presented
numerous times both before and after publication including those listed here [79–81].

Bicubical directed type theory is a direct extension of cubical type theory. As such, we

choose to begin by building off of Cartesian cubical type theory [7]. For our approach, we

define our type theory by adding axioms to the internal language of a topos as done in

[7, 57, 58]. This technique is briefly explained at the end of Section 2.2.3. The resulting

model can then be given semantics by interpreting into any topos satisfying the axioms. In

our case, we choose to interpret this theory into (Cartesian × Dedekind)-bicubical sets.

One key fact to realize from this approach is that the resulting model can be interpreted

into any topos that satisfies the axioms; by starting with Cartesian cubical type theory, we

insure that no axioms specific to more richly structured cube categories are required in our

work, and thus bicubical directed type theory remains agnostic to the choice of underlying

cubical type theory so long as it satisfies the minimal Cartesian cube axioms (described in

Figure 3.1). To emphasize this fact, we write �path to represent some arbitrary Cartesian

cube category with an interval.

76

3.1 Axioms for Bicubical Type Theory

We begin by working inside of a topos, with the intention of it being a presheaf topos

over a product of two cube categories. The first cube category will be used to contain

the undirected homotopical structure, and the second will contain the directed categorical

structure. To encode the homotopical cube structure, we add the axioms listed in Figure 3.1.

We also add axioms describing a subobject of the subobject classifier which will represent

the cofibrations in our type theory. These cofibration axioms are shown in Figure 3.2. For

the resulting model to be constructive, we restrict the class of cofibration propositions that

can be checked algorithmically. In order to construct univalence and directed univalence we

require that our class of cofibrations contains those given by equality of interval variables, is

closed under universal quantification by the intervals I and 2, contains the empty proposition

⊥, and that it is closed under pullbacks (i.e. conjunction: ∧) and pushouts of pullbacks (i.e.

disjunction: ∨). As all of this is the same as what is done for cubical type theory, a more

detailed explanation of the cofibration axioms is available in Section 2.3.

I : Type
0I : I
1I : I

Ineq : 0I = 1I → ⊥

iscofIeq : Πi j : I.iscof (i = j)
iscof∀I : Πα : I → Ωcof.

iscof(Πi : I.Jα iKcof)
I is tiny

Figure 3.1: Axioms for the undirected interval

In Figure 3.3, we describe the additional axioms needed to describe a directed type theory

based on bicubical sets. Riehl and Shulman [62] extend homotopy type theory with a directed

interval 2, which is used to describe simplices (point, line, triangle, tetrahedron, etc.) by

inequality formulas—e.g. the triangle is the top half of the square x : 2, y : 2 | y ≤ x. For

more background on their approach to directed type theory, see Section 2.4. Here, we extend

cubical type theory, which already has an interval for paths I, with a second directed interval

2. On the one hand, we would like the directed interval to support a constructive definition

of a universe of covariant fibrations using the LOPS construction [47], which relies on the

77

iscof : Ω → Ω

Ωcof : Type
Ωcof := Σα : Ω.iscof α

J_Kcof : Ωcof → Ω
JαKcof := fst α

iscof⊥ : iscof ⊥
iscof∧ : Πα β : Ωcof.iscof JαKcof ∧ JβKcof
iscof∨ : Πα β : Ωcof.iscof JαKcof ∨ JβKcof

strictification : Πα : Ωcof.
ΠA : JαKcof → Type.
ΠB : Type.
Πs : Πx : JαKcof .Iso (A x) B.
ΣB′ : Type[α 7→ A].Iso B′ B[α 7→ s]

Figure 3.2: Cofibration axioms

interval being tiny (exponentiation by the interval has a right adjoint), which is not true for

the interval in simplical sets. On the other hand, we would like this interval to support the

body of definitions that are made in [62], where triangular shapes are sometimes important—

e.g. a type is a category (roughly) if, given any two composable directed morphisms, there is

a unique composite morphism and a triangle relating them. We can accomplish both of these

using the Dedekind cube category �Ded, in which the interval is defined to be a distributive

lattice, where the lattice meet and join are referred to as connections. Using the lattice

structure, we can define x ≤ y as x = x ⊓ y (x is the min of x and y). To learn more about

the Dedekind cubes—along with cube categories more generally—check out Section 2.3.1.

In Figure 3.3, the first group of axioms describe the Dedekind cubes: the interval has two

disjoint points; there are meet and join operations satisfying the distributive lattice laws.

Relative to the simplex category axioms, this omits the requirement that ≤ is a total order

(x ≤ y ∨ y ≤ x for all x and y, which allows for defining a square in a type A by pasting

together two triangles in A on the diagonal). This omission does not seem to be a problem:

first, we have checked that most of the definitions that use totality in [62] in fact only use

it via the connections; second, many internal constructions involve Segal or discrete types,

78

2 : Type
02 : 2
12 : 2

2neq : 02 = 12 → ⊥

_ ⊓ _ : 2 → 2 → 2
⊓02 : Πx : 2.x ⊓ 02 = 02

⊓12 : Πx : 2.x ⊓ 12 = x
⊓comm : Πx y : 2.x ⊓ y = y ⊓ x
⊓idem : Πx : 2.x ⊓ x = x
⊓assoc : Π(x, y, z : 2).

((x ⊓ y) ⊓ z) = (x ⊓ (y ⊓ z))

_ ⊔ _ : 2 → 2 → 2
⊔02 : Πx : 2.x ⊔ 02 = x
⊔12 : Πx : 2.x ⊔ 12 = 12

⊔comm : Πx y : 2.x ⊔ y = y ⊔ x
⊔idem : Πx : 2.x ⊔ x = x
⊔assoc : Π(x, y, z : 2).

((x ⊔ y) ⊔ z) = (x ⊔ (y ⊔ z))

abs0 : Πx y : 2.x ⊓ (x ⊔ y) = x
abs1 : Πx y : 2.x ⊔ (x ⊓ y) = x

iscof2eq : Πi j : 2.iscof (i = j)
iscof∀2 : Πα : 2 → Ωcof.

iscof(Πi : 2.Jα iKcof)
2 is tiny

∆2 is tiny

Ito2triv : Πp : I → 2.Πx : I.
p x = p 0I

2mono : Πp : 2 → 2.Πx y : 2.
x = x ⊓ y → p x = p(x) ⊓ p(y)

Figure 3.3: Axioms for the directed interval

which satisfy totality weakly (with a uniqueness principle up to paths not strict equality);

third, should one need to, one can internally carve out the simplices via a sheaf condition to

state theorems about types that do satisfy totality [17, 73].

The next two axioms in Figure 3.3, iscof2eq and iscof∀2, say that equality on the directed

interval, and Π over the directed interval, are cofibrations, extending the class of shapes that

can be filled in Kan types. For example, iscof2eq allows converting a path to a morphism in

a Kan type: given p : I → A, we make 2 → A by the Kan composition

path-to-hom(p) := λ(x : 2).comz:0I→1I
A [x = 02 7→ p(0I)

, x = 12 7→ p(z)](p(0I))

which has endpoints p(0I) at 02 and p(1I) at 12. iscof∀2 is used to show that glue types [24]

(where the function is an equivalence) are covariant families, which is the key lemma for

79

showing that Ucov is path-univalent. Tininess of 2 is needed for building Ucov, while tininess

of ∆2 (defined as Σ(x, y) : 2 × 2.y ≤ x) is needed for Uinner [47].

The final two axioms, Ito2triv and 2mono, are used in Chapter 4 in the construction of

directed univalence. Ito2triv says that any map from the undirected interval to the directed

interval is constant. The second axiom says that any function 2 → 2 is monotonic—if x ≤ y

then p(x) ≤ p(y)—which, for example, rules out the existence of a reversal 1− x.

3.1.1 Soundness in Bicubical Sets

Extensional type theory with the axioms in Figure 3.3 can be interpreted in bicubical sets,

the presheaf topos Set�
op
path×�

op
Ded .

Types denotes presheaves in this topos, and have both a path structure, encoded in the

Cartesian cubes, and a directed morphism structure, residing in the Dedekind cubes. We

sometimes refer to the objects of the product cube category �path × �Ded by the natural

numbers describing how many free interval variables occur (which is the dimension of the

object)—i.e., we use the pair (m,n) to denote the bicube given by the m dimension Cartesian

cube paired with the n dimension Dedekind cube. Thus, given a type/presheaf A, the set

A(0, 0) is its points, A(1, 0) is paths between points, A(0, 1) is directed morphisms between

points, A(1, 1) is squares with one side directed and the other not, and so on. The type I is

the Yoneda embedding of the (1, 0)-bicube, and 2 is that of the (0, 1)-bicube. Because the

Yoneda embedding preserves products, we can describe the representable functor on every

bicube using products of these two objects: the internal language type Im×2n is interpreted

as yIm × y2n ∼= y(Im,2n). By the Yoneda lemma, maps Im × 2n → A are thus naturally

isomorphic to the set A(m,n) given by evaluating A at the the (m,n)-bicube.

The axioms we add to the model are nearly identical to the generators needed to define

each cube category as a free Cartesian category, as is described in [16] and summarized in

Section 2.3.1. In the case of the directed interval 2, while we list the axiom corresponding

to the associativity generator from the Dedekind cubes for the sake of completeness, we

80

never encountered a need for it in any of our proofs. We also added two axioms beyond the

generators—namely Ito2triv and 2mono—as they prove to be necessary in our constructions

and, as we will see shortly, they are easily derivable in the category of bicubical sets.

Theorem 3.1.1. Let �path be a cartesian category with an interval object I with two distinct

endpoints 0I and 1I in 1 →�path I, such that for any object C, the hom-set C →�path I has

decidable equality. Then the axioms for cartesian cubical type theory from [7, Section 3.1.1]

and reproduced in Figures 3.1 and 3.2, and the axioms for bicubical directed type theory in

Figure 3.3 are true in Set�
op
path×�

op
Ded.

We prove Theorem 3.1.1 with the lemmas presented in the remainder of Section 3.1.

Lemma 3.1.2. The axioms from Cartesian cubical type theory [7, Section 3.1.1]—listed in

Figures 2.2 and 3.1—pertaining to the interval I are all true in the category of bicubical sets,

and the cofibrations for I all factor through the object of decidable sieves.

Proof. In Set�
op
path×�

op
Ded , we interpret I as y(I1, 20), i.e. the pair of the interval in �path and

the terminal object of �Ded. 0I : I and 1I : I represent (the Yoneda embedding of) the

corresponding maps in �path, paired with the unique map into the terminal object. These

satisfy 0I ̸= 1I : I because the �path components are distinct.

For the strictification axiom, [58, Theorem 8.4] shows that strictification holds construc-

tively in any presheaf topos if the cofibrations are a subset of the decidable sieves. The

cofibrations are interpreted as subobjects (conjunction, disjunction, universal quantification,

equality) that exist in any topos, so all there is to show is that cofibrations are decidable

sieves, i.e. that Cof ↪→ Ω factors Cof ↪→ Ωdec ↪→ Ω through the presheaf of decidable sieves

Ωdec [58, Definition 8.3]. By the argument in [7, Section 3.2], one interpretation satisfying

this is to take Cof to be Ωdec itself: closure under ΠyX for any representable follows if the

base category has finite products, which �path × �Ded does (given componentwise), and for

=I we need that maps from any object into (I1, 20) have decidable equality, which is assumed.

81

For the approach we use to construct universes, [47, Remark 4.1] argue that the crisp

type theory used in agda−flat can be interpreted in any presheaf topos on a base category

with a terminal object, which is (I0, 20). Tininess (right adjoint to exponentiation by I)

follows because in presheaves on a base category with finite products, all representables are

tiny, and I is interpreted as y(I1, 20).

Lemma 3.1.3. The axioms in Figure 3.3 defining the type 2 and its connections are sound

in the interpretation into bicubical sets.

Proof. 2 is interpreted as y(I0, 21). The connection axioms are the axiomatic presentation

of the interval in �Ded [16], and therefore are true for the Yoneda embedding of the directed

interval.

Lemma 3.1.4. The directed interval 2 is tiny.

Proof. Analogously to I, this follows because the base category we take our presheaves over

has finite products and 2 is a representable presheaf.

Lemma 3.1.5. The directed triangle ∆2 is tiny.

Proof. To prove ∆2 to be tiny, we first demonstrate that the idempotent completion of

�Ded is closed under binary products. Thus, consider two representables in the idempotent

completion of �Ded, A and B. For this proof, we will utilize the notion of the idempotent

completion as that generated as a full subcategory of �̂Ded, and thus A and B are presheaves.

As A and B are contained in the idempotent completion of �Ded, we know there exists objects

Ã and B̃ in �Ded along with split epimorphisms α ∈ �̂Ded(yÃ, A) and β ∈ �̂Ded(yB̃, B). Let

α̃ and β̃ be the splitting monomorphisms of α and β. With these components, we construct

the following diagram in �̂Ded.

yÃ× yB̃ yÃ× yB̃

A×B
α×β α̃×β̃

82

As �Ded is closed under binary products, we know yÃ × yB̃ is a representable functor.

Furthermore, by the properties of the binary product we can see that the morphism α × β

is an epimorphism split by α̃× β̃, concluding their composition is an idempotent morphism

in �Ded (modulo Yoneda) and thus the product A×B is itself an element of the idempotent

completion of �Ded.

From [15, Theorem 1], we know the category of presheaves over the idempotent com-

pletion of a category is equivalent to the category of presheaves over the original category.

Given ∆2 is an element of the idempotent completion of �Ded (via the morphism sending

(x, y) to (x, x∧ y)), and the idempotent completion is closed under binary products, ∆2 is a

tiny object in the category of presheaves over the idempotent completion of �Ded. We can

then utilize the equivalence of categories to conclude that the object ∆2 is also tiny in the

category �̂Ded.

Lemma 3.1.6. The cofibrations pertaining to the directed interval 2 factor through Ωdec.

Proof. The same argument as for =I and ∀I applies: closure under ∀ holds for any repre-

sentable because of finite products in �path ×�Ded [7, Section 3.2], and maps into (I0, 21) in

�path × �Ded have decidable equality, because equality in homsets in �Ded is decidable.

Lemma 3.1.7. The axiom 2mono is true in the category of bicubical sets.

Proof. The goal is an equality of morphisms inX →�path×�Ded (I0, 21), but since I0 is terminal,

the �path components are trivially equal, and it suffices to check

For all C ∈ �Ded, f : (C × 2 →�Ded 2), and x, y : (C →�Ded 2), if x =(C→�Ded2)

⟨x, y⟩;⊓ then ⟨id, x⟩; f =(C→�Ded2) ⟨⟨id, x⟩; f, ⟨id, y⟩; f⟩;⊓

Because �Ded can be presented as the free cartesian category on some generators, we can

view its morphisms as syntax in its internal simple type theory (with product types), and

do induction on the syntax. Thus, consider it to be presented by a judgment xi : 2 ⊢ f : 2,

where the constructors for f are _ ⊓ _,_ ⊔ _, 02, 12 and variables from the context, with

83

the equational theory of a distributed lattice. We assume an arbitrary context Ψ and terms

Ψ ⊢ u : 2 and Ψ ⊢ v : 2 and Ψ, z : 2 ⊢ f : 2, such that u = u ⊓ v. We need to show that

f [u/z] = f [u/z]⊓ f [v/z] according to the equational theory. The proof is by induction on f .

• In the case where f is z, the result is the assumption.

• In the case where f is some other variable x or 02 or 12 (write this as k), f [−] = k, so

idempotence of ⊓ gives the result.

• In the case where f is f1 ⊓ f2, we get f1[u/z] = f1[u/z] ⊓ f1[v/z] and f2[u/z] =

f2[u/z] ⊓ f2[v/z] and we need to show

f1[u/z] ⊓ f2[u/z] =

(f1[u/z] ⊓ f2[u/z] ⊓ f1[v/z] ⊓ f2[v/z])

which follows from the inductive hypotheses and associativity/commutativity.

• In the case where f is f1 ⊔ f2, we get f1[u/z] = f1[u/z] ⊓ f1[v/z] and f2[u/z] =

f2[u/z] ⊓ f2[v/z] and we need to show

f1[u/z] ⊔ f2[u/z] =

(f1[u/z] ⊔ f1[v/z]) ⊓ (f2[u/z] ⊔ f2[v/z])

Multiplying out the right hand side gives

(f1[u/z] ⊓ f2[u/z]) ⊔ (f1[v/z] ⊓ f2[u/z])⊔

(f1[u/z] ⊓ f2[v/z]) ⊔ (f1[v/z] ⊓ f2[v/z])

By the inductive hypothesis this is

(f1[u/z]) ⊔ (f1[v/z] ⊓ f2[u/z]) ⊔ (f1[u/z] ⊓ f2[v/z]) ⊔ (f1[v/z])

and then absorption (x ⊔ (x ⊓ y) = x) gives the result.

84

Lemma 3.1.8. The axiom 2toItriv is true in the category of bicubical sets.

Proof. The internal statement of the axiom externalizes to

For all C ∈ �path × �Ded,

f : (C × (I1, 20)) →�path×�Ded (I0, 21), and

x : C →�path×�Ded (I1, 20),

⟨id, x⟩; f =(C→�path×�Ded (I
0,21)) ⟨id, (0I, !)⟩; f .

Since I0 is terminal, it suffices to check the maps in �Ded, but we have

f�Ded : (C�Ded × 20) →�Ded 21

x�Ded : C�Ded →�Ded 20

⟨id, x⟩; f =(C�Ded→�Ded21) ⟨id, !⟩; f

which is true because 20 is terminal.

3.2 The “Types” of Types

Riehl-Shulman [62] define many properties of types, such as being discrete (the directed

morphism structure is trivial), being Segal/a category (directed morphisms have unique

composites), and being a covariant discrete fibration (a family of discrete types with a

“forward” transport along morphisms), and being a contravariant discrete fibration (a family

of types with a “backward” transport along morphisms).

In this section we show that some of these key definitions and lemmas of [62] can be made

in this setting, and draw some correspondences with cubical filling problems. As many of the

definitions use the directed morphism type, we begin with its definition before moving into

the many classes of types that make up the basis of working within directed type theory.

85

3.2.1 Directed Morphism Type

Given a type A and two terms a0 and a1, the type of directed morphisms from a0 to a1 is

HomA (a0, a1) := Πi : 2.A[i = 02 7→ a0, i = 12 7→ a1]

Compare with the cubical path type PathA (a0, a1) := Πi : I.A[i = 0I 7→ a0, i = 1I 7→ a1].

We can also define dependent morphism types where, instead of a fixed type, we consider a

family of types indexed by the corresponding interval type: Given a type family A : 2 → Type

and two terms a0 : A 02 and a1 : A 12, the type of directed paths from a0 to a1 is

DHomA (a0, a1) := Πi : 2.(A i)[i = 02 7→ a0, i = 12 7→ a1]

In [62], morphism types are defined as extension types, which combine quantification over

interval variables and extension constraints, restricted in such a way that an extension type

is always fibrant. Here, we must show that the morphism type is Kan:

Theorem 3.2.1 (universe.Hom.Hom-code-universal). There is a code

dhom : Π(A : 2 → UKan).A(02) → A(12) → UKan

such that El(dhom(A, a0, a1)) = DHomEl◦A (a0, a1)

Proof. This argument is the same as the argument for Kan path types [7,24], taking advan-

tage of the fact that, for a directed interval variable x, x = 02 and x = 12 are cofibrations.

To make a code for the dependent hom type DHomEl◦A (a0, a1), we in particular must con-

struct a Kan composition structure for it assuming one exists for the type family A (encoded

by the fact the family A lands in UKan). Thus, given the context Γ, we have that A : Γ×2 →

UKan, and we can assume a witness comA : comFill (El ◦ A). We now construct the function

comDHomA : comFill DHomEl◦A (a0, a1) for DHomEl◦A (a0, a1) : Γ → U. Given a path p in Γ,

86

any two interval variables r, r′ : I, a cofibration α scoped by Γ, tube t : (x : I) → JαKcof →

DHom(El◦A) (p x) (a0 (p x), a1 (p x)) and base b : DHom(El◦A) (p r) (a0 (p r), a1 (p r))[α 7→ t r],

we define the body of comDHomA p r r′ α t b : DHom(El◦A) (p r′) (a0 (p r′), a1 (p r′))[α 7→

t r′, r = r′ 7→ b] by Kan composition in A as shown below.

comDHomA p r r′ α t b := λx : 2.comz:r→r′
A [α 7→ t z x

, x = 02 7→ a0 (p z)
, x = 12 7→ a1 (p z)] (b x)

3.2.2 Discrete Types

The types with trivial directed morphism structure play the role of “sets” in directed type

theory, and are the elements of the universe Ucov of “sets” and functions that we define below.

We use quotation marks as, given directed type theory is built on top of HoTT, the discrete

types are actually the ∞-groupoids and thus still potentially have nontrivial homotopical

structure. From this perspective, one can think of the discrete types as the embedding of

HoTT inside of directed type theory.

In order to define discrete types, we first define a function path-to-hom that converts

paths to morphisms for Kan types (Discrete.path-to-hom):

path-to-hom(p) := λ(x : 2).comz:0I→1I
A [x = 02 7→ p(0I)

, x = 12 7→ p(z)](p(0I))

Discrete types are then defined by

Definition 3.2.2 ([62, Definition 7.1], Discrete.isDisc). A Kan type A is discrete when

for every x y : A the types PathA (x, y) and HomA (x, y) are equivalent along the function

path-to-hom.

isDisc A := Πx y : A.isEquiv (path-to-hom (λ_.A) x y)

In our setting, we define an equivalent (Proposition 3.2.6) property in the style of a

cubical filling problem.
87

Definition 3.2.3. Given a type A, a discrete filling structure is a term of the following type:

discFill A := Πα:Ωcof.
Πt:2 → JαKcof → A.
Πb:A[α 7→ t 02].
Πi:2.A[α 7→ t i, (02 = i) 7→ b]

In the presence of a witness discA : discFill A, we often write discz:02→i
A [α 7→ t z] b to denote

discA α (λz.t z) b i.

In our proofs, we occasionally use the following interderivable (Lemma 3.2.5) definition

when it makes things easier.

discFill01 A := Πα:Ωcof.
Πt:2 → JαKcof → A.
Πb:A[α 7→ t 02].
A[α 7→ t 12]

Lemma 3.2.4 (Discrete.discFill-hprop). For any Kan type A, discFill A is a homotopy

proposition.

Proof. First, consider the type Πb:A. cfill (Πi:2.A[02 = i 7→ b]). As cfill X is always a

homotopy proposition, so is this type. Unfolding the definition of cfill, we see it is the

following.

Πb:A. cfill (Πi:2.A[02 = i 7→ b]) = Πb:A.
Πα:Ωcof.
Πt:JαKcof → Πi:2.A[02 = i 7→ b].
Πi:2.A[(02 = i) 7→ b, α 7→ t i]

Rearranging the order of the Πs we can swap α, t and b to be in the same order as in

discFill A. Then, we can uncurry to combine t and b into a product, and then reorder the

product before currying again to move the boundary condition so that it is appended to the

type accompanying b, resulting in the type discFill A. As all of these transformations are

isomorphisms, the type discFill A is isomorphic to Πb:A. cfill (Πi:2.A[02 = i 7→ b]), and as

being a homotopy proposition is preserved by isomorphism, discFill A must be a homotopy

proposition.

88

Lemma 3.2.5 (Discrete.discFill-to-discFill01,

Discrete.discFill01-to-discFill, [24, Section 4.4]). For any Kan type A, discFill01 A

and discFill A are interderivable.

Proof. First, we can provide an instance of discFill01 A using dfillA : discFill A simply by

filling to the endpoint 12.

λα t b.dfillA α t b 12 : discFill01 A

In the other direction, we modify the cofibration to account for the trivial filling and use a

connection in the tube we provide to dfill01A : discFill01 A to derive the required instance ot

discFill A.

λα t b i.dfillA01 (α ∨ 02 = i) [α 7→ λx.t (i ∧ x), 02 = i 7→ b] b : discFill A

Proposition 3.2.6 (Discrete.isDisc-to-discFill,

Discrete.discFill-to-isDisc). For any Kan type A, isDisc A and discFill A are homo-

topically equivalent.

Proof. First, recall from Lemma 3.2.4 that discFill A is a homotopy proposition. As being an

equivalence is a homotopy proposition, and quantifying with a Π preserves being a homotopy

proposition, isDisc A is one as well. Thus, we only need to show that isDisc A and discFill A

are interderivable to conclude they are equivalent.

To begin with, assume we have a witness discA : isDisc A, and let’s construct a term

of type discFill A. To simplify the proof, we will utilize the fact discFill A and discFill01 A

are interderivable (Lemma 3.2.5) and instead construct a witness to discFill01 A. As such,

let us assume the hypotheses quantified over in the type discFill01 A: We have an arbitrary

cofibration α, a partial tube α ⊢ t : 2 → A, and the base we wish to fill b : A[α 7→ t 02]. Our

89

goal is to construct a term of type A such that along the cofibration α it equals t 12. To do

this, we first define the partial path α ⊢ t′ : PathA (t 02) (t 12) by applying the inverse to

path-to-hom A contained in discA to the partial morphism t. We can then use homogenous

composition in A to define the desired term by filling from 0I to 1I along α ⊢ t′ from b.

λα t b.hcom0I→1I
A [α 7→ hom-to-path discA t] b

Now assume we have a witness dfillA : discFill A, and let’s define a term of type isDisc A;

in particular, we need to first define a function that turns morphisms in A into paths in A,

and then demonstrate said function is an inverse to path-to-hom A. The inverse toPathA :

Πa0 a1 : A.HomA a0 a1 → PathA a0 a1 is straightforward to define:

toPathA x y h := λi : I.discz:02→12
A [i = 0I 7→ h 02, i = 1I 7→ h z] (h 02)

To see that toPathA is an inverse to path-to-hom A, let us first view the squares used to

define each function. To do so, consider p : PathA a0 a1 and h : HomA a0 a1.

comz:0I→j
A [i = 02 7→ p 0I,

i = 12 7→ p z]
(p 0I)

a0

a0

p j

path-to-hom A p i
discz:02→i

A [j = 0I 7→ h 02,
j = 1I 7→ h z]

(h 02)

a0

a0

toPathA h

h i

i : 2

j : I

90

First, let us consider a path p : PathA a0 a1, and construct a path between p and

toPathA (path-to-hom A p). The crux of this proof lies in inverting the path-to-hom square

in the directed direction, and then composing it with the toPathA square instantiated at

path-to-hom A p, as shown here.

a0

p j

a0

(path-to-hom A p)−1

a0 path-to-hom A p

toPathA (path-to-hom A p) j

We can then compose on the right hand side of this square using the path between

path-to-hom A p ◦ (path-to-hom A p)−1 and a1 so that the right-hand side is constantly a1,

and thus we have a morphism from p to toPathA (path-to-hom A p). Lastly, use discrete

filling to turn the morphism into a path, concluding one half of the equivalence.

Now consider a morphism h : HomA a0 a1, and let’s define a path between h and

path-to-hom A (toPathA h). The proof similarly involves inverting one square and past-

ing the two together. This time, we invert the toPathA square in the path direction, and

attach it to the path-to-hom square instantiated at toPathA h.

91

h i

a0

(toPathA h)−1

a0

a0

toPathA h

path-to-hom A (toPathA h) i

Composing the top of this square with the path between toPathA h ◦ (toPathA h)−1 and a1

results in the desired path between h and path-to-hom A (toPathA h), concluding toPathA is

indeed an inverse to path-to-hom A, and thus discFill A and isDisc A are equivalent.

Lemma 3.2.7. For any Kan type A, discFill A is Kan.

Proof. Recall from Lemma 3.2.4 that discFill A is isomorphic to Πb:A.cfill (Πi:2.A[02 = i 7→

b]). This type is clearly Kan as it is built entirely out of Kan types and type formers known

to preserve being Kan. as the property of being Kan is preserved by isomorphism, discFill A

is Kan as well.

3.2.3 Covariant Discrete Fibrations

Intuitively, a type B : A → Type is a covariant discrete fibration [62] when it is covariant,

in the sense that given a directed morphism HomA (a0, a1) there is a transport function

B(a0) → B(a1) (satisfying a certain universal property), and each fiber B(a) is discrete. In

this section, we begin defining the fundemantal components required to ultimately construct

a universe Ucov (which will be completed in Section 3.3), where a type B : A → Ucov will

be a covariant discrete fibration over A. Because of the directed univalence principle we

derive in Chapter 4, Ucov (modulo a few modifications explained in Chapter 4) itself is a

higher-categorical analogue of the category of sets and functions, but where “set” means ∞-

92

groupoid and function means functor. We could similarly define a universe of contravariant

discrete fibrations, but we focus (arbitrarily) on the covariant case for this thesis.

For a type family A : 2 → Type to be covariant should mean that there is a “coercion”

function A(02) → A(12). For this to be well-behaved, it is necessary to moreover insist that

this function has a universal property relative to A: for each input, its result is related to

the input by the relation DHomA , and in fact the unique such element of A(12). Uniqueness

here is up to homotopy (as opposed to strict equality), using the standard notion of a type A

being contractible (iscontr A := Σa : A.Πx : A.PathA (a, x))—this style of definition is one

reason why the separate notions of morphisms and paths in bisimplicial setting are helpful.

For a general type family A : Γ → Type, one asks that any precomposition with a directed

path in Γ has such a coercion function:

Definition 3.2.8 ([62, Definition 8.2]). Consider a type Γ and type family A : Γ → Type.

A is covariant if for every morphism p : HomΓ (x, y) and point a0 : A x, there is a unique

element a1 : A(p12) with a dependent path over A ◦ p starting at a0:

iscov A := Πp:2 → Γ.Πa0:A (p 02).
iscontr (Σa1 : A (p 12).DHomA◦p (a0, a1))

While we could use this definition unchanged, in our setting we can give an equivalent

definition that will be more convenient, analogous to how we redefined the notion of discrete

in Section 3.2.2. First, an equivalent (for Kan types) definition of being contractible is that

any partial element can be extended to a complete element [24,57]:

iscontr′ A := Πα:Ωcof.Πp:(JαKcof → A).A[α 7→ p]

The idea is that taking α to be ⊤ gives the center of contraction, and taking α to be

(i = 0I) ∨ (i = 1I) can be used to create a path between any two elements.

93

Substituting the partial-extends-to-total definition of contractibility (cfill, Defini-

tion 2.3.12) into the definition of covariance and rearranging some quantifiers, we obtain a

cubical filling operation for morphism variables:

Definition 3.2.9. A covariant filling structure on A : Γ → Type is a term of type covFillΓ A:

covFill2 (A : 2 → Type) := Πα:Ωcof.
Πt:(Πz:2.JαKcof → A z).
Πb:(A 02)[α 7→ t 02].
Πi:2.(A i)[α 7→ t i, (02 = i) 7→ b]

covFillΓ (A : Γ → Type) := Πp:2 → Γ.covFill(A ◦ p)

In the presence of a witness covA : covFillΓ A, we write covz:02→i
A p [α 7→ t z] b to denote

covA p α (λz.t z) b i.

First, we prove some basic facts about the covariant filling problem.

Lemma 3.2.10 (Covariant.rcov-hprop). Given a Kan type A in context Γ, covFillΓ A is

a homotopy proposition.

Proof. This proof is analogous to that showing the discrete filling problem is a homotopy

proposition (Lemma 3.2.4).

Consider the type Πp:2 → Γ.Πb:(A◦p) 02.cfill (Πi:2.(A◦p) i[02 = i 7→ b]). As contractible

fill of a type is always a homotopy proposition, and quantifying by Π preserves a type being a

homotopy proposition, this type is a homotopy proposition. By unfolding the definition of cfill

and slightly rearranging the order of the Πs and the placement of the boundary condition, we

see this type is isomorphic to covFillΓ A, and thus covFillΓ A is also a homotopy proposition.

Theorem 3.2.11 (Covariant.covFill-internal-equiv). Given a Kan type A in context

Γ, covFillΓ A is equivalent to iscov A.

Proof. As shown previously in Lemma 3.2.10, we know that covFillΓ A is isomorphic to the

type Πp:2 → Γ.Πa0:(A ◦ p) 02.cfill (Πi:2.(A ◦ p) i[02 = i 7→ a0]). Additionally, the type

94

of dependent morphisms starting at a0, Πi:2.(A ◦ p) i[02 = i 7→ a0], is clearly isomorphic

to the dependent sum Σa1 : A (p 12).DHomA◦p (a0, a1). Thus, covFillΓ A is isomorphic to

Πp:2 → Γ.Πa0:A (p 02)..cfill (Σa1 : A (p 12).DHomA◦p (a0, a1)). This type only varies from

the definition of being covariant (Definition 3.2.8) in that it uses cfill instead of iscontr, but

as we know the two are equivalent (Lemma 2.3.14), covFillΓ A is equivalent to iscov A.

A proof of the above theorem in the bisimplicial setting is contained in [62, Proposi-

tion 8.4].

Lemma 3.2.12 (Covariant-is-Fibrant.com-covFillI). Given a Kan type A in context

Γ, covFillΓ A is Kan.

Proof. As in Lemma 3.2.7, first note that covFillΓ A is isomorphic to Πp:2 → Γ.Πa0:(A ◦

p) 02.cfill (Πi:2.(A ◦ p) i[02 = i 7→ a0]). This type is built out of type-formers that preserve

the property of being Kan, and thus is Kan itself. as being Kan is preserved by isomorphisms,

covFillΓ A must be Kan as well.

An advantage of this formulation is that many types can be shown to be covariant by

a nearly identical construction to their Kan composition structure. For example, because 2

has connections, we can apply the filling-from-composition lemma [24], which states that to

construct the above, it suffices to define

covFill212
(A) := Πα:Ωcof.

Πt:(Πz:2.JαKcof → A z).
Πb:(A 02)[α 7→ t 02].
(A 12)[α 7→ t 12]

This is exactly CCHM Kan composition [24] but stated for the directed interval, rather

than the path interval—thus, we can prove that the covariant types are closed under certain

type constructors by the same argument used to show that they are Kan in [24]. This

reformulation is also sometimes simpler to prove because it requires constructing one element

of A with a specified boundary, as opposed to the two elements of A that constitute a center

of contractibility and a path to the center.
95

3.2.4 Segal Types

We now introduce the first class of well-behaved types we will discuss with nontrivial directed

structure. In bisimplicial or bicubical directed type theory, all types have a notion of di-

rected morphism, along with identity morphisms on each object, given by constant functions

(λ_.a) : HomA (a, a). However, not all types represent categories, in the sense that directed

morphisms may not compose. The Segal condition is a type describing when a type A does

represent a category, by a direct translation of “every compatible pair of morphisms has a

unique composition morphism”:

First, the triangle is represented by the type Σ(i, j) : 2 × 2.j ≤ i, recalling that j ≤ i

is encoded in our setting as j = j ⊓ i. The second shape we need for the Segal condition

is a pair of compatible arrows. This is given as a subshape of the commuting triangle ∆2

containing the two contiguous morphisms on its boundary, but not the third or the inside of

the triangle. This is often referred to as a horn of ∆2, and is represented by the formula

Λ2
1 : ∆

2 → Ωcof

Λ2
1 (i, j) := (j = 02 ∨ i = 12,_)

Then, one way to state the Segal condition is [62]:

isSegal′ A := Πa b c:A.
Πp:HomA (a, b).
Πq:HomA (b, c).
iscontr(Π(i, j):∆2.A[j = 02 7→ p i

, i = 12 7→ q j])

i.e., “every pair of compatible morphisms has a unique composite.”

Together a, b, c, p, q constitute a horn in A, so this can be compacted to

Definition 3.2.13 ([62, Definition 5.1]). A type A is a Segal type if the following condition

holds.

isSegal A := Πa : (Πx : ∆2.JΛ2
1 xKcof → A).

iscontr(Πx : ∆2.A[Λ2
1(x) 7→ a x])

96

As with our other definitions, we show that isSegal is equivalent (for Kan types) to the

following cubical filling problem style definition, which we obtain by using the “any partial

element can be extended to a total one” definition of contractibility (cfill, Definition 2.3.12).

The analogous definition is also defined and proven equivalent in the bisimplicial setting in

Riehl-Shulman [62, Proposition 5.20].

Definition 3.2.14. given a type A, a Segal filling structure is a term of the following type:

SegalFill A := Πα:Ωcof.
Πt:(Πx : ∆2.JαKcof → A).
Πb:(Πx : ∆2.JΛ2

1 xKcof → A[α 7→ t x]).
Πx:∆2.A[α 7→ t x,Λ2

1 x 7→ b x]

We also show that SegalFill A is Kan and a homotopy proposition, so it could be taken

to be the definition of being a category even in a type theory where all types are fibrant.

Lemma 3.2.15. Given a Kan type A, SegalFill A is a homotopy proposition.

Proof. The proof is analogous to those showing the other filling problems are homotopy

propositions (Lemmas 3.2.4 and 3.2.10), given by restructuring the definition to the isomor-

phic type

Πb:(Πx:∆2.JΛ2
1 xKcof → A).cfill (Πx:∆2.A

[
JΛ2

1 xKcof 7→ b x
]
)

that has the structure of Π-quantification followed by a contractible fill type, which is always

a homotopy proposition.

Lemma 3.2.16. Given a Kan type A, SegalFill A is Kan.

Proof. As Πb:(Πx:∆2.JΛ2
1 xKcof → A).cfill (Πx:∆2.A [JΛ2

1 xKcof 7→ b x]) is Kan and isomorphic

to SegalFill A, SegalFill A is Kan.

3.2.5 Inner Fibrations

Inner fibrations are a generalization of Segal types in the same way that Kan fibrations

generalize types with an hcom structure and the way that covariant fibrations generalize
97

discrete types; in particular, the fibers of an inner fibration are Segal types. Unfortunately,

this notion of fibration has no analogue in 1-category theory, but besides naturally occurring

inside of the proofs showing various dependent constructions are Segal, it also is a part of the

definition of two very important classes of fibrations: Cartesian and coCartesian fibrations.

While these two notions of fibrations are not explored in this thesis, they capture the idea

of families of ∞-categories that depend contravariant or covariantly (respectively) on their

context; in particular, one can thing of coCartesian fibrations as generalizing our notion of

covariant fibrations such that they are families of ∞-categories that depend on their contact

covariantly, and are not limited to just being families of ∞-groupoids.

Definition 3.2.17 ([62, Definition 5.19]). Consider a type Γ and type family A : Γ →

Type. A is an inner fibration if for every triangle p : ∆2 → Γ and every inner horn Πx :

∆2.JΛ2
1 xKcof → A (p x), there is a unique horn filler in A:

isinner A := Πp:∆2 → Γ.
ΠaΛ:(Πx : ∆2.JΛ2

1 xKcof → A (p x)).
iscontr (Πx : ∆2.A (p x) [JΛ2

1 xKcof 7→ aΛ x])

Definition 3.2.18. An inner filling structure on A : Γ → Type is a term of type innerFillΓ A:

innerFill∆ (A : ∆2 → Type) := Πα:Ωcof.
Πt:(Πz:∆2.JαKcof → A z).
Πb:(Πz:∆2.JΛ2

1 zKcof → A z[α 7→ t z]).
Πz:∆2.(A z)[α 7→ t z, JΛ2

1 zKcof 7→ b z]
innerFillΓ (A : Γ → Type) := Πp:∆2 → Γ.hasInner(A ◦ p)

Lemma 3.2.19. Given a Kan type A in context Γ, innerFillΓ A is a homotopy proposition.

Proof. Again analogous to showing the other filling problems are homotopy propositions

(Lemmas 3.2.4, 3.2.10 and 3.2.15), given by restructuring the definition to the isomorphic

type

Πp:∆2 → Γ.Πb:(Πx:∆2.JΛ2
1 xKcof → A (p x)).cfill (Πx:∆2.A (p x)

[
JΛ2

1 xKcof 7→ b x
]
)

98

that has the structure of Π-quantification followed by a contractible fill type, which is always

a homotopy proposition.

Lemma 3.2.20. Given a Kan type A in context Γ, innerFillΓ A is Kan.

Proof. As innerFillΓ A is isomorphic to

Πp:∆2 → Γ.Πb:(Πx:∆2.JΛ2
1 xKcof → A (p x)).cfill (Πx:∆2.A (p x)

[
JΛ2

1 xKcof 7→ b x
]
),

a Kan type, innerFillΓ A is Kan as well.

3.3 The Universe Ucov

We construct the universe Ucov following the LOPS construction [47]: we work within Agda

using an idempotent comonadic modality implemented by Andrea Vezzosi1 to formalize

constructions involving the universe. We write UKan for the universe of Kan types constructed

in [7]. We build the universe Ucov of those Kan types that are covariant discrete fibrations

(covFill, Definition 3.2.9) using [47, Theorem 5.2]. An important detail to note is that in

order to use the LOPS construction to restrict the universe UKan, we must minimally modify

the type of covFill such that it classifies type families landing in UKan instead of the ambient

universe of all types, with the predicate itself also landing in UKan; in other words, for

Γ : Type, covFillΓ : (Γ → UKan) → UKan.

Construction 3.3.1. The universe Ucov that classifies the inner fibrations is definable con-

structively.

Proof. The assumptions required by the LOPS construction are that (1) that the interval

2 used in the definition of covFill2 is tiny, i.e. exponentiation by the interval has a right

adjoint (which we assumed in Figure 3.3); (2) that ⊥ is a cofibration (an assumption from

[7]); and (3) that covFill classifies Kan types and is itself Kan (Lemma 3.2.12). Note that
1This modality has been integrated into Agda as of version 2.6.1.

99

the covariant predicate would be immediately Kan if we had used the original [62] definition

in terms of Π, Σ, path and hom types (all of which are Kan). Given all of the assumptions

of the construction are satisfied, we can define the type Ucov which has decoding function

El : Ucov → UKan along with an introduction rule saying that a “crisp” [47] (closed) term of

type Γ → UKan has a code in the universe for every covariant discrete fibration structure on

it.

From this construction of the universe, El ◦ A is covariant for any A : Γ → Ucov—any

type family in Ucov has a transport function lifting directed morphisms in its domain to

morphisms in Ucov—with the definition of covFill(El ◦ A) determined by the data in a code.

Note that the modal restrictions on universes concern its introduction rule, but the type Ucov

and its elimination forms are unrestricted.

We have checked that this definition of Ucov is useful by proving it is closed under some

example type constructors:

Theorem 3.3.2 (universe.{Sigma,Pi,Path,Hom}.agda).

There are codes

• Σcov : Π(A : Ucov).Π(B : ElA→ Ucov).Ucov

• Πcov : Π(A :♭ UKan).Π(B : A→ Ucov).Ucov

• dpathcov : Π(A : I → Ucov).ElA 0I → ElA 1I → Ucov

• dhomcov : Π(A : 2 → Ucov).ElA 02 → ElA 12 → Ucov

that decode to Σ, Π, DPath and DHom types respectively.

Proof. To show Ucov is closed under these type formers, we construct generic witnesses to

the filling problem covFill for each.

100

Σ-types Given a type A : Ucov and B : JAKcov → Ucov, we construct a filler of type

covFillΓ (Σx : JAKcov.JB xKcov) in the topos logic as follows. For any morphism r : 2 → Γ,

cofibration α, tube t and base b, we first define the filling for the first component as the term

a.

a := covΓ.A p [α 7→ (fst ◦ t) r] ((fst ◦ b) r)

We then then use a to define the solution for the entire Σ-type as shown here.

λp α t b r.(a, covΓ,A.B (λx.(p x, a x)) [α 7→ (snd ◦ t) r] ((snd ◦ b) r))

Unsurprisingly, to fill in a pair, one simply just fills in each component directly (taking

account of the fact the second component depends on the first).

Π-types Given any flat type A :♭ UKan and B : JAKKan → Ucov, we can always construct a

filler of type covFillΓ (Πx : JAKcov.JB xKcov) in the topos logic as shown below.

λp α t b r a.covΓ.Ba p[α 7→ t r a] (b r a)

As the type A is flat, it does not depend on any path structure and thus there is no need to

do any filling in A; therefore one can simply fill these functions by applying their argument

and using the filler for B instantiated at the argument.

dependent path types Consider A : I → Ucov, along with two terms a0 : JA 0IKcov and a1 :

JA 1IKcov. We wish to construct a solution to the filling problem covFillΓ (DPathA (a0, a1)).

As with the other filling problems, the solution here is to just fill in A and maintain the

additional boundary constraints by adding them to the cofibration.

λp α t b r.(λi.covΓ.A p [α 7→ t r i, i = 0I 7→ a0 (p r), i = 1I 7→ a1 (p r)] (b r i))

101

dependent hom types Dependent morphism types are handles analogously to dependent

path types. For A : 2 → Ucov and endpoints a0 and a1, the filler is constructed as follows.

λp α t b r.(λi.covΓ.A p [α 7→ t r i, i = 02 7→ a0 (p r), i = 12 7→ a1 (p r)] (b r i))

This shows that Ucov is closed under Σ types, Π types with a constant domain (because

the domain is a contravariant and not covariant position; this is enforced by the modal

restriction to a crisp A), DPathA, and DHomA types. While in general DHomA (−, a) should

be contravariant rather than covariant, if A is in Ucov it is itself discrete, so its morphisms

are equivalent to paths and thus invertible. The full proof is in the above files in the

formalization; because of our reformulation of covariance as analogous to CCHM Kan filling,

the proofs for Σ, DPath and DHom are analogous to the arguments that Σ and DPath are

Kan in [24], while the argument for Π with a constant domain is analogous to the argument

that Π has homogeneous composition (which does not use Kan filling in the domain).

3.3.1 Ucov is Path Univalent

The universe Ucov should enjoy two kinds of univalence: First, like universes in ordinary

homotopy type theory, any path in Ucov should be the same as an equivalence. Second, any

directed morphism should be the same as a function. We write J−Kcov for the composite

of the two El functions Ucov → UKan → Type. For both kinds of univalence, we use glue

types [24], which are formed from a cofibration α, a partial type T : α → Type, a type

B : Type, and a partial function f : Πp : α.T p → B. The type Glue[α 7→ (T, f)]B is

isomorphic to Σt : (JαKcof → T).B[α 7→ f t], but when α is satisfied, Glue[α 7→ (T, f)]B is

strictly equal to T .

We consider path-univalence first, as its proof is straightforward from previous work. The

main lemma required for the proof is that the universe Ucov is closed under glue types:

102

Lemma 3.3.3 (universe.Glue-Equiv-Covariant.GlueUCov). Given any α : Ωcof, T :

JαKcof → Ucov, B : Ucov, and f : JαKcof → JT Kcov → JBKcov where f is an equivalence, the

type Glue[α 7→ (JT Kcov, f)]JBKcov is in Ucov.

Proof. To conclude this, we need to provide an instance to the covariant filling problem for

the type Glue[α 7→ (JT Kcov, f)]JBKcov. As B is in Ucov, we have a witness to covFillΓ B. We

also know from [24, Theorem 9] that the map unglue : Glue[α 7→ (JT Kcov, f)]JBKcov → B is

an equivalence. Thus, using univalence in UKan, we can convert the unglue equivalence into

a path and transport along it in covFillΓ to derive a solution for the filling problem for the

glue type from the one we have for B.

Glue types have univalence as the special case of gluing with an equivalence on one side:

Glue[x = 0I 7→ (A, e), (x = 1) 7→ (B, idB)](b).

Theorem 3.3.4 (DirUnivalence.ua). For any two types A and B in Ucov, we have the

following equivalence.

ua : Equiv (Equiv JAKcov JBKcov) (PathUcov (A,B))

Proof. First, as any types in Ucov also have codes in UKan, we know a path I → Ucov is also

a path in UKan, and thus are able to derive an equivalence from it using univalence in UKan.

Given two types A and B in Ucov and an equivalence between them, we also know from

Lemma 3.3.3 that the construction used by univalence in UKan to define a corresponding path

from A to B also has a code in Ucov, and thus lifts to a path from A to B in Ucov.

As both the function from equivalences to paths and that from paths to equivalences are

given identically as for univalence in UKan, we already know they are homotopy inverses, and

thus form an equivalence.

Glue types also imply that Ucov is itself Kan—given some paths to compose in Ucov, we

can project paths in UKan, which determine equivalences, which can then be composed using

the glue type, which is covariant by above.
103

Theorem 3.3.5 (universe.UCov-Com.UCovU). Ucov is Kan.

Proof. This proof is analogous to the proofs that UKan is Kan in [24, Section 7.1] and [7,

Section 2.12].

3.4 The Universe Uinner

The Universe Uinner classifies the inner fibrations. We choose to construct this universe

as its fibers are the Segal types—our representation of ∞-categories—and given it is the

“dependently typed” version of the filling problem it has better type closure properties; to

fill in a dependent type one often needs to, unsurprisingly, fill dependently.

Construction 3.4.1. The universe Uinner that classifies the inner fibrations is definable

constructively.

Proof. As with our definition of Ucov, we use the LOPS construction [47] to define the universe

Uinner as a restriction of the universe UKan. The primary distinction in this definition is that

the predicate defining the inner filling structure (Definition 3.2.18) is abstracted over the

directed triangle ∆2 instead of an interval. That being said, ∆2 is still tiny (Lemma 3.1.5)

as it is an idempotent subobject of a representable. Also note that by Lemma 3.2.20, we

can modify the predicate as required such that it classifies Kan fibrations and lands in UKan.

Putting this all together the LOPS construction functions as required.

We also show Uinner is closed under a number of standard type formers:

Theorem 3.4.2. There are codes

• Σinner : Π(A : Uinner).Π(B : ElA→ Uinner).Uinner

• Πinner : Π(A :♭ UKan).Π(B : A→ Uinner).Uinner

• dpathinner : Π(A : I → Uinner).ElA 0I → ElA 1I → Uinner

• dhominner : Π(A : 2 → Uinner).ElA 02 → ElA 12 → Uinner

104

that decode to Σ, Π, DPath and DHom types respectively.

Proof. To show Uinner is closed under these type formers, we construct generic witnesses to

the filling problem innerFill for each.

Σ-types Given a type A : Uinner and B : JAKinner → Uinner, we construct a filler of type

innerFillΓ (Σx : JAKinner.JB xKinner) in the topos logic as follows. For any triangle r : ∆2 → Γ,

cofibration α, tube t and base b, we first define the filling for the first component as the term

a.

a := innerΓ.A p [α 7→ (fst ◦ t) r] ((fst ◦ b) r)

We then then use a to define the solution for the entire Σ-type as shown here.

λp α t b r.(a, innerΓ,A.B (λx.(p x, a x)) [α 7→ (snd ◦ t) r] ((snd ◦ b) r))

Unsurprisingly, to fill in a pair, one simply just fills in each component directly (taking

account of the fact the second component depends on the first).

Π-types Given any flat type A :♭ UKan and B : JAKKan → Uinner, we can always construct a

filler of type innerFillΓ (Πx : JAKinner.JB xKinner) in the topos logic as shown below.

λp α t b r a.innerΓ.Ba p[α 7→ t r a] (b r a)

As the type A is flat, it does not depend on any path structure and thus there is no need to

do any filling in A; therefore one can simply fill these functions by applying their argument

and using the filler for B instantiated at the argument.

dependent path types Consider A : I → Uinner, along with two terms a0 : JA 0IKinner and

a1 : JA 1IKinner. We wish to construct a solution to the filling problem innerFillΓ (DPathA (a0, a1)).

As with the other filling problems, the solution here is to just fill in A and maintain the

105

additional boundary constraints by adding them to the cofibration.

λp α t b r.(λi.innerΓ.A p [α 7→ t r i, i = 0I 7→ a0 (p r), i = 1I 7→ a1 (p r)] (b r i))

dependent hom types Dependent morphism types are handles analogously to dependent

path types. For A : 2 → Uinner and endpoints a0 and a1, the filler is constructed as follows.

λp α t b r.(λi.innerΓ.A p [α 7→ t r i, i = 02 7→ a0 (p r), i = 12 7→ a1 (p r)] (b r i))

3.4.1 Uinner is Path Univalent

As a subuniverse of UKan, Uinner also enjoys path univalence in the same way Ucov does.

Lemma 3.4.3. In any context Γ, given any α : Ωcof, T : JαKcof → Uinner, B : Uinner, and f :

JαKcof → JT Kinner → JBKinner where f is an equivalence, the type Glue[α 7→ (JT Kinner, f)]JBKinner

is in Uinner.

Proof. Here we need to provide an instance to the inner filling problem for the type Glue[α 7→

(JT Kcov, f)]JBKcov. As B is already in Uinner, we have a witness to innerFillΓ B. As we did in

Lemma 3.3.3, we use combine the fact from [24, Theorem 9] that the map unglue : Glue[α 7→

(JT Kcov, f)]JBKcov → B is an equivalence with univalence in UKan to transport the witness

that B is an inner fibration along innerFillΓ to construct a witness for the glue type.

Theorem 3.4.4. For any two types A and B in Uinner, we have the following equivalence.

ua : Equiv (Equiv JAKinner JBKinner) (PathUinner
(A,B))

Proof. As Uinner is closed under glue types for equivalences, the same argument used to

construct univalence for Ucov (Theorem 3.3.4) also applies here.

106

Theorem 3.4.5. Uinner is Kan.

Proof. As with Ucov, the closure of Uinner with respect to glue types for equivalences allows

us to use the same reasoning as is done to show that UKan is Kan in [24, Section 7.1] and

[7, Section 2.12].

107

Chapter 4

Directed Univalence

Like the previous chapter, this chapter is also joint work with Daniel Licata and is based
primarily off of work presented at the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science and is published in the corresponding proceedings [83]. Versions of this
work have also been presented numerous times both before and after publication including
those listed here [79–81].

Having defined the groundwork for bicubical directed type theory in Chapter 3, we now

shift to developing the payoff of our setup: constructive directed univalence. In this chapter,

we define an equivalence between the types of directed morphisms and the function spaces

within the universe of covariant discrete fibrations. We do so in two steps: First, in Sec-

tion 4.1, we build directed off of the theory and techniques in Chapter 3 to define a retraction

from the morphisms onto the function spaces in Ucov (Lemma 4.1.3); at this point we need

to know slightly more about our types to upgrade this reflection to an equivalence, and thus

in Section 4.2 we introduce the cobar modality and by restricting the entire type theory to

those types that are modal we gain enough traction to complete directed univalence.

108

4.1 The Directed Univalence Retraction

Here we define the directed univalence reflection of morphisms HomUcov (A,B) onto functions

JAKcov → JBKcov.

4.1.1 Morphisms to Functions

Given a morphism in Ucov, part of the definition of Ucov is a covariant filling structure for

Elcov : Ucov → Type, which yields a coercion function along from 02 to 12:

dcoe : ΠA B : Ucov.HomUcov (A,B) → (JAKcov → JBKcov)
dcoe A B p := λx : covEl p ⊥ exfalso x 12

4.1.2 Functions to Morphisms

We turn a function into a morphism using the same glue type used for undirected univalence,

but this time without requiring that the function f be an equivalence:

duahom′ : ΠA B : Type.(A→ B) → HomType (A,B)

duahom′ A B f := λi : 2.Glue[i = 02 7→ (A, f)

, i = 12 7→ (B, idB)]B

In presenting the definition of duahom′, we omit the boundary proofs for the sake of

clarity.

For this to be a morphism in Ucov, we need to show that it is Kan and covariant. In

general, glue types with an arbitrary function (as opposed to an equivalence) are not Kan,

but the fact that the cofibration restricts a directed interval i gives some additional leverage

that is not present in ordinary cubical models.

109

Lemma 4.1.1 (universe.FunGlue.FunGlueUKan). For every pair of types A B : UKan,

function f : JAKKan → JBKKan, and i : 2, the type duahom′ A B f i determines a code in

UKan.

Proof. We need to show that duahom′ is a Kan fibration. Thus, for any path p in 2 → (ΣA :

UKan.ΣB : UKan.A→ B), we construct a solution to the comFillI filling problem for the path

in Type induced by the composition of p and duahom′. For the sake of clarity, we will only

present the proof that this path has a coercion structure (i.e. comFillI from 0I to 1I over the

false cofibration proposition ⊥), but the full proof is available in the Agda formalization.

Let pi be the path in 2 induced by p, pA and pB be the two paths in UKan induced by

p, and lastly pf be the dependent path over λj.JpA jKKan → JpB jKKan contained in p. Now,

given any term

g0 : duahom
′ JpA 0IKKan JpB 0IKKan (pf 0I) (pi 0I)

we must construct a term in

duahom′ JpA 1IKKan JpB 1IKKan (pf 1I) (pi 1I)

Note that, for any A, B, f , and i, a term in duahom′ A B f i is just the pair of a term a : A un-

der the assumption i = 02, and a term b : B where f a is strictly equal to b when i = 02. Thus,

let a0 and b0 be the components defining g0. Let a1 and b1 denote the corresponding com-

ponents we must construct to define a term in duahom′ JpA 1IKKan JpB 1IKKan (pf 1I) (pi 1I).

As pA is a path in UKan and thus is Kan fibration, we can define a1 by coercing a0 along

pA, which we will denote as

a1 := com0I 7→1IpA a0

We must be able to define a1 whenever pi 1I = 02, but it depends on a0 which only exists

when pi 0I = 02. Thus, for this to work, we require the triviality axiom (Ito2triv) that states

any function I → 2 is trivial. In our setting, this means that if pi 1I = 02 we know that for

110

every j : I it must be the case that pi j = 02, and therefore pi 0I = 02 confirming a0 exists

whenever we need to define a1.

Next, to define b1, we analogously fill along pB, but to ensure it is strictly equal to f 1I a1

when pi 1I = 02, we must fill along the cofibration proposition pi 1I = 02.

b1 := com0I 7→1IpB[pi 1I = 02 7→ λj.pf j (com0I 7→jpA a0)] b0

Again, b1 also depends on Ito2triv in order to define the boundary constraint.

The construction for a general composition problem in our formalization is nearly iden-

tical to that of the coercion described above. As duahom′ is Kan, for every pair of types

A B : UKan, function f : JAKKan → JBKKan, and i : 2, the type duahom′ A B f i determines a

code in UKan.

Lemma 4.1.2 (universe.FunGlue.FunGlueUCov). For every pair of types A B : Ucov,

function f : JAKcov → JBKcov, and i : 2, the type duahom′ A B f i determines a code in Ucov.

Proof. As we already know that duahom′ is Kan, this amounts to showing it is covariant.

The construction of the solution of the covariant filling problem is nearly identical to that

of the Kan filling problem. The sole difference is that we use covariant filling in A and B

instead of Kan filling, and we have a different justification for why a0 always exists whenever

we need to be able to define a1.

Let pi be the morphism in 2 induced by the morphism we are considering in the filling

problem. We must be able to define a1 whenever pi 12 = 02 using a0 which only exists when

pi 02 = 02. In this case, we use the monotonicity axiom (2mono): if pi 12 = 02, we know

that for every j : 2 it also holds that pi j = 02, and thus we always have a0 when it is needed

to define a1.

Thus, for any morphism p in 2 × (ΣA : Ucov.ΣB : Ucov.A → B), we construct a solution

to the covFill2 filling problem for the path in Type induced by the composition of p and

duahom′. For the sake of clarity, we will only present the proof that this path has a coercion

111

structure (i.e. covFill2 from 02 to 12 over the false cofibration proposition ⊥), but the full

proof is available in the Agda formalization.

Let pi be the morphism in 2 induced by p, pA and pB be the two morphisms in Ucov induced

by p, and lastly pf be the dependent morphism over λj.JpA jKcov → JpB jKcov contained in

p. Now, given any term

g0 : duahom
′ JpA 02Kcov JpB 02Kcov (pf 02) (pi 02)

we must construct a term in duahom′ JpA 12Kcov JpB 12Kcov (pf 12) (pi 12). As men-

tioned in the proof that duahom′ is a Kan fibration, a term in duahom′ A B f i is just

the pair of a term a : A under the assumption i = 02, and a term b : B where f a is

strictly equal to b when i = 02. Thus, let a0 and b0 be the components defining g0. Let

a1 and b1 denote the corresponding components we must construct to define a term in

duahom′ JpA 12Kcov JpB 12Kcov (pf 12) (pi 12).

First, as pA is a morphism in Ucov and thus is covariant fibration, we can define a1 by

coercing a0 along pA, which we will denote as

a1 := cov02 7→12pA a0

We must be able to define a1 whenever pi 12 = 02, but it depends on a0 which only exists

when pi 02 = 02. Thus, for this to work, we require the monotonicity axiom that states any

function 2 → 2 is monotonic. In our setting, this means that if pi 12 = 02 we know that for

every j : 2 it must be the case that pi j = 02, and therefore pi 02 = 02 confirming a0 exists

whenever we need to define a1.

Next, to define b1, we analogously fill along pB, but to ensure it is strictly equal to f 12 a1

when pi 12 = 02, we must fill along the cofibration proposition pi 12 = 02.

b1 := cov02 7→12pB[pi 12 = 02 7→ λj.pf j (cov02 7→jpA a0)] b0

112

Again, b1 also depends on monotonicity in order to define the boundary constraint.

While there are more technical details in defining the solution to the full covariant filling

problem, the construction is nearly identical to that of the coercion described above. As

duahom′ is both Kan and covariant, for every pair of types A B : Ucov, function f : JAKcov →

JBKcov, and i : 2, the type duahom′ A B f i determines a code in Ucov.

Since duahom′ is both Kan and covariant, it constructs a morphism in Ucov:

duahom : ΠA B : Ucov.(JAKcov → JBKcov) → HomUcov (A,B)

4.1.3 Reflection

A calculation with the definition of Lemma 4.1.2 shows that

Lemma 4.1.3 (DirUnivalence.duaβ). For every pair types A B : Ucov and every function

f : JAKcov → JBKcov, we can construct a path

duaβ : PathJAKcov→JBKcov (f, dcoe A B (duahom A B f))

Proof. To define the path, we construct the following function of type I → A→ B:

λi a.cov02 7→12(duahom A B f)
[i = 0I 7→ λj.glue[j = 02 7→ a, j = 12 7→ f a]f a
, i = 1I 7→ λj.cov02 7→j(duahom A B f) a] a

As the function has the correct boundaries at i = 0I and i = 1I, it is the desired path.

However, for the other composite, we obtain only a morphism:

113

Lemma 4.1.4 (DirUnivalence.duaηfun). For every A B : Ucov, p : HomUcov (A,B), and

i : 2, we can construct a function (and therefore a HomUcov by Lemma 4.1.2)

duaηfun i : (p i) → (duahom A B (dcoe A B p) i)

Proof. The idea is that, as duahom A B (dcoe A B p) i is a glue type with base B (i.e.

p 12), we can take any term in p i and coerce it to a term in p 12 to define our function. We

construct the function as λi x.covi 7→12p x. Note that we used a different covariant filler that

goes from i to 12. This follows from our standard covariant filler that goes from 02 to i by

augmenting the path with a connection: λx.p(x ⊔ i).

4.2 Cobar Modal Types

Next, we will restrict Ucov to a subuniverse for which we can show that duaηfun is an equiva-

lence (we do not have countermodel showing definitively that duaηfun is not an equivalence

for Ucov, but we have not been able to prove it). We do this using a modality which picks

out those types that are equivalent to their cobar construction. The definitions and many

of the theorems in this section follow Coquand, Sattler and Ruch [28]; we also check that

this work applies to our setting and prove a few extra lemmas needed for our use of theses

ideas. Coquand, Sattler and Ruch abstract many of the definitions and lemmas to the level

of an arbitrary left-exact (lex) modality on types, and we have formalized this part of the

construction in Agda. The parts that are cobar-specific are postulated as axioms.

We axiomatize the cobar operator as is shown in Figure 4.1. The main idea is that we add

a new endofunctor D on fibrant types which comes equipped with a natural transformation

η : idUKan
→ D. Using this, we make a restricted version of our covariant universe containing

those covariant types A for which ηA : A → DA is an equivalence, and call these types

cobar modal. We show that all of the basic type formers preserve the property of being

cobar modal. With the added structure of this equivalence for every type, we are able to

114

D : UKan → UKan

η : {A : UKan} → JAKKan → JDAKKan
L : JD(UKan)KKan → UKan

D̃ : {A : UKan} → (JAKKan → UKan)
→ JDAKKan → UKan

D̃ B := L ◦ Dfun(B)

isModal : UKan → UKan

isModal A := isEquiv ηA

Dfun : {A B : UKan} → (JAKKan → JBKKan)
→ JDAKKan → JDBKKan

Dcomp : {A B C : UKan} → (g : JBKKan → JCKKan)
→ (f : JAKKan → JBKKan)
→ Dfun(g ◦ f) = Dfun(g) ◦ Dfun(f)

Did : (A : UKan)
→ Dfun(λa : JAKKan.a) = λa : JDAKKan.a

ηnat : {A B : UKan} → (f : JAKKan → JBKKan)
→ Dfun(f) ◦ ηA = ηB ◦ f

ηpath : (A : UKan)
→ PathJDAKKan→JD2AKKan (Dfun(ηA), ηDA)

Leq : L ◦ ηUKan
= D

Lmodal : (A : JD(UKan)KKan) → isModal (LA)

DΣsnd : {A : UKan} → {B : JAKKan → UKan}
→ Πp : JD(Σa : A.B a)KKan.JD̃B (Dfun fst a)KKan

DΣeq : {A : UKan} → (B : JAKKan → UKan)
→ isIso (λx.(Dfun fst x,DΣsnd x))

Figure 4.1: Axioms and definitions for descent operator

show that a function is an equivalence of cobar modal types if at every object in �Ded it

is an equivalence of cubical sets, from which we can complete the construction of directed

univalence for the universe of covariant cobar modal types.

4.2.1 Universes and Closure Properties of Lex Modal Types

First, we formally define what it is to be a lex modality.

Definition 4.2.1. A lex operator on the universe UKan is an endofunctor D : UKan → UKan

accompanied by the structure axiomatized in Figure 4.3 omitting the axiom ηpath. A lex

115

modality, also called a descent data operation, is lex operator that also satisfies the axiom

ηpath, and for which Dfun(ηA) is an equivalence for all types A in UKan.

We now show that the modal types defined by a generic lex modality are closed under

the following:

Lemma 4.2.2 (descent.Lex.QisStack-to-isStack, [28, Lemma 10]). Given a Kan type

A, A is modal if there is a patch function pA : DA → A such pA ◦ ηA : A → A is path equal

to the identity function on A.

Proof. To complete the equivalence, all we need to show is that ηA ◦ pA : DA→ DA is path

equal to the identity. Let e : PathA→A (pA ◦ ηA, idA) be the name of the path given as a

hypothesis. First, applying functorality of D to e gives us a path from Dfun pA ◦Dfun ηA to

idDA. Using ηpath A : PathJDAKKan→JD2AKKan (Dfun(ηA), ηDA), we can also define a path from

Dfun pA ◦Dfun ηA to Dfun pA ◦ ηDA. As η is natural, Dfun pA ◦ ηDA equals ηA ◦ pA. As such,

composing the inverse of the second path we defined with the first gives us a path connecting

ηA ◦ pA to idDA, concluding the equivalence and therefore that A is modal.

Lemma 4.2.3 (descent.Pi.ΠisStack, [28]). Given a Kan type A and a Kan fibration

B : JAKKan → UKan, if the fibers of B are modal then Πx : A.B x is modal.

Proof. We begin by defining the patch function pΠ : D(Πx : A.B x) → Πx : A.B x. Let

pB : Πx : A.D(B x) → B a be the family of patch functions we have for B. As D is functorial,

given an a : A we can apply it to the application function λf.f a : (Πx : A.B x) → B a to

give us a function from D(Πx : A.B x) → D(B a). We can then compose with pB a to land

in B a, giving us the function we ultimately desire.

pΠ f a := (pB a ◦ Dfun(λf ′.f ′ a)) f

By Lemma 4.2.2, the only thing left to show is that there is a path between the identity

function and pΠ ◦ ηΠx:A.B x. First, using function extensionality and naturality of η along
116

the function λf ′.f ′ a : Πx : A.B x → B a, we know that pΠ ◦ ηΠx:A.B x is strictly equal to

λa.pB a (ηB a (f a)). As the fibers of B are all modal, we have a path from pB a ◦ ηB a to

the identity function on B a for every a, and thus by function extensionality for paths in

Π-types this lifts to give us the desired path from pΠ ◦ ηΠx:A.B x to the identity function in

the Π-type.

Lemma 4.2.4 (descent.Lex.DΣ-Path, [28]). Given a Kan type A and a Kan fibration

B : A→ UKan, if the fibers of B are modal, there is a path between the types Σa : A.B a and

Σa : A.D̃B (η a) in UKan.

Proof. First, let us expand the definition of D̃ in Σa : A.D̃B (η a), which gives us the

type Σa : A.(L ◦ Dfun(B) ◦ ηA) a. By naturality of η, the function L ◦ Dfun(B) ◦ ηA equals

L ◦ ηUKan
◦B, and as the axiom Leq states L ◦ ηUKan

= D, the Σ-type we began with is equal to

Σa : A.(D ◦B) a. As the fibers of B are modal, we have a path between D (B a) for every a,

and thus we can use these with function extensionality of paths to get a path between the

fibrations B and D◦B, and then apply the function λX.Σa : A.X a to said path to conclude

our lemma.

Lemma 4.2.5 (descent.Sigma.ΣisStack, [28, Proposition 7]). If a Kan type A is modal

and the fibers of a Kan fibration B : A→ UKan are modal, then Σa : A.B a is modal.

Proof. From Lemma 4.2.4, we know there is a path between Σa : A.B a and Σa : A.D̃B (η a)

and thus by univalence an equivalence between them. As A is modal ηA is an equivalence, and

thus Σa : A.D̃B (η a) is equivalent to Σa : DA.D̃B a. Finally, the axiom DΣeq states that this

is isomorphic to D(Σa : A.B a), and therefore Σa : A.B a is equivalent to D(Σa : A.B a).

Lastly, we can see the above equivalence is indeed along ηΣa:A.B a by naturality of η in

conjunction with DΣeq, and thus the Σ-type is modal.

We now can describe the modal versions of our universes.

117

Definition 4.2.6. We define the following universes:

• The universe of cobar modal types Ucobar is defined as ΣX : UKan.isModal X;

• The universe of covariant cobar modal types UcovCobar is defined as ΣX : Ucov.isModalX;

• The universe of inner cobar modal types UinnerCobar is defined as ΣX : Uinner.isModal X.

Lemma 4.2.7 (descent.Stack.UCobar-isStack, [28, Proposition 11]). The universe of

cobar modal types Ucobar is modal.

Proof. First, note that from the axiom Lmodal we know that the fibers of L are modal. As

such, we can define a function α : JD UKanKKan → Ucobar such that the first component is

given by L. Using this, we then define our candidate patch function p : DUcobar → Ucobar as

the composition α ◦ Dπ1.

To conclude Ucobar is modal, we now must show that p◦ηUcobar
is path equal to the identity

function on Ucobar. As being modal is a homotopy proposition, it suffices to ignore the proof

witness and just show that π1 ◦ ηUcobar
is path equal to the π1 : Ucobar → UKan. First, we can

unfold our definitions and use equations from our axioms to rewrite the function.

π1 ◦ p ◦ ηUcobar
= π1 ◦ α ◦ Dπ1 ◦ ηUcobar

= L ◦ Dπ1 ◦ ηUcobar

= L ◦ ηUKan
◦ π1

= D ◦ π1
As every type A in Ucobar is cobar modal, univalence allows us to transform these equivalences

into paths, and in doing so define a path between π1 : Ucobar → UKan and D ◦ π1, concluding

our proof.

4.2.2 The Cobar Construction

Next, we work externally (so this part has not been formalized) and check that axioms in

Figure 4.1 are true. Coquand, Sattler and Ruch define the cobar operator by first defining

a type operator E [28].

118

Definition 4.2.8. Given a Kan type A in a context Γ, the type EA in context Γ has terms

as follows: For every X in �Ded and ρ in Γ(X), and element u in EAρ(X) is given by a

family of elements u(f) of A(ρf)(Y) indexed by morphisms f ∈ �Ded(Y,X). It is equipped

with a natural transformation αA : A→ EA (fibered over each element ρ in Γ) sending a in

Aρ(X) to the family f 7→ af .

In particular, notice that for X in �Ded, an element of EnA(X) is a function that takes

as input an n-chain of composable morphisms with codomain X and returns an element of

A(Y) where Y is the domain of the chain.

In the definition of the cobar operator, we will need the following: Given a list

(i0, i1, . . . , in) : In+1, the formula δn+1(i0, i1, . . . , in) is the n+ 1-ary disjunction

(i0 = 1I) ∨ (i1 = 1I) ∨ . . . ∨ (in−1 = 1I) ∨ (in = 1I)

We then define a family of morphisms sk : In+1 → In for 1 ≤ k ≤ n+ 1 where sk (⃗i) omits ik.

Definition 4.2.9. Given a Kan type A in a context Γ, the type DA in context Γ has terms

as follows: For every X in �Ded and ρ in Γ(X), and element u in DAρ(X) is given by a

family of elements u(i0, . . . , in) of En+1A defined over δn(i0, . . . , in) indexed by lists of interval

variables (i0, . . . , in) : In+1 for every natural number n. These families must also satisfy the

following condition that u(⃗i) = Ek(α)u(sk i⃗) on ik = 0I.

We define the natural transformation ηA : A→ DA such that (ηA a)(i0, . . . , in) := αn+1a.

The contents of the family u : DA(X) conceptually includes a choice of a term in A(Y)

for every element of A(X) and every morphism f from Y to X with the idea that the selected

term is to approximate the morphism action on the term in A(X). This then is accompanied

with path structure indicating the choice is coherent with both the actual morphism action

of the presheaf and the way the choice for the action of f interacts with the other choices

made by u via composition. This works out in such a way that natural transformations into

119

DA correspond precisely with the transformation into A that are homotopy coherent with

respect to �Ded.1

While the details of the definition are quite technical, the summarized idea is that for

every Dedekind cube X a term in DA(X) is a family un indexed by n : N, and each un is a

function that takes as input an n+ 1-length chain of morphisms in �Ded with codomain X,

and returns a partial n + 1-cube with shape given by δn in A(Y) where Y is the domain of

the chain. These families are constrained so that the boundaries of the partial n + 1-cubes

given by un are built out of uk for k ≤ n + 1 (with some of the interval variables evaluated

to 1I, ensuring they are of smaller dimension) where the uk are evaluated at all of the k-

chains given by all possibilities of replacing adjacent morphisms of n + 1-chain with their

compositions, or by applying the morphism action of morphisms at the domain of the chain

to uk evaluated at (compositions of) the remainder of the chain.

Let us unfold the definition and work through what a term u : DA(X) precisely contains

for the first few dimensions. First, for n = 0, we have a family indexed by morphisms

f : �Ded(Y,X), and an interval variable i0. As the interval variables are restricted by δ, for

this case we know that i0 = 1I, and thus despite the presence of the variable we actually just

have a single point: u(1I)(f) in the presheaf A(Y).

Moving up to n = 1 in the family, u is now indexed by two interval variables, i0 and

i1, and two morphisms f : �Ded(Y,X) and g : �Ded(Z, Y). The partial square given by

λi0 i1.u(i0, i1)(f, g) in the cubical set A(Z) is only defined along the sides i0 = 1I ∨ i1 = 1I.

Noting that here α u(1I)(f) = u(1I)(f)g and that E(α)u(1I)(g) = u1(1I)(f ◦g), the boundary

constrains indicate it consists of the following picture in A(Z).

u(1I)(f)g u(1I, 1I)(f, g)

u(1I)(f ◦ g)

u(i0,1I)(f,g)

u(1I,i1)(f,g)

1Homotopy coherent transformations are a weakened notion of natural transformations in which the
naturality squares only must be satisfied up to homotopy.

120

In particular, we have the point u(1I)(f) in A(Y) along with two new points u(1I, 1I)(f, g)

and u(1I)(f ◦ g) in A(Z), along with a path u(i0, 1I)(f, g) connecting the action of the

morphism g on u(1I)(f) to u(1I, 1I)(f, g) and a path u(1I, i1)(f, g) connecting u(1)(f ◦ g) to

u(1I, 1I)(f, g).

Lastly, at n = 2, we will consider u evaluated over the three morphisms f : �Ded(Y,X),

g : �Ded(Z, Y), and h : �Ded(W,Z). First, as has been the case so far and is always the case,

u(1I, 1I, 1I)(f, g, h) picks out a new point in the domain A(W) for the 3-chain (f, g, h). The

rest of the structure in the partial cube is then connecting this point to the lower-dimensional

components of u for the various chains given by composing adjacent elements in the chain

(e.g. u(1I, 1I)(f, g ◦ h) and u(1I, i2)(f, g ◦ h)) along with the actual action of the morphisms

moving the lower-dimensional parts of u built from f and g into A(W) (e.g. u(1I)(f)(g ◦ h)

and u(1I, i2)(f, g)h). More specifically, u(i0, i1, i2)(f, g, h) consists of three conjoined squares:

one for each disjunct in i0 = 1I ∨ i1 = 1I ∨ i2 = 1I. We draw each square individually in

Figure 4.2.

While just glancing at all three squares initially looks a lot like random chaos, there is

a pattern within the madness. Moving from the bottom left to to top right of each square

represents the six distinct ways using only f , g and h to modify a 1-chain with codomain

X into the 3-chain (f, g, h), with the chains being those supplied as arguments to u at each

vertex. In particular, there are three 1-chains with codomain X possible, one corresponding

to each square: f , f ◦ g, and f ◦ g ◦ h. We can then increase the size of the chains by either

adding a new morphism or by splitting a composition: as we see in the second square, the

path along the left of the square modifies the 1-chain f ◦g to the 2-chain (f, g) by splitting the

composition, while the path along the bottom of the square adds to the chain by introducing

h, turning the 1-chain f ◦ g into the 2-chain (f ◦ g, h).

In general, un(⃗i)(f⃗) consists of the n + 1-many n-cubes where every n-cube’s 0⃗I-vertex

corresponds to one of the 1-chains taken by composing morphisms from the beginning of f⃗ ,

and every cube’s 1⃗I-vertex corresponds to the entire n-chain f⃗ . The paths along the boundary

121

u(1I, 1I)(f, g ◦ h) u(1I, 1I, 1I)(f, g, h)

i0 = 1I u(1I, i1, i2)(f, g, h)

u(1I)(f ◦ g ◦ h) u(1I, 1I)(f ◦ g, h)

u(1I, 1I)(f, g)h u(1I, 1I, 1I)(f, g, h)

i1 = 1I u(i0, 1I, i2)(f, g, h)

u(1I)(f ◦ g)h u(1I, 1I)(f ◦ g, h)

u(1I, 1I)(f, g)h u(1I, 1I, 1I)(f, g, h)

i2 = 1I u(i0, i1, 1I)(f, g, h)

u(1I)(f)gh u(1I, 1I)(f, g ◦ h)

u(1I,i1,1I)(f,g,h)

u(1I,i1)(f◦g,h)

u(1I,i2)(f,g◦h) u(1I,1I,i2)(f,g,h)

u(i0,1I,1I)(f,g,h)

u(i0,1I)(f◦g,h)

u(1I,i2)(f,g)h u(1I,1I,i2)(f,g,h)

u(i0,1I,1I)(f,g,h)

u(i0,1I)(f,g◦h)

u(i1,1I)(f,g)h u(1I,i1,1I)(f,g,h)

Figure 4.2: Depiction of u(i0, i1, i2)(f, g, h)

of each cube relate to the sequences of the various moves one can make that increase the

length of the chain by one (by either splitting a composition or adding a [composition of]

morphism[s] to the end of the chain) to ultimately transform the 1-chains into the n-chain

f⃗ .

Proposition 4.2.10. For any Kan type A, there is a path in DA → D2A between ηDA and

Dfun ηA.

Proof. As is described in [28, Proposition 20], an element of D2A is of the form

vm,n(i1, . . . , im)(j1, . . . , jn) in Em+n+2A satisfying a number of equations. In the pres-
122

ence of connections, a homotopy from ηDA(u)m,n to (Dfun ηA)(u)m,n is given by the

composition of λk : I.vkm,n and λk : I.wkm,n where vkm,n(⃗i)(⃗j) := um+n+1(⃗i ∧ k, j⃗) and

wkm,n(⃗i)(⃗j) := um+n+1(⃗i, k ∧ j⃗).

Given our work is agnostic to the choice of cube category �path for paths, we would like

a proof that does not depend on the presence of connections; however, unlike in [28], we

restrict our functor D to only be over fibrant types, and thus we can use path induction

to replace the use of connections in their proof. Given some term a : I → A for a Kan

type A, we can construct a term a∧ : Π(i, j) : I2.A[i = 0I 7→ a 0I, i = 1I 7→ a j, j = 0I 7→

a 0I, j = 1I 7→ a i, i = j 7→ a i] by path induction on a, as the extension type is fibrant.

Having defined these, we build a homotopies with the same boundaries as vkm,n and wkm,n by

induction on m and n, iteratively using this constructions in place of the connection.

To construct vkm,n where the length of i⃗ is m and that of j⃗ is n, we first do induction

over an auxiliary number z ≤ m to define a term vz of type Iz+m+n+1 → Em+n+2A. when

z = 0, we simply define the term to be v0 := λx⃗ : Im+n+1.um+n+1(x⃗). Now, assume we

have defined vz : Iz+m+n+1 → Em+n+2A. To define the term vz+1 : Iz+1+m+n+1 → Em+n+2A,

we isolate and curry the variable xz+1 from x⃗ (where xz+1 will ultimately correspond to

the (z + 1)-th element in the m-length list i⃗), and then use the ∧-connection construction

on λ.xz+1.λx⃗ \ xz+1.wz(x⃗), adding a new dimension variable for the connection at position

xz+1 and resulting in vz+1 of the desired type. Given we can do this construction for any

z ≤ m, we in particular can do it for m itself, resulting in a term vm : I2m+n+1 → Em+n+2A.

Lastly, we repeat the above construction using n instead of m and working from the variables

indexed at the end of x⃗ instead of the beginning to define a term wn : Im+2n+1 → Em+n+2A.

To finish, we abstract vm and wn over a fresh dimension variable k and substitute back in

i⃗, j⃗ and k in the correct positions of its arguments corresponding to the definitions of vkm,n and

wkm,n that use connections, resulting in two cubes that have identical boundaries. Given this

construction results in terms with identical boundaries as those built in [28, Proposition 20]

using connections, the families defined using this also satisfies the constraints required to be

123

an element of D2A, and thus the two are well typed and can be composed to define the path

we set out to build.

Theorem 4.2.11 (Corollary 19 in [28]). The cobar operator is a lex operator.

Proof. The proof that cobar operator is a lex operator (and thus satisfies the axioms in

Figure 4.3 excluding ηpath) can be found in [28]. The only proof from [28] that depends

on having connections in the undirected cube category is that corresponding to Proposi-

tion 4.2.10, which we have proven without assuming the presence of connections above.

Lemma 4.2.12 (Corollary 24 in [28]). The cobar operator is a lex modality as defined in

[59] and [65].

Proof. As with the proof of Theorem 4.2.11, the proof in [28] works in our setting modulo

the assumption of connections in the undirected cube category being used in their proof

corresponding to Proposition 4.2.10. That being said, given we have provided an alternative

proof, their proof of cobar being a lex modality applies here as well. Do note that this implies

the cobar operator additionally satisfies the ηpath axiom, and thus satisfies all of the axioms

listed in Figure 4.3.

To complete the proofs that cobar modal types are closed under path and morphism

types, we add a few isomorphisms and equations for η to our model, shown in Figure 4.3.

Lemma 4.2.13. For any representable Ψ = In × 2m and Kan fibration A : Ψ → UKan in

context Γ, D(Πx : Ψ.A x) is isomorphic to Πx : Ψ.D(A x).

Proof. As our representables are all give by products of I and 2, it is sufficient to just show

it holds for each interval. First, consider E(Πi : I.A i). For each X ∈ �Ded, ρ ∈ Γ(X),

u ∈ E(Πi : I.A i)ρ and f ∈ �Ded(Y,X), u(f) is a term in Πi : I.(A i)ρf . We can reorder

the arguments to get an element of Πi : I.E(A i) by (i,X, f) 7→ u(X, f, i), which is clearly

an isomorphism. Similarly, for E(Πi : 2.A i), for each X ∈ �Ded, u ∈ E(Πi : 2.A i)ρ and

f ∈ �Ded(Y,X), u(f) is a term in Πi : 2.(A i)ρf . This is equivalent to considering u(f× id2)

124

Ddua : ∀{A B : UKan}{f : JAKKan → JBKKan}{i : 2}
→ D(duahom′ A B f i)
→ duahom′ (DA) (DB) (Dfun f) i

Ddua g := glue[i = 02 7→ g, i = 12 7→ Dfun unglue g]
(Dfun unglue g)

Ddua-iso : isIso _ _ Ddua
DPath-iso : {A : UKan} → (a0 a1 : JAKKan)

→ Iso (DPathDA ηa0 ηa1) (D(DPathA a0 a1))
DHom-iso : {A : UKan} → (a0 a1 : JAKKan)

→ Iso (DHomDA ηa0 ηa1) (D(DHomA a0 a1))
Path-η-eq : ∀{A : UKan}{a0 a1 : JAKKan}(p : DPathA a0 a1)

→ (DPath-iso a0 a1) ◦ ηA ◦ p = ηDPathA a0 a1 p
Hom-η-eq : ∀{A : UKan}{a0 a1 : JAKKan}(p : DHomA a0 a1)

→ (DHom-iso a0 a1) ◦ ηA ◦ p = ηDHomA a0 a1 p

Figure 4.3: Additional axioms and definitions for cobar operator

a term in A(Y × 2), and thus we can also pull out the 2 to the outside with Yoneda and

rearrange the arguments to get a term in Πi : 2.E(A i). Given how DA is constructed

using EA, we can iterate this isomorphism and commute arguments with the indexing lists

of interval variables to get the isomorphisms between D(Πi : I.A i) and Πi : I.D(A i), along

with between D(Πi : 2.A i) and Πi : 2.D(A i). As this is simply reordering the arguments

to the families, the equations required by D still hold.

Corollary 4.2.14. For any representable Ψ = In × 2m, Kan fibration A : Ψ → UKan in

context Γ, cofibration β only depending on Ψ, and partial term a : Πx : Ψ.β → A x, the type

D(Πx : Ψ.(A x)[β 7→ a x]) is isomorphic to Πx : Ψ.(D(A x))[β 7→ ηA x a x].

Proof. Given how D(A x) is defined using E, we can unfold the definition and use the above

isomorphism to see that D(Πx : Ψ.(A x)[β 7→ a x]) is a restriction of the type Πx : Ψ.D(A x)

given by Πx : Ψ.(D(A x))[β 7→ ηA x a x].

Corollary 4.2.15. The axioms DPath-iso, DHom-iso, Path-η-eq and Hom-η-eq from Fig-

ure 4.3 hold.

125

4.2.3 Universes and Closure Properties of Cobar Modal Types

Now we show that the modal types defined specifically using cobar are closed under the

following:

Lemma 4.2.16 (descent.Path.PathO-isStack). If the fibers of a Kan fibration A : I →

UKan are cobar modal types, then for any terms a0 in A 0I and a1 in A 1I the type DPathA a0 a1

is cobar modal.

Proof. To construct the inverse to η, we use the isomorphism from Corollary 4.2.15 and

construct an inverse to the function ηA ◦ − : DPathA a0 a1 → DPathD◦A (ηA 0I a0) (ηA 1I a1).

Given a path p in DPathD◦A (ηA 0I a0) (ηA 1I a1) and i in 2, the inverse just applies η−1
A i to p i,

using the fact that A i is cobar modal to compose with the path in PathA i (η
−1
A i(η (p i))) (p i)

when i equals 0I or 1I. As (ηA i, η
−1
A i) form an adjoint equivalence for every i, it follows that

this is also an adjoint equivalence and thus an equivalence.

Analogously, we have

Lemma 4.2.17 (descent.Hom.HomO-isStack). If the fibers of a Kan fibration A : 2 → UKan

are cobar modal types, then for any terms a0 in A 02 and a1 in A 12 the type DHomA a0 a1

is cobar modal.

Proof. The proof that DHomA a0 a1 is cobar modal is analogous to that of paths.

As with path and hom types, we add an isomorphism as an axiom in our model to

facilitate the proof that cobar modal types are closed under duahom′.

Lemma 4.2.18. Consider Kan types A and B, function f : JAKKan → JBKKan and i : 2. The

function Ddua defined in Figure 4.3 is an isomorphism.

Proof. Observe that, for every object Ψ = Im × 2n, the type Ψ → duahom′ A B f i is

isomorphic to duahom′ (Ψ → A) (Ψ → B) (f ◦ −) i. Unfolding the definition of D, we see

the action of Ddua is an application of this isomorphism, and thus is an isomorphism itself.

126

Lemma 4.2.19 (descent.FunGlue.Glue-isStack). Given Kan types A and B, a function

f : JAKKan → JBKKan and a term x : 2, if A and B are cobar modal types, then so is the type

duahom′ A B f i.

Proof. First, note that, as η is natural, the isomorphism in Lemma 4.2.18 allows us to

conclude that ηduahom′ A B f i factors through duahom′ (DA) (DB) (Dfun f) i via the function

sending glue[i = 02 7→ a, i = 12 7→ b]b to glue[i = 02 7→ ηA a, i = 12 7→ ηB b](ηB b). It

is sufficient to show that this map is an equivalence. To do so, we construct a homotopy

inverse. First, observe that, as η is a strict natural transformation, for any cobar modal

types A and B with homotopy inverses to η given by pA and pB respectively, we get that

the p functions are weakly natural for any function between A and B. Thus, for any term

g in duahom′ (DA) (DB) (Dfun f) i, we get a path from pB(unglue g) to f(pA g) whenever

i = 0. Given a term g in we can use such a path between glue[i = 02 7→ a, i = 12 7→ b]b,

we define a term fixb(g) in B by composing pB(unglue g) with this path to force fixb(g)

to equal f(pA g) when i = 02. Having done this, we can now define the inverse to η by

sending g to glue[i = 02 7→ pA g, i = 12 7→ fix(g)]fix(g). Note that when precomposed with

ηduahom′ A B f i, the resulting function sends glue[i = 02 7→ a, i = 12 7→ b]b to glue[i = 02 7→

pA(ηA a), i = 12 7→ fix(pB(ηB b))]fix(pB(ηB b)) (where fix corresponds to fixb after unglue

reduces to be over a term in DB). Given we already have paths between a and pA(ηA a)

and between b and pB(ηB b), we get a path between glue[i = 02 7→ a, i = 12 7→ b]b and

glue[i = 02 7→ pA(ηA a), i = 12 7→ fix(pB(ηB b))]fix(pB(ηB b)).

Finally, we show that all of our universes of cobar modal types are themselves cobar

modal. While Coquand, Sattler and Ruch already showed that Ucobar is cobar modal when

defined using an arbitrary lex operator (Lemma 4.2.7, Proposition 11 in [28]), for UcovCobar

and UinnerCobar we must augment their proof using specific information pertaining to cobar.

The crux of the proof relies on being able to conclude that a family of cobar modal types

A : DUcov → UKan is covariant using the fact we know A ◦ ηUcov is covariant (and analogously

for families A : DUinner → UKan). As such, we first prove the following lemma:
127

Lemma 4.2.20. Consider a type Γ in UKan a family A : JDΓKKan → Ucobar, a representable

Ψ = In× 2m and cofibration φ scoped by Ψ. Lastly, consider a predicate P : (Σx : Ψ.φ x) →

Ucobar. Given a witness of type Πp : ((Σx : Ψ.φ x) → JΓKKan).JP (fst ◦A ◦ ηΓ ◦ p)Kcobar, we can

construct a witness to the predicate Πp : ((Σx : Ψ.φ x) → JDΓKKan).JP (fst ◦ A ◦ p)Kcobar.

Proof. Using Lemma 4.2.13, we get an isomorphism g : D((Σx : Ψ.φ x) → JΓKKan) → ((Σx :

Ψ.φ x) → JDΓKKan). Applying g gives us an isomorphism

Πp : ((Σx : Ψ.φ x) → JΓKKan).JP (fst ◦ A ◦ ηΓ ◦ p)Kcobar ≃
Πp : ((Σx : Ψ.φ x) → JΓKKan).JP (fst ◦ A ◦ g (η(Σx:Ψ.φ x)→JΓKKan p))Kcobar

Given the codomain is cobar modal and we know D is a modality from Lemma 4.2.12, we

can conlude that f 7→ f ◦ η(Σx:Ψ.φ x)→JΓKKan is an equivalence. Applying the equivalence, we

get a term in the following type:

Πp : D((Σx : Ψ.φ x) → JΓKKan).JP (fst ◦ A ◦ g p)Kcobar

Lastly, using the isomorphism g again, we a term in

Πp : ((Σx : Ψ.φ x) → JDΓKKan).JP (fst ◦ A ◦ p)Kcobar,

the witness desired in the lemma statement.

The proof of the following proposition was developed jointly with Daniel Licata, Nima

Rasekh and Robert Rose.

Proposition 4.2.21. Consider a representable Ψ = In × 2m and cofibration φ scoped by Ψ

such that Σx : Ψ.φ x is tiny, and consider a predicate P : ((Σx : Ψ.φ x) → UKan) → UKan.

Let UP be the internal universe defined using the LOPS construction with P acting as the

composition structure and decode function ElP : UP → UKan. Assume path univalence holds

in the universe UP . The universe UPCobar := ΣX : UP .isModal (ElP X) is cobar modal.
128

Proof. Let ElPCobar : UPCobar → Ucobar be the decode function for UPCobar defined as (A, s) 7→

(ElPA, s). We now show that the following diagram commutes.

UPCobar DUPCobar DUKan Ucobar

UKan

Ucobar

ηUPCobar

ElPCobar

ElP ◦fst

Dfun (ElP ◦fst) L

ηUKan

D

fst

id

First, Dfun (ElP ◦ fst) ◦ ηUPCobar
= ηUKan

◦ (ElP ◦ fst) by naturality of η. D = L ◦ ηUKan
and

fst ◦ ElPCobar = ElP ◦ fst both hold by definition. Lastly, D ◦ fst is an equivalence and thus

equal to id up to homotopy as for all types A : Ucobar, we know that A is equivalent to DA

because A is cobar modal.

Now let p′ : DUPCobar → Ucobar be defined as L ◦ Dfun(ElP ◦ fst). By the outside of the

diagram (and postcomposing with fst), we know that fst ◦ p′ ◦ ηUPCobar
is equal to fst ◦ElPCobar

up to homotopy. The latter is definitionally equal to ElP ◦ fst. From the LOPS construction,

we know ElP is equipped with a witness for the P filling problem, i.e. a term with type

Πp : (Σx : Ψ.φ x → UP).P (ElP ◦ p). Given being cobar modal is a homotopy proposition,

this solution lifts to give us a solution for ElP ◦ fst and given the definitional equality also

for fst ◦ ElPCobar : UPCobar → UKan. Using the homotopy from the outside of the diagram, we

can construct a witness of the P filling problem for fst ◦ p′ ◦ ηUPCobar
. By Lemma 4.2.20, we

can remove the η and get a solution for fst ◦ p′. Now that we have a solution, we can encode

this map so that it lands in the LOPS universe UP and reattach the witness that the types

are cobar modal to define the function p : DUPCobar → UPCobar.

Lastly, we need to show that this map is an inverse for ηUPCobar
. From Lemma 4.2.2, it

suffices to show that p ◦ ηUPCobar
is path equal to the identity. This is the same as showing

that, for every X : UPCobar, there is a path between X and p (ηUPCobar
X). Using univalence,

this unfolds into providing an equivalence between the types J(ElP ◦ fst) XKKan andJ(ElP ◦

fst) (p (ηUPCobar
X))KKan. By the definition of p and the encode-decode rule for LOPS universes,

129

J(ElP ◦ fst) (p (ηUPCobar
X))KKan is equal to Jfst (p′ (ηUPCobar

X))KKan. We also know by definition

that ElP ◦ fst = fst ◦ ElPCobar. Thus, we can rewrite the question as instead providing an

equivalence between J(fst ◦ ElPCobar) XKKan and J(fst ◦ p′ ◦ ηUPCobar
) XKKan. The diagram at

the beginning of this proof constructs a homotopy between p′ ◦ηUPCobar
and ElPCobar, and thus

postcomposing by fst and applying the functions to X gives us the equivalence needed to

complete the proof.

Corollary 4.2.22. UcovCobar has a code in Ucobar.

Corollary 4.2.23. UinnerCobar has a code in Ucobar.

4.2.4 Completing Directed Univalence

Next, we show that UcovCobar satisfies directed univalence.

First, as UcovCobar is the restriction of Ucov by a homotopy proposition isModal,

the proof of the retraction in Ucov lifts into UcovCobar (for more details, see the file

DirUnivalenceReflectionStack.agda in the formalization). To complete the equiva-

lence, it suffices to show that duaηfun is an equivalence; then, by function extensionality

and path-univalence for UcovCobar, we get a path in 2 → UcovCobar. To construct this, we will

externally justify the following axiom:

Definition 4.2.24 (Covariant Equivalence Axiom).

covEquivAx : Πp q:2 → UcovCobar.
Πf :(Πi : 2.Jp iKcovcobar → Jq iKcovcobar).
Πe0:isEquiv (f 02).Πe1:isEquiv (f 12).
Πi:2.isEquiv (f i)

which says that any map between covariant fibrations that is an equivalence at 02 and at 12

is an equivalence. Before justifying the axiom, we use it to complete the internal directed

univalence equivalence.

Lemma 4.2.25 (DirUnivalence.duaη). For every pair of types A B : UcovCobar and every

morphism p : HomUcovCobar
(A,B), the map duaηfun defined in Lemma 4.1.4 is an equivalence,

130

so by path-univalence for UcovCobar we obtain

duaη : PathHomUcovCobar
(A,B) (p, duahom A B (dcoe A B p))

Proof. To build this path, we use covEquivAx with duaηfun, as on both 02 and 12 duaηfun is

strictly equal to the identity function and thus is an equivalence. We will denote the proofs

that it is an equivalence on the endpoints by e0 and e1 respectively. As the paths at the

endpoints are induced by the identity functions, we can also construct paths between the

the paths induced by duaηfun at 02 and 12 and the identity paths at A and B, which we will

denote by p0 and p1. We now construct the path duaη as follows:

λi j.(com0I 7→1I(λ_.PathUcovCobar
(p j, duahom A B (dcoe A B p) j))

[j = 02 7→ λi.p0 i,

j = 12 7→ λi.p1 i]

ua (covEquivAx _ _ duaηfun e0 e1 j)) i

Theorem 4.2.26 (DirUnivalence.dua). For all A B : UcovCobar, we have an equivalence

dua : Equiv (JAKcovcobar → JBKcovcobar) (HomUcovCobar
(A,B))

Proof. As we have functions between JAKcovcobar → JBKcovcobar and HomUcovCobar
(A,B) that are

inverses up to homotopy, we have a quasi-equivalence and thus an equivalence.

Corollary 4.2.27. The universe UcovCobar is Rezk (and thus also Segal).

Proof. To prove this, we use Proposition 8.13 from [62] which allows us to conclude that

UcovCobar is Segal if λX : UcovCobar.HomUcovCobar
(A,X) is a covariant fibration for all A in

UcovCobar. By directed univalence, this fibration is equivalent to λX : UcovCobar.A→ X which

indeed is a covariant fibration given it is a function space with a fixed closed domain. Thus,

we can conclude that UcovCobar is Segal.
131

To conclude the universe UcovCobar is Rezk, we simple must conclude that isomorphisms

in the directed path structure coincide with the paths from the homotopical structure. Us-

ing directed univalence, we know the isomorphisms of directed paths are equivalent to pairs

of invertible functions, i.e. quasi-equivalences. By path univalence, we know that the ho-

motopical paths in UcovCobar are equivalent to equivalences. As UcovCobar is a Kan type,

quasi-equivalences are equivalent to equivalences, and thus UcovCobar is Rezk.

Putting all of these results together, we conclude:

Theorem 4.2.28 (Main Theorem). There exists a constructive model of a type theory in

bicubical sets with a universe of fibrant types (Ucobar), a universe of covariant fibrations

(UcovCobar) and a universe of inner fibration (UinnerCobar) such that:

• UcovCobar has a decode function into UinnerCobar and Ucobar;

• UinnerCobar has a decode function into Ucobar;

• Ucobar is closed under Π, Σ, DPath, DHom and contains codes for (smaller) Ucobar,

UcovCobarand UinnerCobar;

• UcovCobar is closed under Π (with a fixed closed domain), Σ, DPath and DHom;

• UinnerCobar is closed under Π (with a fixed closed domain), Σ, DPath and DHom;

• Ucobar, UcovCobar and UinnerCobar are all path univalent;

• UcovCobar is morphism (directed path) univalent and Rezk.

The above statements are summarized in Figure 4.4.

132

· ⊢ Ucobar Type · ⊢ UcovCobar Type · ⊢ UinnerCobar Type

· ⊢ ElcovCobarinnerCobar : UcovCobar → UinnerCobar · ⊢ ElcovCobarcobar : UcovCobar → Ucobar

· ⊢ ElinnerCobarcobar : UinnerCobar → Ucobar

Γ ⊢ A : Ucobar Γ, x : A ⊢ B x : Ucobar

Γ ⊢ Πcode(x : A,B x) : Ucobar

JΠcode(x : A,B x)Kcobar ≡ Πx : A.B

Γ ⊢ A : Ucobar Γ, x : A ⊢ B x : Ucobar

Γ ⊢ Σcode(x : A,B x) : Ucobar

JΣcode(x : A,B x)Kcobar ≡ Σx : A.B

Γ, x : I ⊢ A x : Ucobar

Γ ⊢ a0 : JA 0IKcobar Γ ⊢ a1 : JA 1IKcobar
Γ ⊢ DPathcode(λx.A, a0, a1) : Ucobar

JDPathcode(λx.A, a0, a1)Kcobar ≡ DPathλx.A (a0, a1)

Γ, x : 2 ⊢ A x : Ucobar

Γ ⊢ a0 : JA 02Kcobar Γ ⊢ a1 : JA 12Kcobar
Γ ⊢ DHomcode(λx.A, a0, a1) : Ucobar

JDHomcode(λx.A, a0, a1)Kcobar ≡ DHomλx.A (a0, a1)

Figure 4.4: Closure conditions and properties of the various universes (part 1)

133

i < j

· ⊢ UCobarcodei : Uj
cobar JUCobarcodeiKcobar ≡ Ui

cobar

i < j

· ⊢ UCovCobarcodei : Uj
cobar JUCovCobarcodeiKcobar ≡ Ui

covCobar

i < j

· ⊢ UInnerCobarcodei : Uj
cobar JUInnerCobarcodeiKcobar ≡ Ui

innerCobar

· ⊢ A : UcovCobar Γ, x : A ⊢ B x : UcovCobar

Γ ⊢ Πcodecov(x : A,B x) : UcovCobar

JΠcodecov(x : A,B x)Kcovcobar ≡ Πx : A.B

Γ ⊢ A : UcovCobar Γ, x : A ⊢ B x : UcovCobar

Γ ⊢ Σcodecov(x : A,B x) : UcovCobar

JΣcodecov(x : A,B x)Kcovcobar ≡ Σx : A.B

Γ, x : I ⊢ A x : UcovCobar

Γ ⊢ a0 : JA 0IKcovcobar Γ ⊢ a1 : JA 1IKcovcobar
Γ ⊢ DPathcodecov(λx.A, a0, a1) : UcovCobar

JDPathcodecov(λx.A, a0, a1)Kcovcobar ≡ DPathλx.A (a0, a1)

Γ, x : 2 ⊢ A x : UcovCobar

Γ ⊢ a0 : JA 02Kcovcobar Γ ⊢ a1 : JA 12Kcovcobar
Γ ⊢ DHomcodecov(λx.A, a0, a1) : UcovCobar

JDHomcodeinner(λx.A, a0, a1)Kinnercobar ≡ DHomλx.A (a0, a1)

Figure 4.4: Closure conditions and properties of the various universes (part 2)

134

· ⊢ A : UinnerCobar Γ, x : A ⊢ B x : UinnerCobar

Γ ⊢ Πcodeinner(x : A,B x) : UinnerCobar

JΠcodeinner(x : A,B x)Kinnercobar ≡ Πx : A.B

Γ ⊢ A : UinnerCobar Γ, x : A ⊢ B x : UinnerCobar

Γ ⊢ Σcodeinner(x : A,B x) : UinnerCobar

JΣcodeinner(x : A,B x)Kinnercobar ≡ Σx : A.B

Γ, x : I ⊢ A x : UinnerCobar

Γ ⊢ a0 : JA 0IKinnercobar Γ ⊢ a1 : JA 1IKinnercobar
Γ ⊢ DPathcodeinner(λx.A, a0, a1) : UinnerCobar

JDPathcodeinner(λx.A, a0, a1)Kinnercobar ≡ DPathλx.A (a0, a1)

Γ, x : 2 ⊢ A x : UinnerCobar

Γ ⊢ a0 : JA 02Kinnercobar Γ ⊢ a1 : JA 12Kinnercobar
Γ ⊢ DHomcodeinner(λx.A, a0, a1) : UinnerCobar

JDHomcodeinner(λx.A, a0, a1)Kinnercobar ≡ DHomλx.A (a0, a1)

· ⊢ ua : ΠA B : Ucobar.Equiv (Equiv A B) (PathUcobar
(A,B))

· ⊢ uacov : ΠA B : UcovCobar.Equiv (Equiv A B) (PathUcovCobar
(A,B))

· ⊢ uainner : ΠA B : UinnerCobar.Equiv (Equiv A B) (PathUinnerCobar
(A,B))

· ⊢ dua : ΠA B : UcovCobar.Equiv (A→ B) (HomUcovCobar
(A,B))

Figure 4.4: Closure conditions and properties of the various universes (part 3)

135

4.2.5 The Equivalence Axiom in Bicubical Sets

Having used the equivalence axiom to complete our main theorem, we now provide an exter-

nal constructive proof justifying its inclusion in the model. While we do not define a model

structure on bicubical sets, we do use some aspects of the type-theoretic model structure on

cubical sets (see [12,29]) in the following definitions and proofs.

The main theorem we will use that leverages the added structure from cobar is as follows:

Theorem 4.2.29 (Theorem in Section 5.2 in [28]). Given cobar modal types A and B in

UKan and a function f : JAKKan → JBKKan, if for every X ∈ �Ded f(−, X) is an equivalence

of cubical sets, then f is an equivalence of bicubical sets.

Now, we begin the proof:

Definition 4.2.30. An object X ∈ Set�
op
path is the homotopy pullback of morphisms f from

A to C and g from B to C if it is equipped with morphisms to A and B such that the

following square satisfies the standard pullback universal property up to homotopy.

X B

A C

g

f

That is, all of the required equations on morphisms are true up to the notion of path equality

in the type theory on cubical sets, as is the object only unique up to path equality/homotopy.

Definition 4.2.31. A morphism f in the category Set�
op
path×�

op
Ded is a left map if, for every

n ∈ N, the commuting square of cubical sets shown below is a homotopy pullback.

A(_, n) A(_, 0)

Γ(_, n) Γ(_, 0)

02

f(_,n) f(_,0)

02

The map denoted by 02 is that induced by the substitution sending all directed interval

variables to 02. A morphism is a left fibration if it is both a left map and a Kan fibration.
136

This definition unfolds to the equivalent statement that, for any directed n-cube in Γ and

any point in A over its zero vertex, one can construct a unique (up to homotopy) directed

n-cube in A over that in Γ.

The internal definition of covFill for a type family A : Γ → Type picks out the same

morphisms of bicubical sets.

Lemma 4.2.32. Given some internal type family B : A → Ucov in an open context Γ (i.e.

Γ ⊢ B : A → Ucov), the corresponding external morphism Σx : Γ.Σy : A x.B x y → Σx :

Γ.A x is a left map.

Proof. As described in Definition 3.2.9, the definition of covFill picks out type families for

which, given any morphism p in Γ and term in A over p at 02, there is a unique morphism in

A over p; however, as any instance of covFill can be used in an open context and the category

�Ded is the free Cartesian category generated from 2, the instance can be used n many times

in a context with (at least) n many directed interval variables to construct the solution for

the directed n-cube. Thus, the external morphism is a left map.

The covariant equivalence axiom is a direct corollary of a general lemma from [68]. As

with the definition of left map, the lemma originally was stated for the Reedy model structure

on bisimplicial sets. The proof itself only uses the definition of left map as a level wise

homotopy pullback over the zero cells (Lemma 4.2.32), and the fact that equivalences are

level wise equivalences (Theorem 4.2.29); thus, it also holds in our setting. The lemma is as

follows.

Lemma 4.2.33. Given bicubical sets Γ, A and B, two left fibrations f : A → Γ and

g : B → Γ, and a morphism e : A → B such that f = g ◦ e, the morphism e is an

equivalence of bicubical sets when e(_, 0) : A(_, 0) → B(_, 0) is an equivalence of cubical

sets.

137

Proof. For each n ∈ N consider the following diagram.

A(_, n) A(_, 0)

B(_, n) B(_, 0)

Γ(_, n) Γ(_, 0)

Γ(_, n) Γ(_, 0)

f(_,n)

02

e(_,n)

f(_,0)

e(_,0)∼

g(_,n)

02

g(_,0)
02

02

As both the front and back squares are homotopy pullback diagrams and e(_, 0) is an

equivalence of cubical sets, it follows that e(_, n) is also an equivalence of cubical sets. As

equivalences are level wise equivalences of cubical sets, e is an equivalence of bicubical sets.

Corollary 4.2.34. Consider bicubical sets Γ, A and B, two left fibrations f : A → Γ × 2

and g : B → Γ× 2, and a morphism e : A→ B such that (f, p) = (g, q) ◦ e. Let A2(0) denote

the homotopy pullback of f(_, 0) and the 02-projection Γ×2(_, 0) ↪→ Γ(_, 0)×2(_, 0) (and

define B2(0) analogously) as shown in the following diagram.

A2(0) A(_, 0)

Γ× 2(_, 0) Γ(_, 0)× 2(_, 0)

02

f2(0) f(_,0)

02

Let e2(0) : A2(0) → B2(0) be the morphism induced by e. If e2(0) is an equivalence of bicubical

sets, then e is also an equivalence of bicubical sets.

Proof. As e2(0) is an equivalence of bicubical sets, it is a level wise equivalence of cubical

sets. In particular, e2(0)(_, 0) : A2(0)(_, 0) → B2(0)(_, 0) is an equivalence. Observe that

A2(0)(_, 0) = A(_, 0) (and similarly for B), and e2(0)(_, 0) = e(_, 0). As e(_, 0) is an

equivalence of cubical sets, Lemma 4.2.33 allows us to conclude that e is an equivalence of

bicubical sets.

Theorem 4.2.35. covEquivAx holds in our model.
138

Proof. In order to see Corollary 4.2.34 as a justification of the covariant equivalence axiom

(Definition 4.2.24), we must make a couple observations. First, from Lemma 4.2.32, we

know that the internal term Γ ⊢ p : 2 → Ucov corresponds to the external left fibration

Σx : Γ.Σi : 2.p x i → Γ × 2 (and analogously for q). Thus, in the external corollary, we

can instantiate A and B with the external closed bicubical sets Σx : Γ.Σi : 2.p x i and

Σx : Γ.Σi : 2.q x i. Let A and B denote these bicubical sets in the following proof. The

second item of note is that the pullback defining A2(0) in the statement of the corollary

corresponds to the restriction of A → Γ × 2 to the components over the two endpoints 02

and 12 of 2. Thus, the internal proofs e0 and e1 in the open context Γ demonstrating f is

an equivalence over the endpoints of the directed interval matches up with the equivalence

needed in the statement of Corollary 4.2.34.

We also need to confirm that the proof of covEquivAx is stable under substitution, and

thus can be an internal axiom. Given covEquivAx uses Theorem 4.2.29 to construct the

equivalence from the input data, we first show that for any A, B and f : A → B where

f is a point-wise equivalence, the term of isEquiv f built using Theorem 4.2.29 is stable

under (strict) pullbacks. As the construction in Theorem 4.2.29 described in Theorem 5.1

of [28] is computed point-wise with respect to �Ded and pullbacks of bicubical sets are also

point-wise pullbacks of cubical sets, the pullback commutes with the construction and thus

Theorem 4.2.29 commutes with substitution. The second construction that must be stable

under pullbacks is the level-wise equivalence defined in Lemma 4.2.33. In particular, given

cubical sets Γ, A and B, left fibrations f : A→ Γ and g : B → Γ, a morphism e : A→ B such

that f = g◦e, and a proof v0 : isEquiv e(_, 0), we need to know that every vn : isEquiv e(_, n)

created by the proof is stable under pullback. Again, as each vn is computed separately for

each object in �Ded, the pullback commutes with the point-wise argument, and as every vn

is constructed as the solution of a covariant filling problem (which in particular commutes

with pullbacks), the construction in Lemma 4.2.33 is also stable under substitution.

139

Chapter 5

Fiberwise Fibrancy and

Internal Universes

The contents of this chapter are joint work with Daniel Licata and were presented at the 2nd
International Conference on Homotopy Type Theory [82].

One of the fundamental characteristics that distinguished homotopy type theory from

other type theories is that all equational reasoning is done up to homotopy, and strict

equality is inherently inaccessible and incompatible with the type theory; to immediately

contradict this statement, there are a few isolated situations where we do safely interact

with strict equality, namely when describing boundary constraints of types. The first place

one is likely to encounter such a strict equality is when working with composition structures

on types: the composition term comz:0I→1I
A [α 7→ t z] b is by definition strictly equal to t 1I

whenever the cofibration α holds true. The second common safe occurrence of strict equality

is in RS extension types (Definition 2.3.11): Generalizing path (and morphism) types, RS

extension types are Π-types of the form Πx⃗ : In.A[α 7→ a] such that α is scoped entirely by the

variables x⃗. Given a term f of the RS extension type above, we know f x is strictly equal to a

whenever α is true. By restricting α to only use variables bound in the Π, the resulting type

remains fibrant despite introducing and enforcing a strict equality on the terms inhabiting it.

140

Generalizing from strict equality, strict propositions as a whole are very limited in their use

within homotopy type theory, in particular only appearing as the cofibrations in the above

instances. In this chapter, we will develop a theory that greatly generalizes when it is safe to

use both cofibration witness types (ultimately defining partial types)—JαKcof—and boundary

types (also commonly called extension types, Definition 2.3.4)—A[α 7→ a]—and after doing

so explore an application made possible by this theory: a syntax for internally-defined LOPS

universes.

First, let us see what is possible without the theory defined in this chapter, and demon-

strate why the new mechanisms introduced here are necessary. The final commonly used type

that is built using both cofibration witness types and a boundary type is the contractible fill

type (Definition 2.3.12).

cfill A := Πα : Cof.
Πaα : JαKcof → A.
A[α 7→ aα]

An equivalent notion to standard contractibility (assuming the type A is Kan), this predicate

on a type A allows one to fill any partial term aα to a total term that strictly agrees with aα

when the cofibration α is satisfied. Combining RS extension types with the contractible fill

type, one can already define a great deal of interest. In the case of our application, we wish

to define the types of filling problem predicates and ensure they are fibrant; notably, many

can be built using these two constructions alone. First, let us consider one of the potential

filling problem one can use to define when a type in DeMorgan cubical type theory is fibrant

(which also is the filling problem needed for simplicial homotopy type theory, and our notion

of covariance given in Chapter 3 if you swap the choice of interval):

comFillI (A : I → U) := Πα : Cof.
Πb : A 0I.
Πt : Πz : I.JαKcof → A z[z = 0I 7→ b].
Πz : I.→ A[z = 0I 7→ b, α 7→ t]

comFill Γ (A : Γ → U) := Πp : I → Γ.comFillI (A ◦ p)

141

We can rewrite the type comFillI A to an isomorphic type as the following.

comFillI (A : I → U) := Πb : A 0I.cfill (Πz : I.A z[z = 0I 7→ b])

From this, it initially seems leveraging this pattern is sufficient for all filling problems. As

our second example, let us now consider the fibrancy condition used in Cartesian cubical

type theory.

comFillICart (A : I → U) := Πα : Cof.
Πi : I.
Πb : A i.
Πt : Πz : I.JαKcof → A z[z = i 7→ b].
Πz : I.→ A[z = i 7→ b, α 7→ t]

comFillCart Γ (A : Γ → U) := Πp : I → Γ.comFillICart (A ◦ p)

Like before, we can rewrite this version of comFillICart A as an isomorphic type using an

instance of cfill and (what looks like) an RS extension type.

comFillICart (A : I → U) := Πi : I.Πb : A i.cfill (Πz : I.A z[z = i 7→ b])

While certainly this type is isomorphic to our first definition of comFillICart A, unfortunately

the type contained in the contractible fill is not actually an RS extension type; the cofibration

depends on the i : I bound in the outermost Π, and thus is not entirely scoped by the interval

variables bound directly before the boundary type. This poses a challenge as the notion of

Kan fibrancy corresponds to filling shapes built out of such interval variables, and some types

used to build up the body of the Π-type depend on an interval variable that cause them to

clearly not be fibrant when considered locally in isolation from the context in which they are

used. Another filling problem that faces a similar problem and cannot be described simply

with RS extension types and contractible fill is the modified notion of covariance described

in Section 6.1, its challenge pertaining to directed interval variables and thus complicating

the question of whether the type itself can be equipped with a solution to the covariant filling

142

problem (which focuses on filling shapes built from the directed interval). Thankfully, both

of these type are ultimately still fibrant, and the remainder of this chapter will provide a

general theory justifying why it is the case.

5.1 Fiberwise Filling in a Topos

As our first approach do defining this theory, we will work within the internal logic of a

topos. Given we encounter many models of type theory defined within presheaf topoi over

varying categories (e.g. Cartesian cubical sets, bisimplicial sets), We work in the internal

logic of an arbitrary presheaf topos indexed by a category C. We will write U to denote

the object classifier and Ω to denote the subobject classifier. We assume the presence of

a cofibration predicate on the subobject classifier, iscof ∈ HomĈ (Ω,Ω), and write Cof to

denote the subobject of Ω classified by iscof. Given a (product of) representables Φ, we write

Φ ⊢ φ cofib when φ is a morphism in HomĈ (Φ,Cof), and we write [φ] to denote the object

that witnesses when the proposition φ holds true. Lastly, for Φ ⊢ φ cofib and Φ ⊢ ψ cofib, we

write φ ⊢Φ ψ when the proposition φ entails ψ, or equivalently that Φ.[φ] is itself a subobject

of Φ.[ψ].

5.1.1 Filling Operations

Given we wish to work as abstractly as possible, we not only work within an arbitrary presheaf

topos, but we also define an abstract notion of filling operation with which to classify the

fibrant types in the topos model. This decision is particularly beneficial to work in directed

type theory, given it requires utilizing a large number of filling problems simultaneously

within the same type theory. The definition we develop in this section is sufficiently general

such that it captures all of the common filling problems used in homotopy and cubical type

theories of which we currently are aware. Before we write down the formal definition of a

filling operation, let’s first unpack a few familiar instances of filling problems and identify

143

their components from which we can slowly abstract the generalized definition. As related

work, note that Nuyts has also explored some generalized notions of filling problems [56];

for a bit more commentary on his work in relation to that presented in this chapter, see

Section 1.4.

The first pattern we encounter originates from LOPS [47]: To define a predicate classify-

ing solutions to a filling operation on an arbitrary type A depending on context Γ, we begin

by first defining a predicate on types depending solely on the interval I, and then use this

predicate to define the one for general contexts Γ by quantifying over all paths p : I → Γ

and composing. More concretely, consider the following version of Kan composition.

comFillI (A : I → U) := Πα : Cof.
Πb : A 0I.
Πt : Πz : I.JαKcof → A z[z = 0I 7→ b].
Πz : I.→ A z[z = 0I 7→ b, α 7→ t]

comFill Γ (A : Γ → U) := Πp : I → Γ.comFillI (A ◦ p)

The shape of the filling problem is given in the predicate comFillI : (I → U) → U, and using

this predicate we define the actual filling operation predicate comFill : ΠΓ : U.(Γ → U) → U

as comFill Γ A := Πp : I → Γ.comFillI (A ◦ p). As this pattern appears universally, we shall

copy this structure in our definition, and in particular this means the majority of our focus

will be on the initial predicate that carries the shape of the filling problem.

The second abstraction we wish to identify also is identified in LOPS [47]: The predicate

need not classify all types, but may instead be defined as a predicate on an existing uni-

verse. We use this ourselves in defining the predicate for covariant filling (Definition 3.2.9).

Specifically, consider the types of the predicates we defined in Section 3.2.3.

covFill2 : (2 → UKan) → U
covFillΓ : ΠΓ : U.(2 → UKan) → U

As ultimately we use LOPS to define Ucov as a subuniverse of UKan, the predicate itself is

only defined to classify types in UKan and not arbitrary presheaves in the topos. That being

said, we think of contexts as being arbitrary presheaves, and thus the type of Γ is given by

144

the object classifier U, and the predicate itself also has type U, as (at this point) we have yet

to provide any filling operations for it with which we could pair with the type such that it

lands in another universe. Thus, in our generalized definition, we allow for the type family

to potentially land in a different universe than the object classifier U.

The next pattern of filling operation predicates relates to how one expresses the partial

shape from which we fill; to exemplify this, we can slightly rewrite the above definition of

comFillI.

comFillI (A : I → U) := Πα : Cof.
Πb : Πz : I.Jz = 0IKcof → A z.
Πt : Πz : I.JαKcof → A z[z = 0I 7→ b].
Πz : I.→ A z[z = 0I 7→ b, α 7→ t]

We think of filling operations as filling a shape from the base b along the tube t, where the

base b is a partial restriction of the entire shape that is ultimately built in the solution of

the filling problem, and the tube t is defined along the entirety of the shape being filled,

but is restricted to be partial along an arbitrary cofibration. For those familiar with model

category theory, this corresponds to the filling operation being a solution to all right lifts

of the pushout product of a generating trivial cofibration (given by the restriction on b)

with an arbitrary cofibration (the α that restricts t). For those not well-versed in model

category theory, the pattern to identify is that b is restricted by some cofibration on the

interval I we are filling, t is always restricted by an arbitrary cofibration and agrees with

b along its cofibration, and the output agrees with b and t everywhere they are defined.

In the above example, the cofibration restricting b is z = 0I, and thus the “shape” of the

filling operation (i.e. the trivial cofibration) is the inclusion sending the point to 0I in the

interval. Abstracting this pattern, one can define the operation that fills the interval I from

any cofibration z : I ⊢ δ cofib as being that defined using the following.

FillI (A : I → U) := Πα : Cof.
Πb : Πz : I.Jδ zKcof → A z.
Πt : Πz : I.JαKcof → A z[δ z 7→ b].
Πz : I.A z[δ z 7→ b, α 7→ t]

145

Another variation we see is the total shape we are filling with the filling operation.

To exemplify this scenario, consider the filling operation used do define inner fibrations in

Section 3.2.5.

innerFill∆ (A : ∆2 → U) := Πα:Ωcof.
Πt:(Πz:∆2.JαKcof → A z).
Πb:(Πz:∆2.JΛ2

1 zKcof → A z[α 7→ t z]).
Πz:∆2.A z[JΛ2

1 zKcof 7→ b z, α 7→ t z]

This filling operation does not fill an interval, but instead is filling a triangle, given by

Σ(x, y) : 22.Jy ≤ xKcof . To capture this pattern, we introduce two significant abstractions:

first, instead of always filling an interval we are now filling a product of intervals, or to be

even more general a product of representables; second, we are not required to fill the entire

shape given by the product of representables, but instead allow for a cofibration to restrict

to a subshape of the product of representables. To account for this, let Ψ be a product of

representables and let Ψ ⊢ γ cofib be a cofibrations restricting Ψ. The idea now is for the

filling operation to fill the shape ΣΨ.JγKcof . That being said, we still need to fix a subshape

of ΣΨ.JγKcof from which we can fill the entire shape. For this, we pick out another cofibration

(as described in the previous paragraph), Ψ ⊢ δ cofib such that δ entails γ holds, which in

particular indicates that the shape ΣΨ.JδKcof is actually a subshape of ΣΨ.JγKcof . Taking this

into account, we can write down the classifying predicate for a further generalized notion of

filling operation.

FillΨ|δ↪→γ (A : Πz : Ψ.Jγ zKcof → U) := Πα : Cof.
Πb : Πz : Ψ.Jδ zKcof → A z.
Πt : Πz : Ψ.Jγ z ∧ αKcof → A z[δ z 7→ b].
Πz : Ψ.Jγ zKcof → A z[δ z 7→ b, α 7→ t]

The final technique we notice that is used to define some filling operations is to define

them in the topos sliced over ([a subobject of] a product of) representables. To exemplify

what this looks like, consider the filling predicate used to define the fibrant types in Cartesian

cubical type theory.

146

comFillICart (A : I → U) := Πα : Cof.
Πi : I.
Πb : A i.
Πt : Πz : I.JαKcof → A z[z = i 7→ b].
Πz : I.A[z = i 7→ b, α 7→ t]

comFillCart Γ (A : Γ → U) := Πi : I.Πp : I → Γ.comFillICart i (A ◦ p)

In this case, the trivial cofibration (or shape) of the filling operations consists of filling the

interval from an arbitrary point along it, i : I. For this to be possible, we think of the filling

operation as being defined on the presheaf category sliced over the object I, and not directly

on the presheaf category itself. An important detail to note above is that the cofibration

formula describing the generating trivial cofibration, z = i, is scoped by both the interval

we slice over, i : I, and the interval we are filling, z : I.

At this point, we can abstract the above scenario and combine it with our previous

abstractions to define our fully generalized notion of filling operation. As is the pattern in

this chapter, instead of being sliced over the interval I, we consider the presheaf category

being sliced over an arbitrary product of representables in our presheaf Φ, and allow Φ to

potentially be restricted by some cofibration Φ ⊢ φ cofib. To update our previous abstractions

to account for this change, we now consider filling the shape Ψ restricted by the cofibration

formula Ψ ⊢ γ cofib with the trivial cofibration described by the formula Φ,Ψ ⊢ δ cofib where

φ ∧ δ entails γ. All together, we get the following type for our filling operation.

As a final technicality, we specify a definition of a universe object. A formal definition

is ultimately given in Definition 5.2.2, but to understand the following definition of a filling

operation the only aspects of a universe object needed are to know that it is an object U

that classifies other objects in the category and is equipped with a decode morphism El that

converts terms in U (i.e. morphisms with codomain U) into the corresponding object of the

category. We write U to denote the object classifying all objects in the category.

Definition 5.1.1. A filling operation for types in universe UF with decode morphism ElF in

the presheaf topos Ĉ is classified by a predicate Fill
Ψ|δ↪→γ
Φ|φ with type ΠΓ : U .(Γ → UF) → U

indexed by the following:
147

• two objects that are both products of representables: Φ and Ψ;

• a cofibration formula scoped by Φ: Φ ⊢ φ cofib;

• a cofibration formula scoped by Ψ: Ψ ⊢ γ cofib;

• a cofibration formula scoped by Φ×Ψ: Φ,Ψ ⊢ δ cofib.

Furthermore, the conjunction of φ and δ must entail γ: φ ∧ δ ⊢Φ,Ψ γ. Using this data, we

first define the type of composition operations.

Comp
Ψ|δ↪→γ
Φ|φ : ΠA : (Πz : Ψ.Jγ zKcof → UF).U

Comp
Ψ|δ↪→γ
Φ|φ A := Πα : Cof.

Πx : Φ.Π∗ : Jφ xKcof .
Πb : Πz : Ψ.Jδ x zKcof → ElF(A z ∗).
Πt : Πz : Ψ.Jγ z ∧ αKcof → ElF(A z ∗)[δ x z 7→ b].
Πz : Ψ.Jγ zKcof → ElF(A z ∗)[δ x z 7→ b, α 7→ t]

We then define the predicate Fill
Ψ|δ↪→γ
Φ|φ as shown below.

Fill
Ψ|δ↪→γ
Φ|φ : ΠΓ : U .(Γ → UF) → U

Fill
Ψ|δ↪→γ
Φ|φ Γ A := Πp : (Πz : Ψ.Jγ zKcof → Γ).

Comp
Ψ|δ↪→γ
Φ|φ (A ◦ p)

A filling operation with type Fill
Ψ|δ↪→γ
Φ|φ Γ A conceptually corresponds to filling a type A along

any inclusion of ΣΨ.JδKcof into ΣΨ.JγKcof over any tope ΣΦ.JφKcof in context Γ. Note the

fact that φ∧δ implies γ is required to ensure that the type of the base term b is well-formed.

Filling Operation Φ Ψ φ γ δ
CCHM Kan · i : I ⊤ ⊤ i = 0I

ABCFHL Kan i : I j : I ⊤ ⊤ i = j
Bicubical Covariant · i : 2 ⊤ ⊤ i = 02

Bicubical Inner · i, j : 2 ⊤ i ≤ j i = 02 ∨ j = 12

Contractible Fill∗ · · ⊤ ⊤ ⊥

∗The definition of contractible fill is isomorphic to the composition operation for the above data, and not
the filling operation.

Figure 5.1: Instantiating the types of common filling operations using the generalized defi-
nition

148

To better understand the picture, let us first consider the what a solution to the filling

operation looks like when we abstract (and thus slice) over the new tope ΣΦ.JφKcof . As such,

we consider the solution f as a morphism in the slice category Ĉ/(ΣΦ.JφKcof) for any given

p, α, b and t. Do note that, in the below diagrams, p̃ is the morphism given by uncurrying

p and precomposing p with the proper projections that correct the cofibration witness given

by the domain of the morphism to that required by the diagram.

Σx : Φ× z : Ψ.J(φ x ∧ δ x z) ∨ (φ x ∧ γ z ∧ α)Kcof Σx : Φ.JφKcof × ΣΓ.A

Σx : Φ× z : Ψ.Jφ x ∧ γ zKcof Σx : Φ.Jφ xKcof × Γ

Σx : Φ.Jφ xKcof

(π1,p̃,b∨t)

(π1,p̃)

f p α (π1◦π1) ∗ b t

With the above diagram in mind, we can derive the representation to the filling problem

precisely described by f : Fill
Ψ|δ↪→γ
Φ|φ Γ A by substituting in a given morphism Γ ⊢ x : Φ

satisfying the cofibration φ. In doing so, we relocate the commutative square from the slice

category to our original setting of the presheaf category Ĉ.

Σz : Ψ.J(φ x ∧ δ x z) ∨ (φ x ∧ γ z ∧ α)Kcof Σz : Ψ.Jφ xKcof × ΣΓ.A

ΣΨ.Jφ x ∧ γ zKcof ΣΨ.Jφ xKcof × Γ

(z,p̃,b∨t)

(z,p̃)

f p α x ∗ b t

A table summarizing how a number of common filling operations are encoded using

Definition 5.1.1 is provided in Figure 5.1. While the cofibration φ is never used in these

149

common examples, we choose to include it in our definition as we think of the notion of a

shape as being a representable paired with a cofibration, or what is often called a tope.

5.1.2 Contextual Filling and its Closure Conditions

In this section, we transition to exploring our final generalization of filling operations: They

need not be able to fill over the entire context, and instead can depend on some of the

context in a fiberwise fashion. To account for this, we introduce a modified version of the

filling operation predicate that allows for the type family A to be scoped by two contexts: a

“normal” context Γ and a fiberwise context on which A cannot be filled over, Ξ.

Definition 5.1.2. Given Φ, Ψ, φ, γ and δ as described in Definition 5.1.1, a contextual

filling operation for types in UF is classified by the predicate FillCtx
Ψ|δ↪→γ
Φ|φ defined below.

FillCtx
Ψ|δ↪→γ
Φ|φ : ΠΞ : U.

ΠΓ : Ξ → U.
(Πx : Ξ. Γ x→ UF) → U

FillCtx
Ψ|δ↪→γ
Φ|φ Ξ Γ A := Πx : Ξ.Fill

Ψ|δ↪→γ
Φ|φ (Γ x) (A x)

Having defined what it means to be a contextual filling operation, we can now show some

useful closure conditions that are always satisfied. For the remainder of this section, let us

fix a filling problem given by FillCtx
Ψ|δ↪→γ
Φ|φ ; for readability, we shall drop the parameters and

simply denote the filling problem as fillCtx. We also fix an arbitrary object Ξ and use the

notation ∗ to denote the terms witnessing that a cofibration proposition is true.

Lemma 5.1.3. Given an object Γ fibered over Ξ, an object A fibered over Ξ, and an object

B fibered over Ξ, Γ and A if we have a morphism witnessing FillCtx Ξ (A × Γ) B then we

can construct a solution to FillCtx (Ξ× A) Γ B.

Proof. This lemma is quite straightforward as it amounts to forgetting that one can fill over

A. Thus, assume we have a term/morphism fillB : FillCtx Ξ (A × Γ) B. We can construct

the solution to FillCtx (Ξ× A) Γ B using fillB by providing it with a constant path in A as

shown here.
150

λ (x, a) p.fillB x (λz ∗ .(p z ∗, a))

Lemma 5.1.4. Given an object A fibered over Ξ, an object Γ fibered over Ξ × A, and an

object B fibered over Ξ, Γ and A, if we have a morphism witnessing FillCtx (Ξ×A) Γ B, we

can construct a solution to FillCtx Ξ Γ Πx:A.B.

Proof. From our hypothesis, we have a term/morphism fillB : FillCtx (Ξ × A) Γ B. The

desired term witnessing FillCtx Ξ Γ Πx:A.B is constructed as shown below.

λ x p α y ∗ b t z ∗ a.fillB x p α y ∗ (λz ∗ .b z ∗ a)
(λz ∗ .t z ∗ a) z ∗

In other words, we can use the solution fillB directly, simply instantiating the provided b and

t of the Π-type at the argument a.

Corollary 5.1.5. Given an object Γ fibered over Ξ, and an object A fibered over Ξ, Γ and

the subobject classifier Ω, if we have a morphism witnessing FillCtx (Ξ × Ω) Γ A, we can

construct a solution to FillCtx Ξ Γ Πx:Ω.A.

Corollary 5.1.6. Given a subobject formula ξ of Ξ, an object Γ fibered over Ξ, and an object

A fibered over Ξ, Γ and the proof witness [ξ], if we have a morphism satisfying FillCtx (Ξ×

[ξ]) Γ A, we can construct a solution to FillCtx Ξ Γ ([ξ] → A).

Lemma 5.1.7. Given an object Γ fibered over Ξ, an object A fibered over Ξ and Γ, and

an object B fibered over Ξ, Γ and A if we have a morphism witnessing FillCtx Ξ Γ A and a

morphism witnessing FillCtx Ξ (Γ×A) B we can construct a solution to FillCtx Ξ Γ Σx : A.B.

Proof. Let fillA be the witness to FillCtx Ξ Γ A and fillB that of FillCtx Ξ (Γ × A) B. The

solution for the Σ-type amounts to pairing together the solutions provided by fillA and fillB.

We can define the solution as follows, using let notation to simplify the definition, and simply

interpreting it as syntactic sugar for the term that results from inlining the let-bound variable

151

λ x p α y ∗ b t z ∗ . let a = fillA x p α y ∗ (b ◦ fst) (t ◦ fst) in
(a z ∗, fillB x (λz ∗ .(p z ∗, a z ∗)) α y ∗ (b ◦ snd) (t ◦ snd))

Lemma 5.1.8. Assume we have a subobject formula ξ of Ξ, an object Γ fibered over Ξ, an

object A fibered over Ξ and Γ, and a section a of A over ΣΞ.Σ[ξ].Γ. If we have a morphism

satisfying FillCtx Ξ Γ A, we can construct a solution to FillCtx Ξ Γ A[ξ 7→ a].

Proof. In this case, it ends up that the witness induced by fillA : FillCtx Ξ Γ A provides the

solution for FillCtx Ξ Γ A[ξ 7→ a]. The only aspect we must pay particular attention to is that

the boundary condition is constantly satisfied. At a high level, the key observation is that,

while the type A may vary along the shape we are filling, as the cofibration ξ used in the

boundary constraint only depends on Ξ, that “portion” of A remains constant throughout

the filling process. Taking advantage of this fact, we can construct the solution as shown

here.

λ x p α y ∗ b t.fillA x p (α ∨ ξ x) y ∗ b (t ∨ a)

The b and t provided to the function above already are equal to a along ξ by definition, and

thus t ∨ a is a well-formed elimination from the disjunction α ∨ ξ x, and is also compatible

with b along the cofibration δ. Furthermore, by providing α ∨ ξ x as the cofibration to the

filling operation, the output must also satisfy the boundary condition. The only reason we

can provide ξ as an argument to the solution is that it only depends on Ξ, which is in scope

via the argument x; were ξ to depend on Γ as well, it would not be possible to express ξ

using what is available in such a way that the solution is well formed (one could attempt

to do so by further unwrapping the solution function and providing the arguments of type

Ψ and JγKcof to the path p, but the resulting term of type Γ would not match up with that

used in the instance of ξ present in the base b and tube t, as in b and t the corresponding

arguments are quantified by a Π and thus are distinct from those given as arguments to the

filling operation).
152

5.2 A Type Theory with Internally Definable Universes

An exciting application of this work (that in particular motivated this foray into contextual

extension types) is that it greatly aids the creation of a reasonable syntax of internally

definable universes given by the LOPS construction [47], exposing the ability to define new

classifying universes to the syntax of the type theory. The general idea is as follows: As

a user of a type theory, say you have some universe U, representable object Ψ and have a

predicate P : (Ψ → U) → U that picks out types with some property you care greatly about

(e.g. U is the universe of Kan types, and P : (2 → U) → U describes which Kan types are

covariant fibrations), and you wish to define the universe of types equipped with a witness

to property P . Instead of requiring the implementation and/or rules to directly describe

this new universe UP along with the corresponding filling operations for every type former

that inhabits UP , the idea we present in this section is that the type theory is equipped with

a general universe constructor which takes the outer universe U and predicate P as input

and automatically constructs the universe Univ(U, P), the LOPS universe of types in U that

additionally are equipped with witnesses to predicate P . The user can then internally provide

filling operations for the types that inhabit UP within the type theory itself, simplifying

that which must be described in the rules of the theory and most notably greatly reducing

the laborious task of defining filling algorithms as a part of the implementation of a proof

assistant. The challenge with doing this internally is that the user provided predicate P

must land in the universe U that is being restricted to define the new universe, and thus one

must know that P can always be equipped with a solution to whatever filling problem(s) U

classifies; thankfully, the results given in this section will ultimately allow us to do just that.

5.2.1 Judgement Forms

Again working in the internal logic of a presheaf topos indexed by a category C, we use the

following notation and judgments:

153

• Ξ and Γ are contexts, interpreted as (products of) objects in the topos.

• We use boldface variables A to indicate types corresponding to representable objects,

and we occasionally write A Rep do denote the judgement that A is such a type. We

use the judgement Γ ⊢ a : A to say a is a presheaf morphism from Γ to A, and call a

a representable term.

• Γ ⊢ α cofib is a cofibration, a special kind of logical formula describing subobjects of

(products of) representables used in filling operations. We interpret α as a morphism

from Γ into Cof.

• φ ⊢Γ ψ is the implication ordering of cofibrations on subobjects of Γ.

• Γ ⊢ α is the judgement stating that the cofibration α is true assuming the context Γ.

• Γ ⊢ A Typei indicates A is a type in context Γ. We suppress levels i throughout, but

formally types are stratified by size. We interpret the judgement to indicate that A is

a presheaf in the slice topos Ĉ/Γ.

• Γ ⊢ a : A is the judgement indicating a is a term of a type A relative to context Γ.

This corresponds to a representing a morphism from Γ to A in the topos.

• Lastly, Γ ⊢ a0 ≡ a1 : A is the denotes that a0 and a1 are judgmentally equal terms of

type A in context Γ. We may simply write a0 ≡ a1 as a shorthand when Γ and A can

easily be inferred from context.

5.2.2 Typing Rules

We will assume the standard typing rules that hold in the internal logic of every topos, in

particular for Π- and Σ-types. In addition, we will focus on the following rules that pertain

to representable objects and cofibrations.

154

Representable Types

First, we will specify syntax isolating the representable objects as types, using a bold font

to distinguish them visually. As we are working at such a high level of generality here (i.e.

in an arbitrary presheaf topos Ĉ), we simply will assume the existence of a syntax for terms

of representables corresponding to the morphisms contained within the topos.

A ∈ C
A Rep

A Rep
· ⊢ A Type

a ∈ Ĉ(Γ, yA)

Γ ⊢ a : A

Cofibration Types

We now fix a syntax for working with cofibrations in the type theory. To do so, we specify a

type Cof corresponding to the cofibration classifier in the topos, and thus the terms of Cof

are cofibration formulae.

· ⊢ Cof Type
Γ ⊢ α cofib
Γ ⊢ α : Cof

Given a cofibration formula α, we also introduce the type [α] that witnesses the when α is

satisfied, semantically corresponding to the right projection of the subobject pullback of α.

As the type [α] is a strict proposition, we simply inhabit it with a single term ∗ when the

formula is true. In practice, implementations often make all cofibration proof terms implicit

in the syntax, with the type checker algorithm simply verifying the formula holds true when

a term of one is required.

Γ ⊢ α cofib
Γ ⊢ [α] Type

Γ ⊢ α
Γ ⊢ ∗ : [α]

155

Boundary Types

The last relatively standard type former we wish to hone in on are boundary types, also called

extension types in the literature. A boundary type pairs together a type A, a cofibration α,

and a partial term a in A assuming α and results in a type containing the total terms of A

that are strictly equal to the partial term a when the cofibration α is true.

Γ ⊢ A Type Γ ⊢ α cofib Γ, x : [α] ⊢ a : A

Γ ⊢ A[α 7→ x.a] Type

Γ ⊢ a′ : A Γ, x : [α] ⊢ a≡ a′ : A

Γ ⊢ a′ : A[α 7→ x.a]

5.2.3 Syntax for Internal Universes

For this notion of internal LOPS universes, we parameterize the universe by components

corresponding to that which specifies a filling operation as defined in Definition 5.1.1:

1. A universe U from which our new universe will be carved;

2. A representable A and cofibration φ scoped by A over which the filling operation is

sliced;

3. A representable B, a cofibration γ scoped by B and a cofibration δ scoped by A and

B where δ entails γ assuming φ (as an important note, we will ultimately be refining

how we define γ in the formal rules we propose);

4. A witness that the composition operation specified by the above data is contained in

the universe U.

Given these parameters, the idea is that the universe specified by the above parameters

represents the subuniverse of U containing those types for which we have a filling operation

that can always fill the shape B restricted by γ from inputs of shape B restricted by δ, all

sliced over the shape A restricted by φ.

156

The hypotheses assumed by by the LOPS construction force us to maintain a few re-

quirements in our proposal in order for this syntax to accurately and safely match the

construction:

1. The category Ĉ must be closed under finite products;

2. The object ΣB.[γ] must be tiny.

Do note that, while these requirements are shown sufficient by the LOPS construction in

order to define a universe constructively, they need not be required, and one may choose to

use a version of the proposed syntax but loosen these requirements and justify the existence

of the universe using alternative means (e.g. should one wish to incorporate user defined

universes in a type theory for which one does not care about constructivity).

Putting this all together results in incorporating the syntax and inference rules shown in

Figure 5.2 to the type theory.

Before diving into the rules themselves, we need to first explain the nonstandard judge-

ments: U Univ, A Rep,FillData(x : A, y : B, φ x, β y, δ x y) and UData(U,Πlem, x : A, y :

B, φ x, β y, δ x y). The first judgement conveys that U is a universe of types. The idea

is that, first, the outermost universe U is a universe, and every new universe defined by

these rules is also a universe. In addition, there is a function ElU that sends elements of the

universe U to their underlying type. We can express this formally as shown here.

U Univ

Univ(U,Πlem, x : A, y : B, φ x, β y, δ x y) Univ

U Univ Γ ⊢ A : U
Γ ⊢ ElU A Type

Γ ⊢ A : U
ElU A≡ A

Γ ⊢ code(U, . . .)(∆, A, fillA) x : Univ(U, . . .)

ElUniv(U,...) (code(U, . . .)(∆, A, fillA) x)≡ ElU (A x)

157

UData(U,Πlem, x : A, y : B, φ x, β y, δ x y)

⊢ Univ(U,Πlem, x : A, y : B, φ x, β y, δ x y) Type

UData(U,Πlem, x : A, y : B, φ x, β y, δ x y)

· ⊢ El(U,Πlem, x : A, y : B, φ x, β y, δ x y) : Univ(U, . . .) → U

UData(U,Πlem, x : A, y : B, φ x, β y, δ x y)

· ⊢ fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) : Πp : (Πy : B.[y = β y] → Univ(U, . . .)).
Fill(U, . . .) (El(U, . . .) ◦ p)

UData(U,Πlem, x : A, y : B, φ x, β y, δ x y)

· ⊢ Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) : ΠA : (Πy : B.[y = β y] → U).U

UData(U,Πlem, x : A, y : B, φ x, β y, δ x y)
· ⊢ Γ Type · ⊢ A : Γ → U

· ⊢ fillA : Πp : (Πy : B.[y = β y] → Γ).ElU (Fill(U, . . .) (A ◦ p))
· ⊢ code(U,Πlem, x : A, y : B, φ x, β y, δ x y)(Γ, A, fillA) : Γ → Univ(U, . . .)

El(U, . . .) (code(U, . . .)(Γ, A, fillA) x) ≡ A x

fill(U, . . .) (λy ∗ .code(U, . . .)(Γ, A, fillA) (p y ∗)) ≡ fillA (p y ∗)

Figure 5.2: Rules for internal LOPS universes

The second judgement, ARep, simply indicates that A is a type corresponding to a rep-

resentable. It is worthwhile to note that, as here we are choosing to directly follow the LOPS

construction, the category C is closed with respect to finite products and thus obviously any

product of representables is itself a representable; should one wish to modify this approach

for a setting in which this isn’t the case, one might consider modifying this judgement to

instead capture the situation where A corresponds to a product of representables in the

topos.

We also introduce judgements FillData and UData which simply are shorthand grouping

together all of the hypotheses required of the components used to specify a new filling

problem or universe. The judgements are defined with the following inference rules.

158

Filling Operation A B φ β δ
CCHM Kan · i : I ⊤ λx.x i = 0I

ABCFHL Kan i : I j : I ⊤ λx.x i = j
Bicubical Covariant · i : 2 ⊤ λx.x i = 02

Bicubical Inner · i, j : 2 ⊤ λ(x, y).(x ∧ y, y) i = 02 ∨ j = 12

Figure 5.3: Instantiating the types of common filling operations as filling data in the syntax

A Rep B Rep
x : A ⊢ φ x cofib y : B ⊢ β y : B β (β y)≡ β y
x : A, y : B ⊢ δ x y cofib φ x ∧ δ x y ⊢x:A,y:B y = β y

FillData(x : A, y : B, φ x, β y, δ x y)

U Univ FillData(x : A, y : B, φ x, β y, δ x y)
· ⊢ Πlem : ΠΞ : U .ΠΓ : Ξ → U .

ΠA : Πu : Ξ.Γ u→ U .
ΠB : Πu : Ξ.Πv : Γ u.A u v → U .
FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ A→
FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ

(Σv : Γ u.A u v)
(λu (v, w).B u v w) →

FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ
(λu v.Πw : A u v.B u v w)

UData(U,Πlem, x : A, y : B, φ x, β y, δ x y)

We will derive an internally definable element of the universe U that will act as the

definition of the type Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) x ∗ A by the end of

Section 5.2.4, but for our initial discussion of the rules, all that matters is knowing the

underlying type it decodes to, shown here.

ElU (Fill(U, . . .) A) := Πα : Cof.
Πx : A.Π∗ : [φ x].
Πb : Πy : B.[δ x y] → A y ∗ .
Πt : Πy : B.[(y = β y) ∧ α] → A y ∗ [δ x y 7→ b].
Πy : B.[y = β y] → A y ∗ [δ x y 7→ b, α 7→ t]

The rules themselves are relatively straightforward, as they correspond very closely to

the LOPS construction for the notion of filling operations defined in Definition 5.1.1. For the

159

formation rule, we define a new universe, Univ(U,Πlem, x : A, y : B, φ x, β y, δ x y), which

will contain those types in an existing universe U that can be equipped with a solution to

Fill
y:B|δxy↪→(y=βxy)
x:A|φx where the hypotheses to the formation rule are the same as those to the

definition of the filling operation. The one important detail to note is β: instead of directly

providing the cofibration restricting B to give the shape being filled, the universe constructor

instead requests an idempotent function from B to itself (sliced over A restricted by φ), and

the cofibration that describes the shape is given by the equalizer of the identity function on

B with this function (i.e. the image of β). As an object in a presheaf topos is tiny if and only

if it is the image of an idempotent representable functor (i.e. the retract of a representable

functor), the constructor asks for an idempotent representable functor directly to ensure

the resulting object is tiny with the guarantee that every tiny object is describable in this

way. The new universe comes with a decode function El(U, x : A, y : B, φ x, β y, δ x y).

As expected, decoding a code gives the original type, enforced by the first equation in

Figure 5.2. Similarly, encoding the decode of a type gives the original element of the universe,

as indicated by the final equation in Figure 5.2. The decode function is also equipped with

a solution to its corresponding filling problem, given by fill(U, x : A, y : B, φ x, β y, δ x y).

For any closed type Γ and closed type family A : Γ → U, the type of the filling operation for

A is given by Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) Γ A, and is defined to be precisely the

type corresponding to the definition of Filly:B|δxy↪→(y=βxy)
x:A|φx . Lastly, we also provide an encode

function for the universe: Given a closed type Γ, a closed type family A : Γ → U, and a filling

operation for A denoted by fillA, the term code(U, x : A, y : B, φ x, β y, δ x y)(Γ, A, fillA)

is a function from Γ into the new universe. The restriction to closed types for the encode

function corresponds to the use of the flat modality in [47], and will be explained in more

detail when we work out the semantics of this theory in Section 5.2.5.

Let us take a paragraph to focus on the filling operation for the universe, the rules

pertaining to it, and how they work together to provide the behavior we anticipate for

the inhabitants of our new universe. Note that these rules are pulled directly from the

160

LOPS construction, and thus are described in greater detail in [47]. The filling operation

for the decode function actually grants access to the filling operations for all types in the

new universe: Given a term B : A → Univ(U, . . .), if we wish to fill B along a shape

p : Πy : B.[y = β y] → A, the filling operation we need is given by fill(U, . . .) (B ◦ p). Note

that, if B is of the form code(U, . . .)(Γ, A, fillA) ◦ f , the filler fill(U, . . .) (B ◦ p) reduces to

fillA (f ◦ p) by the second equation in Figure 5.2, and thus filling in a code in the universe

does indeed reduce to using the filler provided with the code.

5.2.4 Encoding the Fill Type and Fiberwise Reasoning

As mentioned earlier, Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) A is to be defined as an

internally expressible element of the universe U ; in order to do so, we must internalize

the notion of fiberwise, contextual filling introduced in Section 5.1.2. Having done so, we

can then build up the required filling operations (and thus codes) for Fill out of modular

constructions defined over contextual filling.

FillData(x : A, y : B, φ x, β y, δ x y)
∆ ⊢ Ξ Type ∆ ⊢ Γ : Ξ → U ∆ ⊢ A : Πu : Ξ.Γ u→ U

∆ ⊢ FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ A Type

FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ A ≡
Πu : Ξ.
Πp : (Πy : B.[y = β y] → Γ u).
Πα : Cof.
Πx : A.Π∗ : [φ x].
Πb : Πy : B.[δ x y] → A u (p y ∗).
Πt : Πy : B.[(y = β y) ∧ α] → A u (p y ∗)[δ x y 7→ b].
Πy : B.[y = β y] → A u (p y ∗)[δ x y 7→ b, α 7→ t]

Figure 5.4: Typing rules for fiberwise filling operations

To begin this process, we introduce a type constructor for contextual filling operations

and pick out the type to which it is equal in Figure 5.4. As this type will be used to aid in

the definition of terms of the Fill type, we do not need it to land in any particular universe

161

and thus only consider it as an element of U ; in doing so, we have no issues immediately

defining the internal type it represents. It also will become useful to note that ultimately

the following equation holds (assuming a closed context ∆).

FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ A ≡ Πu : Ξ.
Πp : (Πy : B.[y = β y] → Γ u).
ElU (Fill(U, . . .) ((A u) ◦ p))

Taking this equation into account, one can see the definition is nearly identical to that

given in Section 5.1.2. This also demonstrates that when Ξ is the empty context/unit type,

FillCtx and the type of the filling argument required by the code constructor are isomorphic

(distinguished by a trivial quantification over the unit type).

The next step is to write down the rules we can stitch together to define filling operations

for types that depend on fiberwise contextual reasoning (such as the Fill type). We do so in

Figure 5.5. As with FillCtx, these rules are internally derivable and thus we define them to be

equal to terms already present in the theory in Figure 5.6. Akin to the definition of FillCtx,

these rules follow the first section of this chapter very closely, in particular corresponding

to the lemmas in Section 5.1.2; in this case, they match to such a great extent that the

same proofs justify the equations are correct and the terms type check soundly. The one

case that doesn’t precisely match up to anything cfillU, but thankfully its justification is

straightforward: If a type A is already in the universe, it contains a solution to the filling

problem for its entire context. Also, as we know from Lemma 5.1.3, we can weaken the

fibrant context and forget how to fill in portions of the context. Looking at the definition

of the term cfillU in Figure 5.6, we see it combines these two facts to conveniently take any

type that is fully fibrant and provide a witness to the fact it is contextually fibrant for the

desired contexts.

As a final step, we will make these lemmas easier to work with by defining wrappers

containing both the type they construct along with the corresponding proof of fiberwise

fibrancy using a Σ-type. We define the type of the wrappers cFib as follows.

162

FillData(x : A, y : B, φ x, β y, δ x y)
∆ ⊢ Ξ Type ∆ ⊢ Γ : Ξ → U ∆ ⊢ A : Ξ → U

∆ ⊢ B : Πu : Ξ.A u→ Γ u→ U
∆ ⊢ fillB : FillCtx(x : A, y : B, φ x, β y, δ x y) (Σu : Ξ.A u)

(Γ ◦ fst)
(λ(u, v).B u v)

∆ ⊢ cfillΠ(Ξ,Γ, A,B, fillB) : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ
(λu v.Πw : A u.B u w v)

FillData(x : A, y : B, φ x, β y, δ x y)
∆ ⊢ Ξ Type ∆ ⊢ Γ : Ξ → U ∆ ⊢ A : Πu : Ξ.Γ u→ U
∆, u : Ξ ⊢ α u cofib ∆, u : Ξ, v : Γ, ∗ : [α] ⊢ a u v : A
∆ ⊢ fillA : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ A

∆ ⊢ cfillBdry(Ξ,Γ, A, α, a, fillA) : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ
(λu v.A u v[α u 7→ a u v])

FillData(x : A, y : B, φ x, β y, δ x y)
∆ ⊢ Ξ Type ∆ ⊢ Γ : Ξ → U ∆ ⊢ A : Πu : Ξ.Γ u→ U

∆ ⊢ B : Πu : Ξ.Πv : Γ u.A u v → U
∆ ⊢ fillA : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ A

∆ ⊢ fillB : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ
(Σv : Γ u.A u v)
(λu (v, w).B u v w)

∆ ⊢ cfillΣ(Ξ,Γ, A,B, fillA, fillB) : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ
(λu v.Σw : A u v.B u v w)

FillData(x : A, y : B, φ x, β y, δ x y)
∆ ⊢ Ξ Type ∆ ⊢ Γ : Ξ → U ∆ ⊢ A : Πu : Ξ.Γ u→ Univ(U, . . .)

∆ ⊢ cfillU(Ξ,Γ, A) : FillCtx(x : A, y : B, φ x, β y, δ x y) Ξ Γ (ElUniv(...) ◦ A)

Figure 5.5: Closure conditions for fiberwise filling operations

163

cfillΠ(Ξ,Γ, A,B, fillB) ≡
λu p α x ∗ b t y ∗ a.fillB u x ∗ p α (λy ∗ .b x ∗ a)

(λy ∗ .t x ∗ a) y ∗

cfillBdry(Ξ,Γ, A, ψ, a, fillA) ≡
λu p α x ∗ b t.fillA u p (α ∨ ψ) x ∗ b (t ∨ a)

cfillΣ(Ξ,Γ, A,B, fillB) ≡
λu p α x ∗ b t y ∗ . let a = fillA u p α x ∗ (b ◦ fst) (t ◦ fst) in

(a y ∗, fillB u (λy ∗ .(p y ∗, a y ∗)) α x ∗ (b ◦ snd) (t ◦ snd))

cfillU(Ξ,Γ, A) ≡
λu p.fill(. . .) (Σu : Ξ.Γ u) (λ(u, v).A u v) (λy ∗ .(u, p y ∗))

Figure 5.6: Equations defining fiberwise filling closure condition terms

cFib(U,Πlem, x : A, y : B, φ x, β y, δ x y) : ΠΞ : U .(Ξ → U) → U
cFib(U,Πlem, x : A, y : B, φ x, β y, δ x y) Ξ Γ :=

ΣA : (Πu : Ξ.Γ u→ U).FillCtx(U, x : A, y : B, φ x, β y, δ x y) Ξ Γ A

Using this type, we can construct the definitions in Figure 5.7 that summarize the contents of

Figures 5.5 and 5.6. To ultimately further simplify the notation, we use brackets to indicate

implicit arguments.

At this point, we can finally construct the term interpreting the original formation rule

for Fill(. . .) given in Figure 5.2.

· ⊢ Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) : ΠA : (Πy : B.[y = β y] → U).U

First, we define a cFib corresponding to the filling operations type.

· ⊢ cFill(U′,Πlem′, x : A′, y : B′, φ′ x, β′ y, δ′ x y) :
cFib(U′,Πlem′, x : A′, y : B′, φ′ x, β′ y, δ′ x y) 1 (λ_.Πy : B.[y = β y] → U)

We define cFill(. . .) as the following term.

164

ctxΠ : Π{Ξ} : U .
Π{Γ} : Ξ → U .
ΠA : Ξ → U .
cFib(. . .) (Σu : Ξ.A u) Γ → cFib(. . .) Ξ Γ

ctxΠ {Ξ} {Γ} A (B, fillB) := (λu v.Πw : A u.B (u,w) v,
cfillΠ(Ξ,Γ, A,B, fillB))

ctxΠ2 : Π{Ξ} : U .
Π{Γ} : Ξ → U .
Π(A, fillA) : cFib(U,Πlem, . . .) Ξ Γ.
cFib(U,Πlem, . . .) Ξ (λu.Σv : Γ u.A u v)
→ cFib(U,Πlem, . . .) Ξ Γ

ctxΠ2 {Ξ} {Γ} (A, fillA) (B, fillB) := (λu v.Πw : A u v.B (u,w) v,
Πlem Ξ Γ A B fillA fillB)

ctxBdry : Π{Ξ} : U .
Π{Γ} : Ξ → U .
Π(A, fillA) : cFib(. . .) Ξ Γ.
Πα : Ξ → Cof
(Πu : Ξ.Πv : Γ u.[α u] → A u v)
→ cFib(. . .) Ξ Γ

ctxBdry {Ξ} {Γ} (A, fillA) α a := (λu v.A u v[α u 7→ a u v],
cfillBdry(Ξ,Γ, A, α, a, fillA))

ctxΣ : Π{Ξ} : U .
Π{Γ} : Ξ → U .
Π(A, fillA) : cFib(. . .) Ξ Γ.
cFib(. . .) Ξ (λu.Σv : Γ u.A u v) → cFib(. . .) Ξ Γ

ctxΣ {Ξ} {Γ} (A, fillA) (B, fillB) := (λu v.Σw : A u v.B u (v, w),
cfillΣ(Ξ,Γ, A,B, fillA, fillB))

ctxU : Π{Ξ} : U .
Π{Γ} : Ξ → U .
(Πu : Ξ.Γ u→ Univ(. . .)) → cFib(. . .) Ξ Γ

ctxU {Ξ} {Γ} A := (λu v.El(A u v), cfillU(Ξ,Γ, A))

Figure 5.7: Combined notation for fiberwise filling closure conditions

165

(ctxΠ (λ_.Cof)
(ctxΠ (λ_.A)
(ctxΠ (λ(α, x).[φ x])
(ctxΠ2 (ctxΠ (λ_.B) (ctxΠ (λ(α, x,_, y).[δ x y])

(ctxU (λ(α, x,_, y,_) A.(A y ∗)))))
(ctxΠ2 (ctxΠ (λ_.B) (ctxΠ (λ(α, x,_, y).[(y = β y) ∧ α])

(ctxBdry (ctxU (λ(α, x,_, y,_) (A, b).A y ∗)) (λ(α, x,_, y,_).δ x y)
(λ(α, x,_, y,_) (A, b) _.b y ∗))))

(ctxΠ (λ_.B)
(ctxΠ (λ(α, x,_, z).[z = β x z])
(ctxBdry (ctxU (λ(α, x,_, z,_) (A, b, t).A z ∗)) (λ(α, x,_, z,_).δ x z ∨ α)

(λ(α, x,_, z,_) (A, b, t) _.b ∨ t)))))))))

Note that the parameters to cFill correspond to the filling problem the type satisfies, and

not that described by the type.

The internal term corresponding to Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) follows from

this by induction on the judgement U Univ.

If U is U , none of this fibrancy proof is even needed, and Fill(U , . . .) is simply the type

family itself.

Fill(U , . . .) := λA. Πα : Cof.
Πx : A.Π∗ : [φ x].
Πb : Πy : B.[δ x y] → A y ∗ .
Πt : Πy : B.[(y = β y) ∧ α] → A y ∗ [δ x y 7→ b].
Πy : B.[y = β y] → A y ∗ [δ x y 7→ b, α 7→ t]

If U is instead some Univ(U′,Πlem′, x : A′, y : B′, φ′ x, β′ y, δ′ x y), then by our inductive

hypothesis assume we have defined a type family corresponding to the filling operation

landing in U′.

· ⊢ Fill(U′,Πlem, x : A, y : B, φ x, β y, δ x y) : ΠA : (Πy : B.[y = β y] → U′).U′

To construct the code landing in U, we must provide two things. First, the type family

landing in U′ is easily given as follows.

166

· ⊢ λA.Fill(U′,Πlem, x : A, y : B, φ x, β y, δ x y) (El(U′, . . .) ◦ A) :
ΠA : (Πy : B.[y = β y] → U).U′

Second, we need to provide the filling operation, which is given by the second projection of

cFill(U′,Πlem′, x : A′, y : B′, φ′ x, β′ y, δ′ x y) (applied to the unit term to correct for the

empty contextual context). Combining these together, we define Fill(U , . . .).

Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) :=
code(U′,Πlem′, x : A′, y : B′, φ′ x, β′ y, δ′ x y)

(Πy : B.[y = β y] → U,
λA.Fill(U′,Πlem, x : A, y : B, φ x, β y, δ x y) (El(U′, . . .) ◦ A),
((π2 cFill(U′,Πlem′, x : A′, y : B′, φ′ x, β′ y, δ′ x y))) ∗)

Using the same techniques, on can conclude that many of the fundamental building

blocks used in type theories are always fibrant, such as path types, fibrant extension types

and the contractible fill types. When working in type theories such at HoTT, cubical type

theory, etc. . . the goal is to have the ability to discuss the additional structure introduced by

modeling types as presheaves; these rules provide the foundational building blocks to safely

describe the types that expose this categorical structure.

5.2.5 Semantics of Internally Definable Universes

While the rules interpret into the LOPS construction via the standard interpretation of the

type theory into the topos Ĉ, there are a number of tricks and nuances at play to make things

work out as desired. To allow for the most general class of filling operations as defined in

Definition 5.1.1 we semantically must construct each universe in a slice of the presheaf topos

Ĉ. We also have omitted any explicit reference to the ♭-modality from the syntax despite

the ♭-modality being required to encode types with the LOPS construction; it “secretly” is

taken into account by the syntactic rules, which we justify in this section.

For this section, let U represent the object classifier of the topos Ĉ; in particular, we mean

the the Grothendieck hierarchy of such objects, but leave the level annotations implicit. We

also assume that C is closed under finite products, as is required by the LOPS construction.

167

Syntax Semantic

U Grothendieck universe of topos
Univ(U,Πlem, x : A, y : B, φ x, β y, δ x y) LOPS construction over U
ElU LOPS decode function for U
El(U, x : A, y : B, φ x, β y, δ x y) LOPS construction projection into U
fill(U, x : A, y : B, φ x, β y, δ x y) filler from LOPS
Fill(U,Πlem, x : A, y : B, φ x, β y, δ x y) composition operation code in U
code(U, x : A, y : B, φ x, β y, δ x y) encode function from LOPS that “hides”

the ♭-modality

Figure 5.8: Summary of topos semantics for internal LOPS universes

Definition 5.2.1. For this section, we define filling data to consist of a dependent tuple

(A,B, φ, β, δ) where A and B are representables in Ĉ, φ is a cofibration scoped by A, δ is a

cofibration scoped by A×B, and β is an idempotent morphism from A×B to itself sliced

over A via the first projection.

Definition 5.2.2 (from [47, Theorem 5.2]). A universe object is an object U ∈ Ĉ such that,

for some filling data (A,B, φ, β, δ), we have the following:

• a morphism ElU ∈ Ĉ(U,U);

• a global element fillU ∈ Ĉ(1,FillB|δ↪→(id=β)
A|φ U ElU);

• for every object Γ, morphismA ∈ Ĉ(Γ,U) and every global element f ∈ Ĉ(1,FillB|δ↪→(id=β)
A|φ ΓA)

a morphism codeU(A, f) ∈ Ĉ(Γ,U).

These must also satisfy the equations below.

∀Γ ∈ Ĉ, A ∈ Ĉ(Γ,U), f ∈ Ĉ(1,FillB|δ↪→(id=β)
A|φ Γ A),

A = ElU ◦ codeU(A, f)
f = λx ∗ p.fillU x ∗ (λy ∗ .codeU(A, f) ◦ (p y ∗))

∀Γ ∈ Ĉ, A ∈ Ĉ(Γ,U),

A = codeU(ElU ◦ A, λx ∗ p.fillU x ∗ (A ◦ p x ∗))

168

Construction 5.2.3. Given filling data (A,B, φ, β, δ), one can constructively define a uni-

verse object U(A,B,φ,β,δ) in Ĉ classifying fibrations for the filling problem Fill
B|δ↪→(id=β)
A|φ .

Proof. We define the universe using the LOPS construction. The composition structure for

LOPS is given as follows.

C : ΠA : (Πz : B.Jβ z = zKcof → U).U
C A := Πα : Cof.

Πx : A.Π∗ : [φ x].
Πb : Πz : B.Jδ x zKcof → A z ∗ .
Πt : Πz : B.Jβ z = z ∧ αKcof → A z ∗ [δ x z 7→ b].
Πz : B.Jβ z = zKcof → A z ∗ [δ x z 7→ b, α 7→ t]

For this composition structure to be compatible with LOPS, we must confirm the object

ΣB.(β = idB) is tiny. This follows from the assumption C is closed under finite products,

and that β is an idempotent morphism. From [15, Theorem 1], we know the category of

presheaves over the idempotent completion of a category is equivalent to the category of

presheaves over the original category. As ΣB.(β = idB) is a representable in the category of

presheaves over the idempotent completion (and thus tiny), it is tiny in the original presheaf

category. Given this holds and that the definition of C matches our intended notion of

fibrancy, the LOPS construction gives us the desired universe.

5.2.6 Applications of Internally Definable Universes

The work in this chapter has been motivated by a few potential applications that are worthy

of note. As has been mentioned throughout this chapter, we think that using this approach

to define universes within a new a proof assistant will make implementation much easier

and as an added bonus decrease the trusted code base, making the resulting proof assistant

more reliable and less error-prone. As a second application, we believe that by making the

definition of new classifying universes a simple task, one can consider doing so for more

specialized situations and explore more niche classes of types than traditionally considered.

In regards to this perspective, one example we find interesting would be considering the

169

universe of Kan types in Dedekind cubical type theory that additionally lift against the trivial

cofibration enforcing a unique, weak total order on interval variables; as Dedekind cubical

sheaves with respect to the total order are isomorphic to simplicial sets, we conjecture the

fibrations classified by the universe of Kan Dedekind cubes that are weakly totally ordered

should be Quillen equivalent to Kan simplicial spaces. The ability to so easily define such

universes and explore universes for any number of (relatively-)arbitrary lifting problems side-

by-side seems compelling and a particularly powerful proof assistant within which to explore

mathematics.

170

Chapter 6

Implementation

The contents of this chapter are joint work with Daniel Licata. A summary of this chapter
was presented at the 2nd International Conference on Homotopy Type Theory [82]. Reed
Mullanix assisted with the implementation.

We implemented a portion of the type theory described in thesis building off of the cooltt

proof assistant [1], and our implementation is available as a branch of the same repository

[3]. To summarize the features of the implementation, its type theory contains the following

features beyond those in “vanilla” cooltt (which is based off of Cartesian cubical type theory

[7]):

• a second interval, 2—in addition to the homotopical interval I—used to represent

directed structure;

• an extended notion of cofibration built out of inequalities and equalities of terms and

variables of both interval types, closed under conjunction, disjunction, universal quan-

tification of either interval, top and bottom;

• a generalized notion of fibrant extension types, implementing and automating the con-

textual fibrancy reasoning described in Chapter 5. In particular, this makes the type

171

of the Cartesian filling problem an internally definable fibrant type, along with those

corresponding to the filling problems we use in directed type theory.

The most notable omission from the current state of the implementation are any additional

universes for the various new classes of types introduced in Chapter 3, and given in particular

the lack of a universe of covariant fibrations directed cooltt also fails to support directed

univalence (in its current state). That being said, combining the existing features one can use

the current version of directed cooltt to internally define the filling problem style predicates

used to define covariant fibrations, discrete fibrations, Segal types, and inner fibrations, and

reason about the properties of such types (e.g. their closure conditions). We actually used

directed cooltt ourselves to verify a few of the proofs appearing in Section 3.2!

6.1 Bicubical Directed Type Theory

Without Connections

The most significant departure from the syntax given for the topos semantics of Chapter 3

is that we choose to omit connections for the directed interval in the implementation, and

instead provide a builtin inequality cofibration (recall that the primary use of connections

in the semantics was to define the inequality cofibration x ≤ y as the equality cofibration

x = x ⊓ y for directed interval variables x and y). It is important to note that, while the

syntax of the implementation does not contain connection terms for the directed interval, it

still can be interpreted into semantics containing connections (such as the semantics from

Chapter 3), with the inequality cofibration interpreted as the equality above.

The algorithm for deciding cofibration propositions in the presence of connections is a

ΠP
2 -complete problem [66], while that for deciding cofibrations without connections but with

inequalities is coNP-complete and thus much more tractable; as such, we sought to avoid this

computational challenge by instead exploring how the surface syntax of the implementation

could be modified to avoid connections without sacrificing the ability to express all that
172

one would hope to be able to encode in directed type theory. As a secondary benefit, this

approach allows for the syntax to be interpreted into semantics based in more potential cube

categories, as e.g. one can certainly imagine defining a new cube category containing the

monomorphisms corresponding to inequality cofibrations without the additional morphisms

generated from arbitrary connections.

6.1.1 Covariant Fibrations Without Connections

In order to account for the lack of connections for the directed interval, we had to update

the notion of covariant filling (Definition 3.2.9). To summarize the problem before modifying

the filling problem, recall that the filler is based on the idea of taking as input a term over

a path p evaluated at 02, and outputting a term defined over the entire path. Should one

need to, one could modify the path and instead provide λx.p (i ⊓ x) to instead provide as

input a term over p i and as output receive a term defined from i to 12, as can one do

similar tricks with connections for other restrictions of the path. These tricks that leverage

connections are fundamental and prove necessary in many proofs, including those appearing

in this thesis.1

Thankfully, one can provide a new definition for covariant filling that generalizes all

of these tricks, and furthermore is provably equivalent to the “standard” definition from

Chapter 3 in the presence of connections.

Definition 6.1.1. A relativized covariant filling structure on A : Γ → Type is a term of type

covFillΓ A:
1e.g. proving that Ucov is closed with respect to Σ-types. Note that the corresponding proof using the

new notion of covariance defined here appears at the end of Section 6.2.

173

rcovFill2 (i j : 2) (∗ : Ji ≤ jKcof)
(A : Πz : 2.Ji ≤ z ≤ jKcof → Type) := Πα:Ωcof.

Πt:(Πz:2.Ji ≤ z ≤ jKcof
→ JαKcof → A z ∗).

Πb:(A i ∗)[α 7→ t i ∗].
(A j ∗)[α 7→ t j ∗, i = j 7→ b]

rcovFillΓ (A : Γ → Type) := Πi j : 2.Π∗ : Ji ≤ jKcof .
Πp:(Πz : 2.Ji ≤ z ≤ jKcof → Γ).
rcovFill2 i j ∗ (A ◦ p)

In the presence of a witness rcovA : rcovFillΓ A, we write covz:i→j
A p [α 7→ t z] b to denote

rcovA i j ∗ p α (λz.t z) b.

Let us quickly demonstrate how this notion of covariance coincides with that given in

Definition 3.2.9 in the presence of connections. For our purposes here we simply will demon-

strate their interderivability, and not formally construct the entire equivalence. As such,

assume a context type Γ and type family A : Γ → Type. Beginning with a witness to

rcovFillΓ A, it is particularly straightforward to derive a solution to the standard covariant

filling problem.

covA : covFillΓ A

covA p α t b k := covz:02→k
A p [α 7→ t z] b

By instantiating the relativized covariant filling problem such that i is 02 and j is k, one

recovers the original notion of covariance. To derive a solution rcovA : rcovFillΓ A from

a witness to the standard problem, one instead modifies the path supplied to the filling

problem using connections.

rcovA : rcovFillΓ A

rcovA p i j ∗ α t b := covz:02→j
A (λz.p(j ⊓ (i ⊔ z))) [α 7→ t (j ⊓ (i ⊔ z)) ∗,

i = j 7→ b] b

In this case, it is important to note how the types of t, b and the output interact with the

modification to the path p. First, as t : Πz:2.Ji ≤ z ≤ j⊓αKcof → A (p z), when instantiated

174

at j⊓(i⊔z), the resulting term has type Ji ≤ j⊓(i⊔z) ≤ jKcof → JαKcof → A (p (j⊓(i⊔z))).

By the equational rules for connections (Figure 3.3), Ji ≤ j ⊓ (i ⊔ z) ≤ jKcof is always true

and thus we can apply the term to the witness of such resulting in t (j ⊓ (i⊔ z)) ∗ which has

type JαKcof → A (p (j ⊓ (i ⊔ z))) as expected by the standard filling operation. The term b

has type (A (p i))[α 7→ t i ∗], which equals the type A (p (j⊓ (i⊔02)))[α 7→ t (j⊓ (i⊔02)) ∗]

by again using the equational rules for connections (which in particular is the type expected

by the standard filling problem where the term b is utilized). Lastly, the type expected of

covz:02→j
A (λz.p(j ⊓ (i ⊔ z))) [α 7→ t (j ⊓ (i ⊔ z)) ∗, i = j 7→ b] b for the above term to type

check is (A (p j))[α 7→ t j ∗, i = j 7→ b]. By directly computing its type from the definition,

we instead see it has type (A (p (j ⊓ (i⊔ j))))[α 7→ t (j ⊓ (i⊔ j)) ∗, i = j 7→ b]; however, this

type is scoped by a witness to i ≤ j, and thus by the equations for connections j ⊓ (i ⊔ j)

reduces to j, and thus the above definition of rcovA is well-typed.

While we have not added the universe of relativized covariant types to directed cooltt,

the plan to do so is as follows: Despite not fitting into the schema of fibrant filling problems

defined in Chapter 5, the type of relativized covariant fillers is Kan fibrant and compatible

with LOPS universe semantics and as such we intend to manually add the universe incorpo-

rating as much of the approach described in Section 5.2.3 as is possible. While the universe

itself must be manually added to the syntax of the language, we then plan to add a code

constructor to inhabit the universe that takes as input a cooltt type along with an internally

defined solution to the filling problem in the same way as the universes are inhabited in

Section 5.2.3.

6.2 Sample Code in Directed CoolTT

We now present some sample code written in directed cooltt.

As a starting point, let us look at the definition of the directed path type.

def homO (A : (i : 2) → type)
(a : A d0)

175

(b : A d1) : type :=
(i : 2) → fsub A i with [i = d0 ⇒ a | i = d1 ⇒ b]

While relatively straightforward and similar to definitions of path types in the current im-

plementations of cubical type theory, one key syntactic element likely stands out as unusual:

the fsub type former. In cooltt, the term “extension type” refers to RS extension types

(Definition 2.3.11), i.e. a type with a boundary restriction directly wrapped with a Π-type

that binds all interval variables appearing in the boundary restriction. To refer to a “normal”

extension type consisting of just the type with a boundary restriction, cooltt uses the term

“sub type.” To keep things consistent, directed cooltt introduces the fsub type former to

represent sub types that additionally are required to be used in a fibrant way according to

the rules explored in Chapter 5. Given this is the case, an fsub type is always a subterm of

a type that is being checked as a term of the universe of Kan types (which is denoted in the

language by type).

As the next code sample, consider the definition of the inner filling problem.

def isInner (A : (i j : 2) → <i ≤ j> → type) : type :=
(α : cof) →
(b : (i j : 2) → <i=d0 ∨ j=d1> → A i j) →
(t : (i j : 2) → <i ≤ j ∧ α>

→ fsub A i j with [i=d0 ∨ j=d1 ⇒ b i j]) →
(i j : 2) → <i ≤ j> →
fsub A i j with [α ⇒ t i j

| i=d0 ∨ j=d1 ⇒ b i j]

def relInner (Γ : type) (A : Γ → type) : type :=
(p : (i j : 2) → <i ≤ j> → Γ)
→ isInner {i j ⇒ {A {p i j}}}

Conveniently, the code looks nearly identical to that which we wrote manually in Defini-

tion 3.2.18, but what is important to realize is that, as the fiber-wise contextual reasoning is

automated, isInner and relInner are automatically fibrations landing in type, the universe

of Kan fibrations.

We also used directed cooltt to verify a few of the proofs appearing in Chapter 3. First,

we have the definition of the inner filling operation for Σ-types. . .

176

def sigmaInner (Γ : type)
(A : Γ → type)
(B : (γ : Γ) → A γ → type)
(inA : relInner Γ A)
(inB : relInner {(γ : Γ) × A γ}

{p ⇒ B {fst p} {snd p}})
: relInner Γ {γ ⇒ (a : A γ) × B γ a} :=

p α b t i j ⇒
let a : (i j : 2) → <i ≤ j> → A {p i j} :=

inA p α {i j ⇒ fst {b i j}}
{i j ⇒ fst {t i j}} in

[a i j
, inB {i j ⇒ [p i j , a i j]} α

{i j ⇒ snd {b i j}}
{i j ⇒ snd {t i j}} i j]

. . . and here is the definition of the inner filling operation for directed path types.

def HomInner (Γ : type)
(A : Γ → 2 → type)
(inA : (i : 2) → relInner {Γ} {p ⇒ A p i})
(a0 : (γ : Γ) → A γ d0) (a1 : (γ : Γ) → A γ d1)
: relInner Γ {γ ⇒ homO {A γ} {a0 γ} {a1 γ}} :=

p α b t i j x ⇒ inA x p
{α ∨ x = d0 ∨ x = d1}
{i j ⇒ b i j x}
{i j ⇒ [α ⇒ t i j x

| x = d0 ⇒ a0 {p i j}
| x = d1 ⇒ a1 {p i j}]}

i j

Both constructions appear within Theorem 3.4.2.

Lastly, let’s look at a proof that uses the relativized covariance definition. First, we define

the type of relativized filling structures.

def relCov (Γ : type) (A : Γ → type) : type :=
(i j : 2) → <i ≤ j> →
(p : (k : 2) → <i ≤ k ∧ k ≤ j> → Γ) →
(α : cof) →
(b : A {p i}) →
(t : (k : 2) → <i ≤ k ∧ k ≤ j ∧ α>

→ fsub A {p k} with [i=k ⇒ b]) →
fsub A {p j} with [α ⇒ t j

| i=j ⇒ b]

177

The proof that relativized covariant types are closed under Σ-types follows the same pattern

as for inner fibrations: One simply pairs together the two solutions.

def sigmaCov (Γ : type) (A : Γ → type)
(B : (γ : Γ) → A γ → type)
(covA : relCov Γ A)
(covB : relCov {(γ : Γ) × A γ}

{p ⇒ B {fst p} {snd p}})
: relCov Γ {γ ⇒ (a : A γ) × B γ a} :=

i j p α b t ⇒
let a : (k : 2) → [i ≤ k ∧ k ≤ j] → A {p k} :=

k ⇒ covA i k p α {fst b} {k ⇒ fst {t k}} in
[a j
, covB i j {k ⇒ [p k , a k]} α

{snd b} {k ⇒ snd {t k}}]

178

Chapter 7

Future Work

An exciting secondary outcome of this body of work in bicubical directed type theory is

that it has layed the foundation for a sizable amount of potential future research. While the

projects introduced in this chapter are far from forming an exhaustive list, here are a few of

the key directions we are most enthusiastic to explore.

7.1 Directed Higher Inductive Types

In the presence of directed univalence, one would additionally hope for a theory containing

directed higher inductive types (DHITs). These types allow for one to inductively define

types containing directed structure, and in conjunction with directed univalence allow for

novel proof techniques in verification; in particular, the combination allows one to directly

formalize functorial semantics using the internal categorical structure of types. We intend to

introduce a schema for DHITs based off of the schema for higher inductive types in cubical

type theory by Cavallo and Harper [19].

179

7.2 More Implementation(s)

While much of the work in this thesis is already implemented in directed cooltt [3], we would

like to ultimately implement a complete working version of directed type theory as a proof

assistant. Specifically, this involves using internal LOPS universes as described in Chapter 5

to add universes classifying the inner and covariant types, adding inductive and directed

higher inductive types into the implementation, and finally taking into account the cobar

modal theory from Chapter 4 so that the proof assistant supports computational directed

univalence.

7.2.1 Computational Univalence and Challenge of Cobar

While the list above mostly provides a straightforward summary of the future we see for di-

rected cooltt, one particular aspect warrants deeper discussion: incorporating cobar-modal

types into the syntax and computational semantics. While the construction given in Chap-

ter 4 is fully constructive, it is not immediately clear how the addition of the cobar modality

and the resulting constructions built using it behave in the setting of a programming lan-

guage/proof assistant. The key challenge is that, when doing constructive mathematics, one

has the ability to see “outside” of the type theory, and is working from a global perspective;

when defining a syntax and computational model for a programming language, nearly all

constructions and rules are defined locally with respect to an arbitrary context, and further-

more they must be defined in such a way that they are stable under context substitutions.

Unfortunately, the cobar construction itself is particularly global in nature: It initially is

defined piecewise at every dimension (i.e. object) of the directed cubes individually, and the

construction then adheres in such a way that the individual components can be combined to

ultimately result in a definition that is coherent over all of the directed cubes. To work with

the construction, one must know at which directed dimension the presheaves are evaluated

at, and then work from that specific dimension’s definition. While this is a perfectly reason-

180

able way to work in the categorical semantics, it does not translate to the local, open-context

nature of computational rules. Identifying how the cobar construction translates to a com-

putational setting therefore warrants its own research project, and only with its solution will

we have a computational notion of directed univalence.

7.2.2 Internal LOPS Universes

As mentioned in Section 5.2.6, we are also interested in implementing a proof assistant for

bicubical type theory that is built from the ground up to incorporate internally definable

LOPS universes.

7.3 Applications in Verification

Upon implementing a fully-functional proof assistant directed type theory, a potentially

fruitful body of work becomes possible in exploring how new directed techniques can be

developed to aid software verification.

7.3.1 Functorial Semantics

As introduced in Section 1.1, we believe directed type theory has the potential to be particu-

larly useful for software verification by opening up the ability to naturally encode functorial

semantics within the proof assistant. Combining the fact that all constructions are enforced

to be functorial, and that directed type theory has the ability to “automatically” identify

when many constructions are natural, designing one’s formalization to leverage these prop-

erties should significantly simplify both definitions and proofs; furthermore, a large portion

of the existing body of work formally studying software and programming languages already

takes advantage of these properties of category theory on paper, demonstrating both how to

structure a functorial approach to formal verification and the many benefits the categorical

approach provides mathematically.

181

7.3.2 The Structure Preservation Principle

Considering a more specific application, one technique we wish to investigate specifically is

whats we call the structure preservation principle (SPP). In a nutshell, SPP is the directed

analogue of the structure identity principle (SIP): the idea that the mathematical properties

of structures should be fully invariant with respect to isomorphisms of the structures. From

the perspective of software verification and programming language theory, this corresponds

to the “free theorems” granted by parametricity arguments; these arguments demonstrate

that two implementations of the same abstract interface are fully interchangeable without

effecting the behavior of programs that use the interface so long as each individual component

provided to the interface from each implementation behaves identically. Angiuli, Cavallo,

Mörtberg and Zeuner demonstrated how cubical type theory allows one to use SIP to derive

such theorems within cubical type theory [9], and from it we asked the natural followup

question: How would these ideas translate to directed type theory? From this, we landed

on the structure preservation principle: mathematical properties of structures should be

fully preserved with respect to homomorphisms of the structures. In terms of verification,

this corresponds to being able to swap out one implementation of an abstract interface for

another so long as there is a function from the first to the second that preserves the behavior

of each component provided to the interface by the implementations. While certainly this

can apply across a number of situations arising in software verification, most notable this

pattern aligns with the structure of compiler correctness proofs.

When proving a compiler correct, one generally considers a function translating abstract

syntax of one language to another, and alongside each languages’ abstract syntax are a

number of relations defined over the syntax specifying the behavior of that language, e.g.

how it computes, which terms are values, etc. . . . For a compiler to be proven correct, one

then shows that the compiling function preserves the behavior of programs, which specifically

corresponds to showing that some theorem built from these abstract relations is preserved.

Using SPP in directed type theory, one should be able to expedite this process by working

182

more locally to show the individual relations are preserved by the compiling function, and

in doing so conclude the final theorem “for free.” As an example, let us demonstrate how

this works by proving that type erasure for the simply typed lambda calculus preserves the

property of program termination.

To begin the example we first define the abstract structure used to represent a syntax.

The idea is that a syntax consists with a type of terms Syn paired with a binary small-step

relation _ ⇒ _ and a unary value relation Val. In addition, we will also need to abstract

structure to carry around a term of the syntax as well, and we will see why that is necessary

by the end of the example. Putting this all together, we define the structure as the term S

below.

S : UCov → UInner
S = λSyn.(_⇒_ : Syn → Syn → UCov)×(Val : Syn → UCov)×Syn

Note here that the type family specifying the abstract structure lands in UInner. For this

technique there is no need for the stronger restriction that S land in the covariant universe;

furthermore, we explicitly do not want such a restriction in this case as it would not allow

us to write down the types of the relations, as they use covariant types in contravariant

positions.

As we desire to prove that type erasure preserves termination, we will need a definition

of the multistep relation. We do so abstractly over the syntax structure in the following

definition.

data _⇒∗_ {Syn : UCov}
{(_⇒_ , Val) : S Syn}
(t t’ : Syn) : UCov where

srefl : Path t t’ → t ⇒∗ t’
strans : (t’’ : Syn) → t ⇒∗ t’’ → t’’ ⇒ t’ → t ⇒∗ t’

At this point, we have all of the pieces needed to define the proposition P classifying

termination. Given some syntax, small step relation, value relation, and term t, the term t

terminates if we can identify a term t’ such that t multisteps to t’, and t’ is a value.

183

P : (Σ C:UCov.S C) → UCov
P = λ(Syn , _⇒_, Val , t).Σ t’:Syn.(t ⇒∗ t’ × Val t’)

This predicate identifies the singular case when the term t provided as part of the abstract

structure terminates; note that were one to remove t from the structure and instead quantify

over all terms with a Π as part of the predicate type itself, the predicate would no longer

land in UCov as the Π would quantify over a covariant type in a contravariant position;

furthermore, we need the predicate to land in UCov in order to leverage directed composition

for the final result. By the end of this example, we will see that this limitation is a good

thing, as without it one could prove results that are obviously incorrect.

Now assume we have defined types corresponding to the syntax of the simply typed

lambda calculus and the untyped lambda calculus, along with predicates for their small step

operational semantics and their value relation. . .

λt:STLC.(_⇒STLC_ , ValSTLC , t) : STLC → S STLC
λt:LC.(_⇒LC_ , ValLC , t) : LC → S LC

. . . and we have defined the type erasure function.

erase : STLC → LC

The meat of the proof consists of two lemmas: type erasure preserves the small step

relation, and it preserves the value relation.

rel⇒ : Πt t’:STLC.t ⇒STLC t’ → (erase t) ⇒LC (erase t’)
relVal : Πt:STLC.ValSTLC t → ValLC (erase t)

After proving both lemmas, the two can be combined to define a dependent morphism in S

over the morphism in UCov given by directed univalence applied to erase that begins at the

STLC structure and ends at the LC structure.

rel : Πt:STLC.HomO (dua erase)
(STLC , _⇒STLC_ , ValSTLC , t)
(LC , _⇒LC_ , ValLC , erase t)

The second fundamental proof we need is that every term in the simply typed lambda

calculus terminates. Using the previously defined components, this corresponds to providing
184

a term of type Πt : STLC.P (STLC,_ ⇒STLC _, ValSTLC, t), which unfolds to the expected

type.

pSTLC : Πt:STLC.P (STLC , _⇒STLC_ , ValSTLC , t)
pSTLC : Πt:STLC.Σ t’:STLC.(t ⇒∗

STLC t’ × ValSTLC t’)

We now arrive at the payoff: Noting that the predicate P lands in UCov, we have access

to directed transport and thus we can transport the proof that all terms in the simply typed

lambda calculus terminate to one indicating that any untyped lambda calculus term that is

in the image of type erasure also terminates.

pLC : Πt:STLC.P (LC , _⇒LC_ , ValLC , erase t)
pLC : Πt:STLC.Σ t’:LC.((erase t) ⇒∗

LC t’ × ValLC t’)
pLC = λt.dtransp P (Σhom (dua erase , rel t)) (pSTLC t)

Recalling back to the beginning when we defined S and P, we needed to include a term

as a part of the structure tuple with the predicate describing when that individual term

terminated. Defining things in this way was required so that P landed in the covariant

universe. Now at the end of this example, we see that doing so resulted in the final theorem

concluding that all untyped lambda terms terminate so long as they are in the image of type

erasure for some typed lambda term, which is indeed a true statement. Were the predicate P

defined to express that all terms terminate, the proof concluded by using directed transport

as done above would say that all untyped lambda terms terminate, which we know to be

false; thankfully, such a predicate P is not properly typed as the type family is not covariant,

and thus one cannot prove the false statement.

7.4 Model Categorical Semantics

Shifting to the mathematical applications of this work, those using proof assistants for syn-

thetic mathematics care greatly about the mathematical semantics of the theory in which

they do their work; as such, we hope to formally develop the model category semantics of

bicubical directed type theory. While this is still very much a conjecture and future work,

185

here we sketch out the skeleton of what hopefully will become the proof, along with our

reasoning for why we believe this to be the case.

While being relatively agnostic to our base model structure on cubical sets, let’s assume

it is defined in the “standard” way, being cofibrantly generated by pushout products of the

endpoint inclusion with the boundary maps of the cube.

Now, we lift this filling problem to bicubical sets (the additional cube category being the

Dedekind cubes) by using the same generators except our generating cofibrations used in

the pushout product now include boundary maps of both the normal cubes and the directed

cubes. Having done this, we will now define our fibrant objects to be those that are “fibrant”

with respect to the lifted filling problem, and are also cobar modal. We conjecture this

should give us the injective fibrations in bicubical sets over the underlying model structure

on cubical sets via Lemma 8.22 in [71]. We already have shown that weak equivalences of

cobar-modal types are level-wise weak equivalences of cubical sets in Section 4.2.5, and thus

as both the fibrations and weak equivalences coincide, this model structure should indeed be

the injective model structure on bicubical sets.

186

Bibliography

[1] cooltt. https://github.com/RedPRL/cooltt. 171

[2] coq. https://coq.inria.fr. 49

[3] directed cooltt. https://github.com/RedPRL/cooltt/tree/directed-2.0. 19, 171,
180

[4] Rzk. https://github.com/rzk-lang/rzk. 21

[5] Simplicial HoTT and synthetic ∞-categories in rzk. https://github.com/rzk-lang/
sHoTT. 21

[6] Yoneda for ∞-categories in rzk. https://github.com/emilyriehl/yoneda. 21

[7] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia),
Robert Harper, and Daniel R. Licata. Syntax and models of cartesian cubical type
theory. Mathematical Structures in Computer Science, 31:424–468, 2021. 1, 54, 59, 62,
64, 65, 76, 81, 83, 86, 99, 104, 107, 171

[8] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou, Robert Harper, and Jonathan Sterling.
The redprl proof assistant (invited paper). In Proceedings of the 13th International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, pages
1–10, 2018. 15

[9] Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing rep-
resentation independence with univalence. Proceedings of the ACM on Programming
Languages, 5(POPL):1–30, 2021. 182

[10] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian cubical com-
putational type theory: Constructive reasoning with paths and equalities. In Computer
Science Logic, 2018. 1, 54

[11] S. Awodey and M. Warren. Homotopy theoretic models of identity types. Mathematical
Proceedings of the Cambridge Philosophical Society, 2009. 1, 23

[12] Steve Awodey. A Quillen model structure on the category of cartesian cubical sets.
Talk at the 1st International Conference on Homotopy Type Theory 2019, available
from https://hott.github.io/HoTT-2019, 2019. 136

187

https://github.com/RedPRL/cooltt
https://coq.inria.fr
https://github.com/RedPRL/cooltt/tree/directed-2.0
https://github.com/rzk-lang/rzk
https://github.com/rzk-lang/sHoTT
https://github.com/rzk-lang/sHoTT
https://github.com/emilyriehl/yoneda
https://hott.github.io/HoTT-2019

[13] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical
sets. Preprint, September 2013. 1, 54

[14] Lars Birkedal, Ales Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and
Andrea Vezzosi. Guarded cubical type theory: Path equality for guarded recursion.
arXiv:1606.05223, 2016. 17

[15] Francis Borceux and Dominique Dejean. Cauchy completion in category theory. Cahiers
de topologie et géométrie différentielle catégoriques, 27(2):133–146, 1986. 83, 169

[16] Ulrik Buchholtz and Edward Morehouse. Varieties of cubical sets. In Relational and
Algebraic Methods in Computer Science: 16th International Conference, RAMiCS 2017,
Lyon, France, May 15-18, 2017, Proceedings. 2017. 56, 80, 82

[17] Ulrik Buchholtz and Jonathan Weinberger. Type-theoretic modalities for synthetic
(∞, 1)-categories. Talk at the 1st International Conference on Homotopy Type Theory
2019, 2019. 20, 79

[18] Ulrik Buchholtz and Jonathan Weinberger. Synthetic fibered (∞, 1)-category theory.
Higher Structures, 7(1):74–165, 2023. 20

[19] Evan Cavallo and Robert Harper. Higher inductive types in cubical computational
type theory. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2019. 3, 179

[20] Evan Cavallo and Robert Harper. Internal parametricity for cubical type theory. Logical
Methods in Computer Science, 17(4):5:1–5:60, 2021. 20

[21] Evan Cavallo, Emily Riehl, and Christian Sattler. On the directed univalence axiom,
2018. Talk at the AMS Special Session on Homotopy Type Theory, Joint Mathematics
Meetings. 17, 20, 69, 74, 75

[22] Evan Cavallo and Christian Sattler. Relative elegance and cartesian cubes with one
connection, 2023. 60

[23] Denis-Charles Cisinski. Les préfaisceaux comme modèles des types d’homotopie. Société
mathématique de France, 2006. 59

[24] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type
theory: a constructive interpretation of the univalence axiom. In T. Uustalu, editor,
Post-proceedings of the 21st International Conference on Types for Proofs and Programs
(TYPES 2015), pages 5:1–5:34, 2018. doi: 10.4230/LIPIcs.TYPES.2015.5. 1, 20, 54,
61, 65, 67, 79, 86, 89, 93, 95, 102, 103, 104, 106, 107

[25] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the NuPRL Proof
Development System. Prentice Hall, 1986. 15

188

[26] Thierry Coquand. Constructive presheaf models of univalence. Talk at the 1st Interna-
tional Conference on Homotopy Type Theory 2019, 2019. 18

[27] Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in
cubical type theory. In IEEE Symposium on Logic in Computer Science, 2018. 64

[28] Thierry Coquand, Fabian Ruch, and Christian Sattler. Constructive sheaf models of
type theory. Mathematical Structures in Computer Science, 31(9):979–1002, 2021. iv,
18, 114, 116, 117, 118, 122, 123, 124, 127, 136, 139

[29] Thierry Coquand and Christian Sattler. A model structure on some presheaf categories.
Available from cse.chalmers.se/~coquand/mod2.pdf, 2016. 136

[30] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin
Raussen. Directed algebraic topology and concurrency. Springer, 2016. 2

[31] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In IEEE Symposium on Logic in Computer Science, 1999. 2

[32] Peter Freyd. Aspects of topoi. Bulletin of the Australian Mathematical Society, 7(1):1–
76, 1972. 44, 45

[33] Nicola Gambino and Richard Garner. The identity type weak factorisation system.
Theoretical Computer Science, 409(3):94–109, 2008. 23

[34] Nicola Gambino and Simon Henry. Towards a constructive simplicial model of univalent
foundations. https://arxiv.org/abs/1905.06281, 2019. 16

[35] Richard Garner. Two-dimensional models of type theory. Mathematical. Structures in
Computer Science, 19(4):687–736, 2009. 23

[36] David Gepner and Joachim Kock. Univalence in locally cartesian closed ∞-categories.
In Forum Mathematicum, volume 29, pages 617–652. De Gruyter, 2017. 23

[37] Marco Grandis. Directed Algebraic Topology: Models of non-reversible worlds. Cam-
bridge University Press, 2009. 2

[38] Jason Jonathan Hickey. The MetaPRL logical programming environment. PhD thesis,
Cornell University, January 2001. 15

[39] Martin Hofmann. On the interpretation of type theory in locally cartesian closed cate-
gories. In International Workshop on Computer Science Logic, pages 427–441. Springer,
1994. 46

[40] Martin Hofmann. Extensional Concepts in Intensional Type Theory. PhD thesis, Uni-
versity of Edinburgh, 1995. 15, 17, 23, 61

[41] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In IEEE Sym-
posium on Logic in Computer Science, 1999. 2

189

cse.chalmers.se/~coquand/mod2.pdf
https://arxiv.org/abs/1905.06281

[42] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory. Oxford University Press, 1998. 23

[43] Daniel M Kan. Abstract homotopy. Proceedings of the National Academy of Sciences,
41(12):1092–1096, 1955. 59

[44] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial
model of univalent foundations. arXiv:1211.2851, 2012. 46

[45] Daniel R. Licata and Robert Harper. 2-dimensional directed type theory. In Mathemat-
ical Foundations of Programming Semantics (MFPS), 2011. 2, 16

[46] Daniel R. Licata and Robert Harper. Canonicity for 2-dimensional type theory. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2012. 23

[47] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in
models of homotopy type theory. In International Conference on Formal Structures for
Computation and Deduction, 2018. 17, 18, 20, 55, 64, 77, 80, 82, 99, 100, 104, 144, 153,
160, 161, 168

[48] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. In Interna-
tional Conference on Typed Lambda Calculi and Applications, 2009. 23

[49] Peter LeFanu Lumsdaine and Michael A. Warren. The local universes model: an over-
looked coherence construction for dependent type theories. ACM Transactions on Com-
putational Logic (TOCL), 16(3):1–31, 2015. 46

[50] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduc-
tion to topos theory. Springer Science & Business Media, 1992. 48

[51] P. Martin-Löf. Constructive mathematics and computer programming. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sci-
ences, 312(1522):501–518, 1984. 15

[52] Paige Randall North. Towards a directed homotopy type theory. arXiv:1807.10566,
2018. 2, 16

[53] Paige Randall North. Towards a directed homotopy type theory. Electronic Notes in
Theoretical Computer Science, 347:223–239, 2019. 20

[54] Andreas Nuyts. Towards a directed HoTT based on 4 kinds of variance. Master’s thesis,
KU Leuven, 2015. 16

[55] Andreas Nuyts. A model of parametric dependent type theory in Bridge/Path cubical
sets. arXiv:1706.04383, 2017. 20

[56] Andreas Nuyts. Contributions to multimode and presheaf type theory. eng. PhD thesis.
KU Leuven, 2020. 21, 144

190

[57] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos.
In Computer Science Logic, pages 24:1–24:19, 2016. 17, 52, 62, 76, 93

[58] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos.
Logical Methods in Computer Science, 14(4:23):1–33, December 2018. Special issue for
CSL 2016. iii, 17, 52, 62, 76, 81

[59] Kevin Quirin. Lawvere-tierney sheafification in homotopy type theory. PhD thesis, Ecole
des Mines de Nantes, 2016. 124

[60] Emily Riehl. Categorical Homotopy Theory. Cambridge University Press, 2014. 18

[61] Emily Riehl. Category theory in context. Courier Dover Publications, 2017. 25

[62] Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. Higher
Structures, 1(1):116–193, 2017. iii, iv, 2, 5, 16, 18, 21, 67, 72, 77, 78, 85, 86, 87, 92, 93,
95, 96, 97, 98, 100, 131

[63] Emily Riehl and Dominic Verity. The theory and practice of Reedy categories. Theory
and Applications of Categories, 29(9), 2014. 18

[64] Egbert Rijke. Introduction to homotopy type theory, 2022. https://arxiv.org/abs/
2212.11082. 22, 23

[65] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory.
Logical Methods in Computer Science, 16(1):2:1–2:79, 2020. 124

[66] Robert Rose, Daniel R. Licata, and Matthew Z. Weaver. Deciding entailment for cofi-
bration languages. Talk at the 2nd International Conference on Homotopy Type Theory,
available from https://hott.github.io/HoTT-2023/slides/rose.pdf/, 2023. 172

[67] Christian Sattler. Do cubical models of type theory also model homotopy types? Talk
at Workshop on Types, Homotopy Type theory, and Verification, Hausdorff Institute
for Mathematics, 2018. 18

[68] Christian Sattler and Emily Riehl. Directed univalence for the left fibration classifier.
Private correspondence, 2018. 17, 20, 69, 74, 75, 137

[69] Robert A.G. Seely. Locally cartesian closed categories and type theory. In Mathematical
proceedings of the Cambridge philosophical society, volume 95, pages 33–48. Cambridge
University Press, 1984. 44, 45

[70] Michael Shulman. Homotopy limits and colimits and enriched homotopy theory. https:
//arxiv.org/abs/math/0610194, 2009. 18

[71] Michael Shulman. All (∞, 1)-toposes have strict univalent universes. 2019. https:
//arxiv.org/abs/1904.07004. 18, 186

[72] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. A cubical language for bishop
sets. Logical Methods in Computer Science, 18, 2022. 15

191

https://arxiv.org/abs/2212.11082
https://arxiv.org/abs/2212.11082
https://hott.github.io/HoTT-2023/slides/rose.pdf/
https://arxiv.org/abs/math/0610194
https://arxiv.org/abs/math/0610194
https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/1904.07004

[73] Thomas Striecher and Jonathan Weinberger. Simplicial sets inside cubical sets. Theory
and Applications of Categories, 37(10):276–286, 2021. 79

[74] The Univalent Foundations Program, Institute for Advanced Study. Homotopy Type
Theory: Univalent Foundations Of Mathematics. Available from homotopytypetheory.
org/book, 2013. 1, 22, 23, 61

[75] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of
the London Mathematical Society, 102(2):370–394, 2011. 23

[76] Vladimir Voevodsky. A very short note on homotopy λ-calculus. Unpublished, page 1–7,
September 2006. 1, 23

[77] Vladimir Voevodsky. Univalent foundations of mathematics. Invited talk at WoLLIC
2011 18th Workshop on Logic, Language, Information and Computation, 2011. 23

[78] Michael A. Warren. Homotopy theoretic aspects of constructive type theory. PhD thesis,
Carnegie Mellon University, 2008. 23

[79] Matthew Z. Weaver. A model of type theory with directed univalence in bicubical sets.
Talk at the 1st International Conference on Homotopy Type Theory, available from
https://hott.github.io/HoTT-2019//conf-slides/Weaver.pdf, 2019. 76, 108

[80] Matthew Z. Weaver. A constructive model of directed univalence in bicubi-
cal sets. Talk at the Homotopy Type Theory Electronic Seminar Talks, avail-
able from https://www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/
Weaver-2020-04-16-HoTTEST.pdf, 2020. 76, 108

[81] Matthew Z. Weaver. A constructive model of directed univalence in bicubical sets. Talk
at the International Congress on Mathematical Software, 2020. 76, 108

[82] Matthew Z. Weaver. Theory and implementation of bicubical directed type theory.
Talk at the 2nd International Conference on Homotopy Type Theory, available from
https://www.cs.princeton.edu/~mzweaver/HoTT23/, 2023. 140, 171

[83] Matthew Z. Weaver and Daniel R. Licata. A constructive model of directed univalence
in bicubical sets. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 915–928, 2020. 76, 108

192

homotopytypetheory.org/book
homotopytypetheory.org/book
https://hott.github.io/HoTT-2019//conf-slides/Weaver.pdf
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/Weaver-2020-04-16-HoTTEST.pdf
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/Weaver-2020-04-16-HoTTEST.pdf
https://www.cs.princeton.edu/~mzweaver/HoTT23/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 A Motivating Example
	1.2 A Subjective Treatise on Research in Type Theory
	1.3 Technical Contributions
	1.4 Related Work

	2 Background
	2.1 Homotopy Type Theory
	2.1.1 Key Facts and Definitions

	2.2 Categorical Logic
	2.2.1 Syntactic Categories and Internal Languages
	2.2.2 Cartesian Closed Categories and STLC
	2.2.3 Topoi and Dependent Type Theory

	2.3 Cubical Type Theory
	2.3.1 Cube Categories
	2.3.2 Defining Cubical Type Theory
	2.3.3 Key Facts and Definitions

	2.4 Directed Type Theory
	2.4.1 The Simplex Category
	2.4.2 Defining Bisimplicial Directed Type Theory

	3 Bicubical Directed Type Theory
	3.1 Axioms for Bicubical Type Theory
	3.1.1 Soundness in Bicubical Sets

	3.2 The ``Types'' of Types
	3.2.1 Directed Morphism Type
	3.2.2 Discrete Types
	3.2.3 Covariant Discrete Fibrations
	3.2.4 Segal Types
	3.2.5 Inner Fibrations

	3.3 The Universe Ucov
	3.3.1 Ucov is Path Univalent

	3.4 The Universe Uinner
	3.4.1 Uinner is Path Univalent

	4 Directed Univalence
	4.1 The Directed Univalence Retraction
	4.1.1 Morphisms to Functions
	4.1.2 Functions to Morphisms
	4.1.3 Reflection

	4.2 Cobar Modal Types
	4.2.1 Universes and Closure Properties of Lex Modal Types
	4.2.2 The Cobar Construction
	4.2.3 Universes and Closure Properties of Cobar Modal Types
	4.2.4 Completing Directed Univalence
	4.2.5 The Equivalence Axiom in Bicubical Sets

	5 Fiberwise Fibrancy and Internal Universes
	5.1 Fiberwise Filling in a Topos
	5.1.1 Filling Operations
	5.1.2 Contextual Filling and its Closure Conditions

	5.2 A Type Theory with Internally Definable Universes
	5.2.1 Judgement Forms
	5.2.2 Typing Rules
	5.2.3 Syntax for Internal Universes
	5.2.4 Encoding the Fill Type and Fiberwise Reasoning
	5.2.5 Semantics of Internally Definable Universes
	5.2.6 Applications of Internally Definable Universes

	6 Implementation
	6.1 Bicubical Directed Type Theory Without Connections
	6.1.1 Covariant Fibrations Without Connections

	6.2 Sample Code in Directed CoolTT

	7 Future Work
	7.1 Directed Higher Inductive Types
	7.2 More Implementation(s)
	7.2.1 Computational Univalence and Challenge of Cobar
	7.2.2 Internal LOPS Universes

	7.3 Applications in Verification
	7.3.1 Functorial Semantics
	7.3.2 The Structure Preservation Principle

	7.4 Model Categorical Semantics

	Bibliography

