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Abstract
The prevalence of disaggregated storage in public clouds has

led to increased latency in modern OLAP cloud databases,

particularlywhen handling ad-hoc and highly-selective queries

on large objects. To address this, cloud databases have adopted

computation pushdown, executing query predicates closer

to the storage layer. However, existing pushdown solutions

are inefficient in erasure-coded storage. Cloud storage em-

ploys erasure coding that partitions analytics file objects into

fixed-sized blocks and distributes them across storage nodes.

Consequently, when a specific part of the object is queried,

the storage system must reassemble the object across nodes,

incurring significant network latency.

In this work, we present Fusion, an object store for an-

alytics that is optimized for query pushdown on erasure-

coded data. It co-designs its erasure coding and file placement

topologies, taking into account popular analytics file formats

(e.g., Parquet). Fusion employs a novel stripe construction

algorithm that prevents fragmentation of computable units

within an object, and minimizes storage overhead during

erasure coding. Compared to existing erasure-coded stores,

Fusion improves median and tail latency by 64% and 81%, re-

spectively, on TPC-H, and up to 40% and 48% respectively, on

real-world SQL queries. Fusion achieves this while incurring

a modest 1.2% storage overhead compared to the optimal.
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Figure 1. Existing architecture of computation pushdown

within the domain of big data analytics in the cloud.

1 Introduction
Major clouds operators like AWS, Azure, and GCP have

embraced disaggregated storage architectures. Under such

paradigms, raw data is uploaded to a highly-available object

store such as AWS S3 or Azure Storage. When needed, data

is fetched into a compute cluster to run compute-intensive

jobs. While storage disaggregation helps improve resource

utilization and elasticity in public clouds, it can hurt the per-

formance of ad-hoc, interactive analytics queries on large

objects. Prior work [47, 93, 99] shows that object stores are

dominated by large objects and large object reads are preva-

lent. In one storage production trace from Microsoft [47],

over 60% of objects have size greater than 1GB. Meanwhile,

real-world workloads are highly selective. BigQuery [59, 85]

reports that about 50% of queries return less than 1% of the

data. Transferring a large object over the network while

eventually using only a small portion of its data not only

wastes valuable network bandwidth but also significantly

degrades query performance.

To improve the performance of ad-hoc, interactive queries,

analytics systems deploy a classic technique called compu-
tation pushdown, which ships compute closer to storage to

avoid unnecessary data movement. Figure 1 depicts the high-

level architecture of computation pushdown for big data

analytics in the cloud. Users can submit simple SQL-like

queries to be executed closer to the object stores. Upstream

database query engines can also push down parts of query

plans to the object stores, such as highly-selective predicates

and aggregates, thereby reducing the data volume sent to the
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data warehouse. In recent years, computation pushdown is

embraced by data warehousing platforms [5, 55, 72, 105, 109]

and storage systems [7, 11, 16].

Despite its popularity, we argue that existing computation

pushdown solutions on cloud object stores are inefficient in

the very common scenario of (a) erasure-coded data, and (b)

data stored in analytics file formats. First, most cloud object

stores [1, 35, 47, 76, 87, 93, 103] use erasure coding due to

its significantly lower cost compared to replication. Objects

are striped into fixed-sized data and parity blocks and dis-

tributed across multiple storage nodes for fault tolerance.

Data placement and recovery are done at the granularity of

these data and parity blocks. Second, popular analytics file

formats [3, 4, 10, 39] allow queries to execute only on the
relevant parts of a file without having to read the entire file.

For example, Apache Parquet [4] partitions data into a col-

lection of row groups and then each row group is partitioned

column-wise into column chunks. A column chunk comprises

values from a single attribute and directly supports common

analytical operations, such as filters, projections, and aggre-

gations. We refer to the granularity of a data unit capable of

executing a part of the query (e.g., filter operations) on its

own as the smallest computable unit.
Since erasure codes treat data as a blob of bytes, they are

unaware of the internal semantics of the highly structured

objects. Moreover, the smallest computable units tend to

have variable sizes influenced by several factors, such as

the data type, cardinality and compression. Today, when an

analytics file object is erasure coded into fixed-sized blocks

across storage nodes, each of its smallest computable units

may be split across multiple nodes. Consequently, existing

object stores such as MinIO [35] and Ceph [103] must first

reassemble these smallest computable units across storage

nodes before executing a query. This wastes precious net-

work bandwidth and network processing CPU in the storage

cluster and also incurs extra network latency. The root cause

of this sub-optimality is that erasure coding and computation

pushdown in modern cloud storage operate in distinct layers

of the storage stack, functioning within isolated silos.

We present Fusion, a new object store for analytics that is

optimized for computation pushdown. It is designed to effi-

ciently handle ad-hoc, interactive analytics queries against
object-based storage, akin to popular analytics systems like

Amazon Athena [32] and BigQuery [34]. Fusion co-designs

the erasure coding topology to take into account popular an-

alytics file formats. One of our main contributions is a novel

technique called file-format-aware coding (FAC), which pre-

vents the splitting of the smallest computable units across

nodes during erasure coding. Prior work [36] pads the orig-

inal objects to enforce the alignment of these computable

units with storage blocks, sharing a similar goal of prevent-

ing data splits. However, padding incurs a significant storage

overhead, negating the cost advantages of erasure coding.

FAC employs an intelligent stripe construction algorithm
that departs from the conventional practice of using a fixed

block size per stripe [76, 91, 94]. Instead, it uses variable block

sizes and stripe sizes to align erasure code blocks seamlessly

with the boundaries of the smallest computable units. This

creates a new challenge, as naively utilizing erasure coding

with variable-sized data blocks dramatically increases stor-

age overhead. To solve this storage overhead challenge, the

stripe construction algorithm efficiently bin-packs the small-

est computable units, creating data blocks of similar sizes

within a stripe, and dynamically adjusts stripe sizes based on

the size distribution of the smallest computable units. FAC

then utilizes this layout to erasure code the object and store

each smallest computable unit intact among nodes.

Fusion uses a fine-grained pushdown mechanism to op-

timize query pushdown on FAC-encoded objects. Modern

analytics file formats employ aggressive compression and

encoding techniques on the smallest computable units to

reduce storage costs. For instance, the smallest computable

units in the TPC-H lineitem Parquet object can have com-

pression ratios of up to 63. For queries involving such highly

compressed smallest computable units, the pushdown oper-

ation, after decoding these smallest computable units locally

on the storage node, may transfer a substantial portion of

the uncompressed data as the query result over the network.

This leads to higher network latency and degrades query

performance. In such scenarios, it is advantageous to transfer

the smallest computable unit over the network in its com-

pressed form rather than processing it in-situ on the storage

node. We find that pushdown performance is directly influ-

enced by both the query’s selectivity and the compressibility

of the smallest computable units it operates on. We design a

cost model to capture this relationship and Fusion uses it to

determine which smallest computable units benefit the most

from query pushdown and enables pushdown only for those

smallest computable units.

In summary, this paper makes the following contributions:

1. Novel coding technique (FAC) that co-designs erasure

coding with analytics file format to maximize pushdowns.

2. Bin-packing algorithm for variable-sized blocks that min-

imizes storage overhead and prevents fragmentation of

the smallest computable units.

3. A fine-grained, cost-based pushdown mechanism that

maximizes pushdown performance.

4. Fusion, a new analytics object store, improves tail latency

by up to 81% on TPC-H and 48% on real-world SQL queries,

with only a 1.2% storage overhead w.r.t. the optimal.

2 Background
Computation pushdown. Computation pushdown is a

decades-old technique where parts of a query are “pushed

down” closer to where the data is stored. It is prevalent in
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Figure 2. A (9, 6) erasure code partitions a 12MB object into

two 6MB data stripes, each consisting of 6 data blocks and 3

parity blocks. Stripe 1 uses a fixed block size of 1MB. Stripe

2 uses variable data block sizes.

big data analytics systems that push down segments of SQL

queries, such as filters (e.g., , WHERE clauses) and aggrega-

tions (e.g., SUM, AVG), to the storage layer. Some notable

examples include AWS S3 Select [7] and Azure Data Lake

Storage query acceleration [5]. Computation pushdown sig-

nificantly improves query latency by reducing the amount

of data transferred over the network, thereby saving both

network bandwidth and CPU resources for users.

Erasure-coded object stores.Distributed storage systems [1,

35, 47, 62, 73, 76, 87, 92, 93, 103, 104] widely adopt systematic
erasure codes to tolerate node failures with lower storage

overhead compared to replication. An (𝑛, 𝑘) systematic era-

sure code divides the original data into stripes, each contain-

ing 𝑘 plaintext data blocks and (𝑛 − 𝑘) coded parity blocks.

Each stripe is stored across distinct nodes for maximal fault

tolerance. This guarantees that the original stripe can be

reconstructed as long as no more than (𝑛 − 𝑘) of its blocks
are lost. The conventional approach stripes data into uni-

formly sized data blocks and then generates parity blocks of

the same size. This ensures the optimal storage overhead of

(𝑛−𝑘 )
𝑘

. If a stripe contains variable-sized data blocks, erasure

coding requires padding all other data blocks in that stripe to

match the size of its largest data block and generates parity

blocks of the same size. However, this can lead to increased

storage overhead. Figure 2 illustrates the relationship be-

tween data block size and storage overhead. A (9, 6) erasure
code encodes a 12MB object into two stripes, each containing

6MB of data. Stripe 1 divides the data into fixed-sized blocks

of 1MB, achieving the lowest storage overhead of 0.5× (i.e.,

3·1𝑀𝐵
6𝑀𝐵

). In stripe 2, data blocks have variable sizes and must

be padded implicitly to match the largest data block size,

which is 3MB, and parity blocks are generated accordingly.

This results in a higher storage overhead of 1.5× (i.e.,
3·3𝑀𝐵
6𝑀𝐵

).

Therefore, existing storage systems [76, 91, 94] typically par-

tition data into fixed-sized blocks before applying erasure

coding to minimize storage overhead.

Systematic Reed-Solomon (RS) is the most prevalent era-

sure code used in modern storage systems, with two most

Table 1. An example table of Employees.

name salary

Alice 70000

Bob 80000

Charlie 70000

David 60000

Emily 60000

Frank 70000

row group 0

column 
chunk 0

column 
chunk 1

column 
chunk 0

Bob 70000Alice 80000 70000Charlie EmilyDavid …

row group 1

{ “Alice”: 0, “Bob”: 1, “Charlie”: 2 } 00 01 10

dictionary page data pages

compression 

Figure 3. The PAX data layout. Column chunks are heavily

compressed by default before being written to disk.

common configurations: (9,6) and (14, 10) [9, 92]. For the rest

of this paper, we use 𝑅𝑆 (9, 6) as the default erasure code.
Analytics file formats. Analytics systems predominantly

use column-oriented storage formats, such as Apache Par-

quet [4] and ORC [39], due to their efficient data storage and

retrieval. These columnar formats use a hybrid data layout

called Partition Attributes Across (PAX) [38] that horizon-

tally partitions a table into a set of row groups and then

vertically partitions a row group column-wise into column

chunks laid out contiguously on disk. Figure 3 depicts the

PAX data layout of Table 1, using a row group size of 3 rows.

Compared to unstructured and semi-structured data for-

mats such as CSV and JSON [28], PAX achieves better com-

pression by grouping values of the same data type into col-

umn chunks. Parquet, by default, employs a variety of encod-

ing and compression techniques (e.g., dictionary encoding,

bit packing, and run-length encoding) on column chunks

before writing them to disk. Each column chunk is a self-

contained data unit for encoding and compression. As shown

in Figure 3, the employee names from the first column chunk

are first mapped into a sequence of unique integer codes: “0”,

“1” ,“2”. Since there are only three distinct values, each integer

code can be represented using only two bits. The names are

further bit packed into a bit stream: “00”, “01”, “10”. Finally,

this column chunk is stored as a dictionary page followed

by a number of encoded data pages on disk.

Moreover, PAX is efficient for columnar scans, filters, and

projections as it retrieves only the necessary column chunks

from disk. Consequently, a column chunk is the smallest
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Figure 4. (a) Percentage of column chunks that get split in RS(9,6) under various erasure code block sizes for TPC-H lineitem
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systems.(c) CDF of normalized column chunk sizes in real-world Parquet files (b) Storage overhead of the padding approach [36].

{ “Alice”: 0, “B e”: 2 } 00 01 10ob”: 1, “Charli

node 1

BobAlice Charlie

network

node 2 node 3

Figure 5. Processing a column chunk incurs non-trivial data-

reassembly cost over the network.

computable unit of PAX-based formats. For brevity, the re-

mainder of the paper uses column chunks to denote the

smallest computable units. In this work, we focus on the

popular Parquet format as a case study, but our techniques

are generalizable to other structured analytics file formats.

3 Motivation
In this section, we discuss why computation pushdown is

fundamentally limited in existing erasure-coded systems and

highlight the challenges involved in improving its efficiency.

3.1 Current Practices and Their Limitations
Existing storage system architectures typically implement

the analytics file formats and erasure coding in separate

layers of the software stack. Consequently, erasure codes

operate without any awareness of the internal semantics

of the highly structured objects, treating them merely as a

blob of bytes. They divide objects into fixed-sized blocks,

whose sizes are often pre-configured by the storage system,

ranging from a few MBs to 100MBs to evenly distribute

I/O [18, 29, 33, 74, 76, 81, 91, 94]. As a result, column chunks

of an object may be split across many nodes. Figure 4a de-

picts the percentage of column chunks in two representative

Parquet files, namely the TPC-H lineitem table [31] and the

NYC taxi rides dataset [13], that get split in existing storage

systems. We experiment over a range of erasure code block

sizes as reported by real production systems. Notably, even

with a large block size of 100MB, the percentage of column

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
column id

100

101

102

co
m

pr
es

sio
n 

ra
tio

Figure 6. Average compression ratio of column chunks from

each column in TPC-H lineitem Parquet file.

chunk splits remains significant, reaching up to 40% and 24%

for the two datasets, respectively. As a result, the storage

system must first reassemble a column chunk across storage

nodes before processing.

Running example. We use the following query as a mo-

tivating example to illustrate this problem. Assume the com-

pany wants to know Bob’s current salary from Table 1:

SELECT salary FROM Employees WHERE name == ‘Bob’

As shown in Figure 5, column chunk 0 of row group 0 from

Table 1 is split across three nodes. Although node 3 has the

encoded data, it cannot directly run the WHERE clause to

search for the name, Bob, since it cannot decode the encoded

data without the dictionary. Unfortunately, the dictionary

page is split across two other nodes. Therefore, the system

must reassemble this column chunk across all three storage

nodes before it can run the filter operation to find matching

rows whose name is Bob. Similar steps are repeated for the

salary column. This can incur non-trivial network latency.

We measure the cost of data reassembly in current storage

systems by executing the microbenchmark query outlined

in §6 on the TPC-H lineitem Parquet file. The SQL query

retrieves about 1% of column values. Figure 4b shows the

latency breakdown of this query. We find that the interested

column chunks span across 5 storage nodes on average. De-

spite the large chunk sizes, disk reads contribute only a small

fraction to the total query time. But 50% of the time is spent
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on network operations for transferring and reassembling

fragmented parts of the column chunks.

3.2 Challenges
The column chunk sizes are influenced by various factors

such as the data type and data cardinality (i.e., the number

of column values). In addition, most columnar data formats

integrate compression and encoding to significantly reduce

storage costs when writing column chunks to disk. Figure 6

shows the average compression ratio of column chunks from

each column in the TPC-H lineitem Parquet file, with a me-

dian of 9.3 and a maximum of 63.5, respectively. The exact

size of a column chunk also depends on the compressbility

of its contents. Thus, column chunks within a PAX object

can have variable sizes. Figure 4c shows the normalized size

distribution of column chunks in four real-world Parquet

files with compression enabled. Different datasets demon-

strate distinct size distributions. For instance, in the TPC-H

lineitem Parquet file, the majority of column chunks are ei-

ther extremely small, representing highly repetitive integer

values, or extremely large, representing diverse arbitrary

string types. In contrast, the NYC taxi Parquet file exhibits

a more uniform chunk size distribution since the dataset

records user trip information that is more diverse in nature

including pickup timestamp, trip duration, and distance.

To prevent splitting variable-sized column chunks across

fixed-sized erasure code blocks, prior work [36] proposes a

padding solution that inserts additional padding into the orig-
inal objects to enforce the alignment of column chunks with

the underlying storage blocks. If placing a column chunk in

the current block would lead to splitting, the padding solu-

tion fills the remaining space in the current block with extra

padding and relocates that column chunk to the next erasure

code block. However, the extra padding results in increased

storage overhead. As depicted in Figure 4d, we measure the

storage overhead of the padding approach w.r.t. the optimal

strategy when storing real-world Parquet files. Surprisingly,

the additional storage overhead can be very high, in some

cases exceeding 100%.

To summarize, the mismatch between variable column

chunk sizes and fixed erasure code block sizes fundamen-

tally limits the efficiency of computation pushdown in exist-

ing systems. This sub-optimality arises because file formats

and erasure coding operate in separate layers of the storage

stack, functioning within isolated silos. This motivates our

design of Fusion, a new analytics object store that maximizes

the benefits of computation pushdown, by co-designing its

erasure coding to take into account the specific file format

characteristics of the underlying data. Yet, incorporating

file-format awareness into erasure coding is challenging, as

seen in the padding solution, which incurs significant stor-

age overhead. Fusion departs from the conventional fixed

block-size-per-stripe approach used in most industry sys-

tems today. Instead, it utilizes a variable block-size-per-stripe

Table 2. Terminology.

Term Description

column chunk The smallest computable data unit in Parquet.

data/parity block The smallest storage unit for data placement.

stripe A set of data and parity blocks. The basic unit

for data recovery and redundancy.

bin Equivalent to a data block.

binset Equivalent to all data blocks in a stripe.

FAC Fusion’s file-format-aware coding technique.

Figure 7. Fusion system components.

approach that dynamically aligns erasure code blocks to col-

umn chunk boundaries within an object while minimizing

storage overhead.

4 Fusion Design
This section discusses Fusion’s system components. Table 2

summarizes the key terminology.

4.1 Design Overview
We outline the main design principles that underpin Fusion’s

architecture and provide an overview of its design.

Use variable block sizes to prevent fragmentation of
column chunks.While it is possible to resize column chunks

to fit some fixed block sizes (e.g., by adjusting the row group

size in Parquet), this alternative approach has several draw-

backs. First, it incurs high CPU overhead. Resizing a column

chunk (e.g., rewriting a large chunk into smaller ones) re-

quires decoding and re-encoding the original data, which is

computationally expensive [82, 110]. Second, it is inflexible.

If storage block sizes change in the future due to system

upgrades or optimizations, all column chunks must be re-

generated to align with the new sizes. Third, altering the

data format (e.g., with a different row group size) may create

inconsistencies and compatibility issues, as clients expect

to retrieve objects in the same format in which they were
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originally written to the storage service. To avoid these com-

plications, Fusion stores column chunks in their original

sizes without modification, and dynamically adjusts storage

block sizes during erasure coding to prevent splitting any

variable-sized column chunks.

Push downgranular computations at the column chunk
level to reduce network latency. A SQL query typically

scans only a subset of table data (e.g., specific columns) and

performs granular operations like filters and projections,

which can run independently and in parallel on individual

column chunks. Since Fusion stores each column chunk in-

tact on a single storage node, its data layout is inherently opti-

mized for computation pushdown at the column chunk level.

Fusion utilizes a fine-grained pushdown mechanism that

executes operations directly on the relevant column chunks

and aggregates the computation results over the network. In

contrast to existing object stores that read and reconstruct

entire objects over the network, Fusion significantly reduces

network latency by minimizing I/O and network usage.

Figure 7 depicts the high-level architecture of Fusion. It

consists of a coding module (FAC) and a query pushdown

module. When an object is uploaded to Fusion, FAC identi-

fies the semantic boundaries of individual column chunks

within the object based on its specified data format. It dy-

namically adjusts data block sizes per stripe to accommodate

these variable-sized column chunks. It then constructs era-

sure code stripes and distribute them across storage nodes.

FAC ensures that no column chunk is partitioned across data

blocks, while simultaneously minimizing any additional stor-

age overhead. When a SQL query arrives in Fusion, the query

pushdown module transforms the original query into finer-

grained operations (e.g., filters and projections). It estimates

the pushdown cost of individual operations and selectively

pushes down those operations to nodes where the relevant

column chunks reside, provided that doing so leads to re-

duced latency. Finally, it orchestrates the execution of in-

dividual operations and constructs the final result back to

clients. In Fusion, storage nodes are identical to each other

and run both modules. Fusion does not have a dedicated

coordinator. Each node acts as a coordinator for handling

requests. Next, we dive deeper into the two modules.

4.2 File-Format-Aware Coding (FAC)
Drawing insights from §3, we introduce the novel concept

behind the coding module called file-format-aware coding
(FAC). FAC leverages knowledge of an object’s internal struc-

ture during erasure coding, making sure that column chunks

are never split across data blocks. However, since column

chunks exhibit variable sizes (Figure 4c), a naive way to con-

struct erasure code stripes may lead to uneven data block

sizes, resulting in higher storage overhead. Figure 8 illus-

trates this problem. The stripe has a total data size of 6MB.

The larger column chunks are placed in the first data block,

data blocks parity blocks

5MB 5MB

d3d1 d2 p1d6d4 d5 p2 p3

Figure 8.A stripe of variable-sized data blocks under RS(9,6).

Green boxes are column chunks. Dashed grey boxes are

padding.

d1, with a total size of 5MB. In this case, an erasure code

must pad all data blocks to the size of the largest data block

and generate parity blocks of the same size. Its storage over-

head is 2.5×, whereas the optimal storage overhead is 0.5×,
achieved by dividing the stripe into 6 1MB data blocks and

generating 3 1MB parity blocks. Hence, the primary objec-

tive of FAC is to minimize this additional storage overhead in

the presence of variable-sized data blocks. Next, we present

a formal definition of this problem.

Problem Formulation. Based on Figure 8, we make a key

observation: the size of parity blocks in a stripe depends

solely on the largest data block size within the same stripe.

Therefore, minimizing storage overhead is equivalent to min-

imizing the sum of the largest data block size from all stripes.

We model this challenge as a variant of the bin packing prob-

lem. Specifically, we define each data block as a bin with

capacity 𝐶 , and all data blocks belonging to the same stripe

as a bin set. Under a (𝑛, 𝑘) erasure code, each bin set con-

tains 𝑘 bins. Given a list of 𝑁 column chunks with sizes

{𝑠1, . . . , 𝑠𝑁 } and a total number of 𝑚 bin sets, we want to

assign column chunks into these bin sets such that the total

sum of the largest bin size from all bin sets is minimized.

Formally, we express the optimization objective as follows,

where 𝑥𝑖 𝑗𝑙 are binary variables ∈ {0, 1} with 1 indicating that

the 𝑖-th column chunk is assigned to the 𝑗-th bin of the 𝑙-th

bin set, and 0 otherwise:

min

𝑥𝑖 𝑗𝑙

𝑚∑︁
𝑙=1

max{
𝑁∑︁
𝑖=1

𝑠𝑖 · 𝑥𝑖 𝑗𝑙 , ∀𝑗 ∈ {1, . . . , 𝑘}}

subject to

𝑁∑︁
𝑖=1

𝑠𝑖 · 𝑥𝑖 𝑗𝑙 ≤ 𝐶, ∀𝑗 ∈ {1, . . . , 𝑘} ∀𝑙 ∈ {1, . . . ,𝑚}

𝑚∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝑥𝑖 𝑗𝑙 = 1, ∀𝑖 ∈ {1, . . . , 𝑁 }

(1)

The first constraint ensures that the total size of column

chunks assigned to each bin does not exceed its capacity. The

second constraint requires that each column chunk must be

assigned to one and only one bin within some bin set. We

set the bin capacity 𝐶 as the maximum column chunk size

such that each bin has sufficient space to accommodate any

individual column chunk. Since each bin hosts at least one

column chunk, we set𝑚 to be 𝑁 /𝑘 , the maximum number

of required bin sets.
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Figure 9.Avisualization of the stripe construction algorithm.

Green boxes are column chunks. Dashed grey boxes are

padding.

Note that classic bin packing problems typically focus on

minimizing the total number of bins used. After an extensive

review of various bin packing variants, we found no exact

match for our problem. The closest variant is minimizing

the maximum bin size across all bins, also known as the

multiprocessor scheduling problem [70]. However, this for-

mulation differs from our objective, which aims to minimize

the sum of the maximum bin sizes across all bin sets. To the

best of our knowledge, our formulation introduces a new

variant of the bin packing problem. §7 presents more related

work on bin packing.

The Oracle. The above problem formulation belongs to

the integer linear programming (ILP) class, which is known

to be NP-complete. We implemented a solution using the

Gurobi Optimizer [8], a popular commercial ILP solver. To

assess its performance, we generated synthetic datasets by

randomly sampling column chunk sizes between 1MB to

100MB. Figure 10a depicts its solve time as the number of

column chunks increases. The ILP solver becomes imprac-

tically slow as problem size increases. Notably, with just

35 column chunks, Gurobi requires over 3 hours to com-

pute an optimal solution. For context, real-world analytics

files commonly comprise hundreds to thousands of column

chunks, as illustrated in Table 3. Given that FAC operates on

the critical path of Put operations, such excessive latency is

unacceptable if this solver were to be integrated.

FAC Stripe Construction Algorithm. FAC uses an ef-

ficient, lightweight algorithm based on the insight that a

stripe’s storage overhead is determined once its largest data

block is finalized. The algorithm constructs one stripe at a

time and chooses the largest unassigned column chunk as

the largest data block. It adheres to two principles when

constructing the rest of the stripe. First, it proactively re-

duces overhead for future stripes by selecting larger column

chunks for the current stripe. Doing so prevents these size-

able column chunks from becoming the largest data blocks in

future stripes, incurring higher overhead. Second, it reduces

wasted padding space within the current stripe by filling gaps

in each data block, excluding the largest one, with smaller

column chunks. This aligns the sizes of the remaining data

blocks close to the largest block size.

Algorithm 1 Stripe Construction Algorithm

1: Procedure ConstructStripes(𝑘, 𝑖𝑡𝑒𝑚𝑠 = {𝑠1, 𝑠2, . . . , 𝑠𝑁 })
2: 𝑠𝑖𝑑 ← 0, 𝑠𝑡𝑟𝑖𝑝𝑒𝑠 ← ∅
3: Sort(𝑖𝑡𝑒𝑚𝑠) // Sort item sizes in descending order

4: while 𝑖𝑡𝑒𝑚𝑠 not empty do
5: 𝑏𝑖𝑛𝑠 ← InitABinSet(𝑘 ) // Open an empty bin set

6: 𝑚𝑎𝑥 ← Pop(𝑖𝑡𝑒𝑚𝑠 )
7: Append(𝑏𝑖𝑛𝑠 [0],𝑚𝑎𝑥 ) // Add the largest item to the first bin

8: for 𝑖𝑡𝑒𝑚 in 𝑖𝑡𝑒𝑚𝑠 do
9: 𝑏𝑖𝑑 ← Return the bin id of the least occupied bin where 𝑖𝑡𝑒𝑚

fits, or −1 otherwise
10: // Exclude the first bin

11: if 𝑏𝑖𝑑 > 0 then
12: Append(𝑏𝑖𝑛𝑠 [𝑏𝑖𝑑 ], 𝑖𝑡𝑒𝑚)

13: end if
14: end for
15: 𝑠𝑡𝑟𝑖𝑝𝑒𝑠 [𝑠𝑖𝑑 ] ← 𝑏𝑖𝑛𝑠 // Seal the current bin set

16: 𝑠𝑖𝑑 ← 𝑠𝑖𝑑 + 1
17: end while
18: Return 𝑠𝑡𝑟𝑖𝑝𝑒𝑠

Algorithm 1 presents the detailed algorithm. It starts with

a queue of 𝑁 unassigned column chunks from an object

and sorts them in descending order based on size. In each

iteration, it opens a bin set of 𝑘 empty bins, pops the largest

column chunk from the head of the queue, and places it

into the first bin. At this point, it seals the first bin and

sets the bin capacity 𝐶 to be its size. This ensures that all

other bins cannot grow larger than the first bin. Next, it

iterates over the queue. For each unassigned column chunk,

it checks whether this column chunk can fit into any of the

bins, excluding the first one. Among all bins with adequate

space to accommodate the column chunk, it allocates the

column chunk to the least occupied bin, aiming to achieve a

more balanced distribution of load within the bin set. After a

full scan of the queue, it seals the current bin set and proceeds

to the next iteration. The above steps are repeated until

all column chunks are assigned. At the end, the algorithm

outputs 𝑚 bin sets, each containing 𝑘 bins, with each bin

containing one or more column chunks. Figure 9 provides a

visualization of the algorithm. During erasure coding, data

blocks, along with parity blocks, are distributed across 𝑛

randomly chosen storage nodes for each stripe.

The time complexity of the algorithm is𝑂 (𝑚 ·𝑁 ). It is lin-
early proportional to the number of column chunks within

an object. We find that FAC stripe construction algorithm

runs extremely fast for real-world analytics file objects (i.e.,

10s to 100s of microseconds). In contrast, the total put la-

tency of analytics file typically ranges between 10s to 100s of

seconds. As an example, uploading an 11GB TPC-H Parquet

file to the baseline storage system takes 34 seconds. In com-

parison, FAC’s algorithm completes in just 500 microseconds,

constituting a negligible 0.0015% of the overall put latency.

We provide more details on the runtime of our algorithm

under realistic workloads in §6.3.
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Figure 10. (a) Runtime of FAC using an ILP solver. (b) Push-

down trade-off in four TPC-H lineitem columns (c5, c0, c4

and c7). Each cell shows p50 latency improvement (%) of

Fusion compared to a baseline system that splits column

chunks.

The theoretical worst-case storage overhead of the algo-

rithm under a (𝑛, 𝑘) erasure code is (𝑛−𝑘), which is the same

as the replication approach that tolerates the same number

of failures. This extreme scenario occurs in a stripe when one

data block is very large, and the rest of the data blocks are

negligibly small. Since the parity block size of a stripe always

equals the size of its largest data block, the storage overhead

of this stripe becomes comparable to that of replication. We

introduce a system-level hyperparameter in Fusion, allowing

users to specify the maximum additional storage overhead

they can tolerate compared to the optimal. If the algorithm

cannot construct stripes within the specified storage budget,

Fusion defaults to erasure coding the object into fixed-sized

blocks, similar to existing storage systems. §6.3 conducts

a comprehensive evaluation of storage overhead across di-

verse synthetic and real-world datasets. Empirically, we find

that FAC incurs an additional storage overhead of no more

than 1.24% compared to the optimal scenario.

4.3 Fine-grained Adaptive Query Pushdown
The query pushdown module manages the execution of SQL

queries on FAC-encoded objects. It decomposes a query into

sub-queries for individual column chunks and uses a cost

model to determine whether to enable or disable pushdown

at the column chunk level, ensuring maximum pushdown

efficiency. The pushed-down operations will run in-situ on

the storage nodes where the relevant column chunks reside.

Fusion employs this fine-grained adaptive pushdown mech-

anism because we find query pushdown does not always

reduce the network traffic and improve query latency. In

fact, pushdown efficiency depends on query selectivity (i.e.,

the amount of data a query returns) and the compression

ratios of column chunks. To better understand this, we first

describe how a SQL query is executed in Fusion with push-

down always enabled.

When a query arrives at a coordinator node in Fusion,

it breaks down the query into fine-grained operations and

executes them in two stages: a filter stage followed by a

projection stage. In the filter stage, filter operations are first

forwarded to storage nodes hosting the column chunks to

be filtered. A storage node will read the column chunk from

disk, decompress and decode it, and then run the filter(s)

on the decoded values. It returns a bitmap of the filtered

results to the coordinator. The coordinator waits for all filter

bitmaps and consolidates them into a final bitmap. In the

projection stage, the coordinator forwards the final bitmap

to all storage nodes hosting the column chunks to be pro-

jected. Each storage node reads the column chunk from disk,

decompresses and decodes it, and then selects the values

whose corresponding bits are set in the bitmap. Each sends

back all selected values in the uncompressed form to the

coordinator. Finally, the coordinator assembles all projection

replies and sends the final query result back to the client.

Ourmeasurement on real-world datasets in Figure 6 shows

that some columns are highly compressed, due to a com-

bination of encoding and compression techniques used in

PAX-based file formats. When query selectivity is high (i.e.,

returning many rows), the size of uncompressed values may

greatly exceed the compressed column chunk size during the

projection stage. This degrades query performance of Fusion

since it sends more data over the network compared to ex-

isting systems that reassemble compressed column chunks

on the coordinator. Figure 10b shows the parameter space

where pushdown is effective. We define the compressibility

of a column chunk as the ratio of its uncompressed size to its

compressed size. For queries with low selectivity (common

in cloud analytics), pushdown improves query latency signif-

icantly. However, for queries with high selectivity or column

chunks with high compressibility, pushdown degrades the

latency.

Therefore, Fusion adopts a fine-grained adaptive approach

to query pushdown. Rather than pushing down the entire

query to storage nodes, Fusion estimates which column

chunks will benefit the most from query pushdown and

enables pushdown only for those column chunks. Column

chunks with unfavorable selectivity and compressibility val-

ues may incur high network costs. The coordinator will fetch

them in compressed form and process them locally. The Push-
down Cost Estimator sub-module performs the cost estima-

tion for column chunks. It decides to push down projections

of a column chunk onlywhen 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 <

1 , which we refer to as the Cost Equation.

The compressibility of a column chunk is estimated from

the metadata of PAX-based objects (e.g., Parquet file footer).

At the end of the the filter stage, the coordinator, knowing

the exact query selectivity when constructing the final fil-

ter bitmap, can assess whether the benefit of pushing down

projections on a column chunk outweighs the network over-

head of transferring the uncompressed projection results.

Specifically, it uses query selectivity and the compressibil-

ity of column chunks to estimate the size of uncompressed

projection results and pushes down projection operations

only when the size of uncompressed results is smaller than
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Figure 11. Fusion execution flow.

the encoded column chunk size. Otherwise, Fusion disables

projection pushdown for this column chunk and reassembles

it at the coordinator instead.

5 Implementation
Fusion is written in the Go language and uses Apache Ar-

row’s Parquet library [2]. It supports three APIs, Put, Get
and Query. Put writes an object to Fusion. Get retrieves the

contents of the object with a given offset and size. Query
runs a SQL query on the stored objects. We focus on Put and
Query in this section as they are more interesting. Figure 11

shows the execution flow of Put and Query in Fusion. To

achieve better load balancing, Fusion’s implementation does

not use a dedicated coordinator node for handling client re-

quests. Instead, client requests are routed to a storage node

based on the hash value of the object’s name. Each node in

Fusion acts as a coordinator for both Put and Query.

Storing Objects. When a Put request arrives at a coordi-

nator node, the FAC module on the coordinator first parses

the object’s metadata and identifies the byte offsets and sizes

of all column chunks within the object. The stripe construc-

tor then uses this information to find an intelligent stripe

layout, while keeping the storage overhead under a system-

configurable threshold. If no layout satisfies the threshold,

it outputs the default layout that may split column chunks.

Finally, FAC constructs erasure code stripes based on the

selected layout, using some conventional erasure coding

algorithm (e.g., Reed-Solomon), and persists the data and

parity blocks across storage nodes. Note that even though

FAC is designed to keep individual column chunks intact,

the object is still distributed across the storage nodes, pre-

serving the benefits of IO and compute parallelism. Updates

in Fusion are treated as fresh inserts.

Querying Objects. Fusion supports basic SQL query ex-

pressions on objects. When a Query request arrives at a

coordinator, the SQL executor on the coordinator executes

this query in two stages: the filter stage and projection stage.

In the filter stage, the coordinator uses built-in object meta-

data to perform coarse-grained filtering and skips column

chunks that do not satisfy the filter condition. For exam-

ple, the Parquet file footer contains the min and max values

for each column chunk within a row group, which speeds

up filtering at the row group level. The coordinator then

looks up Fusion’s chunk location map to identify the stor-

age nodes hosting the relevant column chunks and pushes

down filter operations to those nodes. Each storage node

constructs a bitmap for each column chunk, indicating the

rows that satisfy the filter condition. It uses Snappy to com-

press bitmaps before sending them back to the coordinator.

At the end of the filter stage, the coordinator aggregates all

filter bitmaps and knows the exact query selectivity. The

pushdown cost estimator uses the Cost Equation described

in §4.3 to evaluate the potential benefits of pushing down

projection operations. Projections on column chunks that

meet the criteria are pushed to the relevant storage nodes.

The remaining column chunks are fetched and processed

locally at the coordinator. At the end, the coordinator con-

solidates all projection results and returns the final query

result to the client.

Metadata Management Fusion keeps a chunk location

map per object, tracking the storage node that hosts each

column chunk. Every map entry is 8 bytes in size with 4

bytes for the column chunk offset within the object and

4 bytes for the storage node ID. The size of the location

map is much smaller (a few KBs) compared to the overall

object size, typically in GBs, as shown Table 3. Fusion must

ensure the same durability for the location map as for the

object itself because the system would be unable to retrieve

the object if losing its map. In the current implementation,

the coordinator replicates the location map to 𝑘 + 1 storage
nodes to tolerate the same number of failures as RS(𝑛, 𝑘). In

the future, Fusion will store location maps in a distributed

storage service like ZooKeeper [23] or etcd [27].

Recovery and Fault Tolerance. Fusion does not modify

the erasure code algorithms and follows the conventional

recovery procedures for data reconstruction when one or

more data blocks are lost. Therefore, Fusion provides the

same level of fault tolerance as existing erasure codes.

SQL Support. Fusion supports the SELECT SQL command

and standard ANSI clauses i.e., SELECT, FROM and WHERE (sim-

ilar to S3 Select [25]). It currently lacks support for aggregate

pushdown such as SUM and AVG, which we aim to implement

in the future to further enhance Fusion’s performance.

Note that Fusion is designed as an analytics-optimized ob-

ject store for ad-hoc, interactive queries. It is not a data ware-

house solution like Snowflake [55] or Amazon Redshift [72],

which are specialized for operational workloads. Therefore,

complex queries such as joins are excluded from Fusion, as

they better run in a data warehouse. Meanwhile, data ware-

houses can still leverage Fusion by pushing down parts of

the query plans to accelerate performance. We envision Fu-

sion as a object store that efficiently handles simple ad-hoc

analytics queries and as pushdown engine that complements

data warehousing systems.
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Figure 12. Average number of nodes a column chunk from

TPC-H lineitem Parquet is stored on in baseline w/ column

chunk split. Average column chunk size (MBs) shown on top

of each bar.

6 Evaluation
We evaluate Fusion by answering the following questions:

• How does file-format-aware coding impact latency? (§6.1)

• Howdoes Fusion perform on real-world SQL queries? (§6.2)

• What are the overheads of FAC? (§6.3)

Table 3. Parquet dataset file description

num num column size

dataset columns chunks (GB)

tpc-h lineitem 16 160 10

taxi 20 320 8.4

recipeNLG 7 84 0.98

uk pp 16 240 1.5

Configuration. All experiments are run on a cluster of

r6525 cloudlab [6] machines. Each machine has 64 cores,

256GB RAM, 1.6 TB NVMe SSD, 100GbE network and runs

Ubuntu 22.04.3 LTS. We use a cluster of 10 machines, with

onemachine as a dedicated client node and the rest as storage

nodes. All systems are evaluated using 10 clients and a total

of 10 K queries. Erasure coding parameters are RS(9,6) and

block size is set to 100MB. We set the storage overhead

threshold to 2% in Fusion which ensures that its additional

storage overhead w.r.t. optimal never exceeds 2%. All disk

I/O is done using direct I/O to avoid the effects of OS page

caching on query latency. We use wondershaper [17] to limit

Table 4. Real-world SQL query description

num num select-

query dataset filters projections ivity

Q1 (projection heavy) tpc-h 1 6 1.4%

Q2 (filter heavy) tpc-h 3 2 5.4%

Q3 (high selectivity) taxi 1 1 37.5%

Q4 (low selectivity) taxi 1 2 6.3%

the incoming and outgoing bandwidth on each machine to

25Gbps for all experiments, except in Figure 14c.

Datasets.Weuse the TPC-H [31] and theNYC yellow taxi [13]

datasets and convert them to Parquet format. TPC-H lineitem

table Parquet file is 10GB in size. It consists of 16 columns

and 10 row groups. Each row group is 1GB and contains 30M

rows. NYC yellow taxi Parquet file uses dataset from years

2015-2017 and is 8.4GB. It has 20 columns and 16 row groups,

each of size 525MB and 25M rows. See Table 3 for details. All

parquet files are generated using pyarrow [14] v13.0.0 and

Parquet format 2.4, and have dictionary encoding and Snappy

compression enabled. We create two datasets of 100GB and

84GB, respectively, by duplicating each Parquet file ten times.

While cloud datasets can reach terabytes in size, individual

files are typically tens of gigabytes in size. The Parquet file

sizes we use are consistent with the real-world.

Workloads.We run two sets of workloads: microbenchmark

queries and real-world SQL queries. The microbenchmark

executes a SQL query on the TPC-H lineitem table to retrieve

a single column with a filter condition. Query selectivity by

default is 1%, as observed in production systems [59, 85]. The

only exception is the selectivity sweep evaluation in §6.1,

where we vary query selectivity by changing the value field:

SELECT column FROM lineitem WHERE column < value

We also use four real-world SQL queries based on the

TPC-H and taxi datasets (Table 4). Q1 and Q2 are the pricing

summary report query and forecasting revenue change query

from TPC-H [15]. Q3 and Q4 are two analytics queries from

Timescale [12] on the taxi dataset, as shown below.

(1) How many rides took place every day in 2015?

SELECT count(*) FROM taxi WHERE date < 2015-12-31

(2) What is the average fare amount in January 2015?

SELECT date,AVG(fare) FROM taxi WHERE date<2015-02-01

Baseline.We implement a baseline system representative of

state-of-the-art systems such as MinIO [35] and Ceph [103],

which erasure codes an object into fixed-sized blocks and

may split its column chunks. The baseline assembles the Par-

quet object on a coordinator node before executing the query

on it. It also uses the optimization that leverages Parquet file

metadata (i.e., the file footer) to retrieve only those column

chunks that match the SQL query filter condition.

Performance metrics. We focus on median and tail la-
tency in the performance analysis. Fusion targets at ad-hoc,

interactive analytics queries where latency is the primary

metric of interest. Leading industrial analytics systems such

as Athena and BigQuery often report query completion time

in their performance blogs [20–22]. Similarly, data analytics

frameworks like Spark [109] and MapReduce [56] prioritize

job completion time over throughput in their evaluations. In

the context of data analytics, latency is a more meaningful

metric due to the high variance in query runtime.
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Figure 13. (a) p50 and (b) p99 latency reduction for TPC-H lineitem columns. Latency breakdown of (c) column 5 and (d)

column 9.
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Figure 14. Impact of query selectivity on tail latency for (a) column 5 and (b) column 9. (c) Network bandwidth sweep for

column 5. (d) Averaged CPU utilization per node.

6.1 Micro-benchmarks: Impact of FAC on Latency

Column sweep.We first show results of microbenchmark

queries on individual columns of the TPC-H lineitem Par-

quet file. Figure 13a and 13b shows median and tail latency

improvement per column achieved Fusion compared to the

baseline. Queries on columns 0, 1, 2, 5, and 15 show up to 65%

and 81% for median and tail latency reduction. As shown

in Figure 12, these column chunks are bigger in size and

are more likely to get split in the baseline. As a result, the

baseline must perform parallel reads from multiple storage

nodes and transfer a substantial amount of data over the

network. We closely examine one column as a case study to

better understand why Fusion outperforms the baseline in

this scenario. Figure 13c shows the query latency breakdown

of column 5. Disk read involves the time spent reading the

raw data from disk, while chunk processing encompasses the

total time required for decoding data from Parquet format

and evaluating SQL operations. Network overhead consti-

tutes the combined latency from network transfer and the

additional overhead introduced by remote procedure calls

(RPCs). The chunks of column 5 are large in size (i.e., 165MB)

and span across 2.6 storage nodes on average. Both system

spend approximately the same amount of time on disk read

and chunk processing. However, the baseline spends about

57% of its total time to reassemble column chunks over the

network compared to Fusion, which processes the column

chunks in-situ on the storage nodes and takes less than 4% of

its total time to transfer the final filtered result (i.e., 1% of all

column values). In this case, the baseline transfers 2827GB of

data over the network compared to Fusion, which transfers

just 44GB, i.e., a 64.2× reduction in network traffic.

On the other hand, the latency improvements for columns

3, 4, 9, 10, and 11 are modest. These column chunks are

smaller in size and exhibit higher compression ratio (see

Figure 6). Consequently, the baseline system can read these

chunks over the network, often from a single storage node,

without incurring substantial network traffic. Figure 13d

shows the latency breakdown for column 9. Both systems

spend no more than 3% of their total time on network op-

erations. We find that Fusion consistently achieves better

performance gains under low query selectivity. In contrast,

the performance of the baseline system varies significantly

and depends on a number of factors, including the column

type and individual chunk sizes.

Query selectivity. Next, we vary query selectivity to un-

derstand its impact on latency. We conduct a selectivity

sweep for column 5 and column 9, representing one of the

better-performing columns and one of the worst-performing

columns, respectively, in Fusion. Figure 14a and 14b shows

the latency reduction of Fusion compared to the baseline.

Recall the Cost Equation from §4.3. Fusion is expected to

achieve the most performance gains when query selectivity

and/or the compressibility of column chunks is low. The

results support this intuition, as queries with lower selectiv-

ity exhibit the highest latency gains. Under high selectivity,

such as 75% and 100%, Fusion identifies that the size of un-

compressed projection result significantly exceeds that of

the original compressed chunk to be projected. Hence, Fu-

sion disables projection pushdown for the column chunk



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jianan Lu, Ashwini Raina, Asaf Cidon, and Michael J. Freedman

and falls back to the baseline mode, transferring the com-

pressed chunk to the coordinator for further processing. It’s

worth noting that even under these extreme cases, Fusion

still benefits from the pushdown of filter operations.

Network. Figure 14c shows the median and tail latency

reduction of Fusion compared to the baseline under various

network configurations. Fusion achieves higher latency gains

under a more constrained network (e.g., 10Gbps). Due to its

high data transfer volume, the baseline experiences more

performance degradation on a slower network.

CPUutilization. Figure 14d compares the CPU utilization of

both systems for different columns under a fixed system load

of 10 queries per sec. The CPU utilization is averaged across

all storage nodes. Despite performing the same amount of

computation work, Fusion utilizes less CPU since it transfers

less data over the network. The efficient computation push-

down in Fusion enables it to save valuable CPU resources

while delivering the same system throughput as the baseline.

6.2 Performance on Real-World SQL Queries
Figure 15a illustrates the median and tail latency reduction

of Fusion on real-world SQL queries. For Q1 and Q2, Fusion

achieves a median latency reduction of up to 48% and a tail

latency reduction of up to 40%. Both queries involve filter

and projection operations across multiple columns. Fusion’s

file-format-aware coding approach (FAC) enables the direct

pushdown of filter and projection operations onto the stor-

age nodes hosting the column chunks, effectively reducing

network overheads. On taxi-based queries, Fusion reduces

the median latency by up to 32% and tail latency by up to

48%. For Q3, despite the high selectivity (i.e., 37.5%), the

date column has a low compression ratio of 1.6. Fusion still

offers latency gains since the selectivity and compressibil-

ity product is 0.6, which is less than 1, making it suitable

for pushdown according to the Cost Equation. Q4 involves

two projection columns, namely date and fare. However,
the fare column has a high compression ratio of 152. The

product of selectivity and compressibility for this column far

exceeds 1, leading Fusion to disable the projection pushdown.

Despite this, Fusion still outperforms the baseline due to its

effective pushdown of the date column. Figure 15b shows

the total network traffic usage in Fusion compared to the

baseline system. Fusion generates upto 8.9× lower network

traffic due to its pushdown friendly data layout.

6.3 Overheads of FAC
Next we evaluate the storage and runtime overhead of FAC

on both synthetic and real-world datasets. The optimal stor-

age overhead under RS(9,6) is 0.5× (i.e.,
9−6
6
). We report the

storage overhead of FAC as a percentage, representing its

additional overhead relative to the optimal. The synthetic

datasets simulate a wide range of file configurations. allow-

ing for a comprehensive evaluation of storage overhead.

(a) (b)

Figure 15. Performance on real-world SQL queries.

Specifically, we vary the number of column chunks and

the skewness of the chunk size distribution. Each synthetic

dataset consists of chunk sizes between 1MB to 100MB, cho-

sen from a Zipfian distribution. Each data point in Figure 16a

is the averaged storage overhead over 100 dataset runs. Sur-

prisingly, we find that the chunk size distribution has little

impact on FAC’s storage overhead. When the chunk sizes

are highly skewed (e.g., Zipfian 0.99), the FAC algorithm

can effectively group the majority of chunks with similar

sizes together. The remaining are packed into a small num-

ber of uneven data blocks, with negligible storage overhead.

When chunk sizes are random (e.g., Zipfian 0), the algorithm

benefits from high variance and can distribute chunks more

uniformly across data blocks, increasing the likelihood of

bin-packing into similar-sized blocks. We find that the stor-

age efficiency of FAC is directly influenced by the number of

chunks. A higher number of chunks results in a larger search

space, offering more satisfactory solutions and increasing the

likelihood of finding a good one. As illustrated in Figure 16a,

FAC’s storage overhead decreases to 3% with 100 chunks,

drops to 0.8% with 500 chunks and approaches closer to 0 for

higher values. For large objects with more column chunks,

the storage overhead of FAC tends to converge towards the

optimal. FAC’s storage overhead under RS(14, 10) exhibits a

similar pattern, which we omit here due to space limits.

Next, we measure the storage overhead of FAC on four

real-world Parquet files, with the number of column chunks

ranging from 84 to 320 (Table 3). We compare FAC against

two alternative approaches: Oracle, the Gurobi-based ILP

solution, and Padding, proposed by Adams et al. [36], which

inserts extra padding into the original object to enforce data

alignment with erasure code blocks. Figure 16b shows the

additional storage overhead. Figure 16c shows the runtime

overhead relative to the the total time of the Put operation
when writing the file to the baseline storage system. While

Oracle achieves minimal storage overhead, its runtime is

prohibitively high, up to 3.91× the overall Put latency for uk
pp. Padding runs faster but incurs a substantial storage over-
head of up to 83.8% for recipeNLG. In contrast, FAC’s stripe

construction algorithm strikes a more favorable balance be-

tween storage overhead and runtime. It incurs a storage

overhead of no more than 1.24% relative to the optimal and

a runtime overhead of no more than 0.0027%, respectively.
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Figure 16. (a) Storage overhead of FAC for different chunk size distributions. (b) and (c) Storage and runtime overhead (both

in log scale) for real-world Parquet files. All plots assume RS(9,6).

Previous studies [47, 93, 99] suggest that large file objects

in gigabytes dominate cloud storage. Our empirical findings

lead us to believe that Fusion would result in little extra

storage overhead when deployed in production.

7 Related Work
Computation Pushdown. Both systems and database re-

search has actively explored computation pushdown tech-

niques. Recent systems [43, 79, 107] enable the pushdown

of arbitrary functions to storage nodes, reducing network

round trips, particularly for multi-hop traversal queries like

B-tree index lookups. Unlike Fusion, they are in-memory

systems and do not consider erasure coding. New computa-

tional storage devices (CSDs) [30, 36, 58] allow application

code to run directly inside the disk. Adams et al. [36] propose

an application-level solution that pads objects to align their

internal data units with erasure code blocks but may incur

significant storage overhead. In contrast, Fusion operates

within the storage layer and minimizes storage overhead.

Cloud databases also employ predicate pushdown to speed

up queries and reduce network traffic [7, 24, 26, 72, 105, 106,

108]. FlexPushdownDB [105] takes a hybrid approach that

combines selective caching and query pushdown. It does

not address pushdown efficiency in storage systems. To the

best of our knowledge, Fusion is the first analytics object

store that improves computation pushdown on structured

analytics files stored in an erasure-coded form.

Analytics file formats.Analytics file formats can be catego-

rized as unstructured (plaintext, binary files), semi-structured

(CSV, JSON [28]), and structured ( [3, 4, 39]). PAX-based [38]

structured file formats, such as Parquet [4] and ORC [39], are

widely used in data analytics. Albis [102] is another struc-

tured format that disables compression and encoding for

better query performance. Fusion leverages the structural

knowledge embedded in these formats to erasure code data

into a computation-friendly layout.

Erasure coding. Systematic erasure codes are widely de-

ployed in public clouds [1, 19, 35, 42, 62, 76, 80, 87, 100, 103]

due to their advantage of storing data blocks in plaintext.

Fusion currently supports systematic Reed-Solomon (RS)

and can easily incorporate other systematic codes. Non-

systematic codes are not supported since they store data

blocks in encoded form, making direct computations on stor-

age nodes infeasible. Prior work on erasure codes primar-

ily focuses on improving repair performance through new

classes of codes, such as regenerating codes [57] and locally

repairable codes [69, 75, 76, 90, 95], which are orthogonal to

the focus of Fusion.

Bin packing and its variants. The bin packing problem

has been extensively studied for decades and has numerous

variants, including heterogeneous bin types [65], variable bin

sizes [44, 53, 64, 77, 96, 97], item fragmentation [61, 84, 86,

98], and different optimization objectives [40, 51, 54, 68] and

constraints [37, 41, 63, 66, 78]. The problem space can be cat-

egorized into one-dimensional [50, 52, 67] and multidimen-

sional [46, 48, 49, 60]. In themultidimensional case, item sizes

and bin capacities span multiple dimensions and must satisfy

constraints across all dimensions. The bin packing problem

has many important applications in the cloud and data cen-

ters, such as resource-constrained scheduling [45, 66, 71, 88],

and virtual machine placement [83, 89, 101]. These appli-

cations usually use online approximation algorithms since

items arrive on-demand, and future items are not known in

advance. Fusion tackles a new variant of the one-dimensional

bin packing problem. It utilizes a greedy-based offline algo-

rithm, as all items (i.e., column chunks) become available

once an analytics object is uploaded.

8 Summary
Modern erasure-coded cloud object stores are not optimized

for computation pushdown. By co-designing erasure coding

and file placement topology, Fusion significantly reduces

query latency for big data analytics with low storage over-

head. We believe Fusion’s co-design approach can benefit

other system areas that use erasure codes for data storage.
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