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1 The Moore bound

1.1 Graphs

The girth of a graph is defined as the length of its shortest cycle. Given a graph G on n vertices and of
average degree d, what is the maximum possible girth? If d = 2 then we can take a cycle, so the girth can
be n. However, as soon as d > 2, the bound becomes logarithmic.

Let us consider the case of a d-regular graph on n vertices. If g is the girth, then the ball of radius󰀙
g − 1

2

󰀚
around any vertex (i.e. the vertices at distance at most (g− 1)/2) will look like a tree (otherwise

we would have a cycle of length less than g), so we have at least

1 + d

⌊(g−1)/2⌋󰁛

k=0

(d− 1)k ∼ d⌊(g+3)/2⌋

vertices. Since we have precisely n vertices, this gives the so-called Moore bound g ≲ logd−1 n.

Let us now briefly discuss a spectral approach which will set the tone for the rest of the lecture. Let
A be its adjacency matrix and note that trAk counts the number of closed walks of length k in the graph
with k smaller than the girth (and even). A closed walk starts off at a node (for which we have n choices),
and goes k/2 steps away from the original node and k/2 steps closer to the original node. At each step
when it goes away from the original node, it has at most d − 1 choices of an edge to use. At each step
when it comes closer, because k is less than the girth, it must come back through the edge that it came
(for otherwise there will be a cycle). The number of ways to choose in which order to do the closer or

further steps is

󰀕
k!

(k/2)!(k/2)!

󰀖
≤ 2k, so

trAk ≤ n · (d− 1)k/2 · 2k

For a lower bound, note that the graph is d-regular so 󰀂A󰀂 = d and since k is even

trAk ≥ 󰀂Ak󰀂 = dk

Together these give k ≤ logd/4 n.
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Combining this with the renormalization trick from the previous lecture1 we can also get a similar
bound in the case where the graph has n vertices and average degree d, but it is no longer necessarily
d-regular.

The bound in the irregular case was obtained by Alon-Hoory-Linial(’02). They proved that

girth ≤ 2 logd−1 n

1.2 Hypergraphs

A hypergraph on n vertices is a collection of subsets (called hyperedges) of the n vertices. It is called
k-uniform if each hyperedge has cardinality k. A graph corresponds to a 2-uniform hypergraph.

The notion of graph cycle does not have an immediate generalization to hypergraphs. We will choose
to work with the following

Definition: A cycle or even cover in a hypergraph is a collection of hyperedges such that every vertex
of the hypergraph appears in an even number of hyperedges in the collection, possibly zero.

We can now ask an analogous question to the graph Moore bound. Naor-Verstraëte(’05) showed that
any k-uniform hypergraph on n vertices with m ≳ nk/2 hyperedges has an even cover of size O(log n). Let
us restrict our discussion to 4-uniform hypergraphs, so the Naor-Verstraëte bound is m ≳ n2. Later Feige
conjectured that if the number of hyperedges m satisfies m ≳ n2/l then the the hypergraph has an even
cover of size O(l log n).

Let us warm-up by proving the following

Theorem 1. Any 4-uniform hypergraph on n vertices with m ≳ n2 hyperedges has a cycle of size O(log n).

Proof. Consider the graph on n2 vertices with vertices {i, j} where we draw an edge between the vertices
corresponding to {i, j} and {k, l} iff {i, j, k, l} is an edge in the hypergraph. If

(x1, y1) 󰀁→ (x2, y2) 󰀁→ . . . 󰀁→ (xn, yn) 󰀁→ (x1, y1)

is a cycle in the graph, this means we have hyperedges {x1, y1, x2, y2}, {x2, y2, x3, y3}, . . . , {xn, yn, x1, y1}
in the hypergraph, so each element appears in an even number of hyperedges. The issue is that it might
be the case that each hyperedge appears multiple times2, in which case the cycle in the graph does not
give any information about the original hypergraph3. The fix is simple: for each hyperedge choose just
one way of splitting it into two. For example, if {i, j, k, l} is a hyperedge with i < j < k < l, we draw an
edge only between {i, j} and {k, l}. This way we have one edge for each hyperedge instead of three and
now a cycle in the graph truly corresponds to a cycle in the hypergraph. The graph has n2 vertices with
m ≥ cn2 edges, so the average degree is at least c. By the Moore bound for graphs there exists a cycle of
length O(log n), so there exists an even cover in the hypergraph of size O(log n).

1This simply means that we work with Γ−1/2AΓ−1/2 instead of A, where Γ is the diagonal matrix with entries davg+deg vi.

2Note that each hyperedge has 4 elements which corresponds to
1

2

󰀣
4

2

󰀤
= 3 edges in the graph.

3We could have a cycle {a, b} 󰀁→ {c, d} 󰀁→ {e, f} 󰀁→ {a, c} 󰀁→ {b, d} 󰀁→ {g, h} 󰀁→ {a, b} in the graph, which corresponds to
hyperedges {a, b, c, d}, {c, d, e, f}, {e, f, a, c}, {b, d, g, h} and {g, h, a, b}. Note that this is not an even cover since a appears in
three hyperedges.
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We are now going to use Kikuchi graphs to prove Feige’s conjecture (up to a log factor):

Theorem 2. Any 4-uniform hypergraph H on n vertices with m ≥ n2 log n/l hyperedges has a cycle of
length O(l log n).

Proof. Consider the Kikuchi graph Kl(H) having as vertices the subsets of {1, 2, . . . , n} with l elements
(where r will be specified later) and we draw an edge between S and T iff S∆T = c ∈ H, i.e. we draw an
edge between S and T if their symmetric difference is a 4-element set appearing as a hyperedge in H.

Note that any closed walk S1 󰀁→ S2 󰀁→ . . . 󰀁→ Sp 󰀁→ S1 corresponds to a collection c1, . . . , cp of hyperedges
such that each element in {1, 2, . . . , n} appears an even number of times4 in c1, . . . , cp. Indeed,

c1∆c2∆ . . .∆cp = (S1∆S2)∆(S2∆S3)∆ . . .∆(Sp∆S1) = ∅

because A∆A = ∅. Note that c1∆c2∆ . . .∆cp is precisely the set of elements which appear in an odd
number of c1, . . . , cp, hence the claim.

Let us call a closed walk trivial if the corresponding set of hyperedges c1, . . . , cp does not contain an
even cover.

We are going to count the number of closed walks of length t ∼ log

󰀕
n

l

󰀖
∼ l log n in Kl(H), the number

of trivial closed walks in Kl(H) and show that the latter is less than the former. This will mean that we
can find an even cover of the hypergraph of size O(l log n).

The number of edges in Kr(H) is m

󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖
and the number of vertices is

󰀕
n

r

󰀖
so the average

degree is

davg =

m

󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖

󰀕
n

l

󰀖 ∼ ml2

n2

If we denote by A the adjacency matrix of Kl(H), the number of closed walks of length t ∼ l log n (take t
even) is given by trAt. We have the bound5

(trAt)1/t ≥ 󰀂A󰀂 ≥ 1TA1

1T 1
= davg

To get an upper bound on the number of trivial closed walks of length t, let Ac be the adjacency matrix
of the Kikuchi graph corresponding only to element c ∈ H, i.e. Ac at position (S, T ) has entry 1S∆T=c.

In particular note that A =
󰁛

c∈H
Ac. Here’s the trick for counting the trivial closed walks: the numebr of

trivial closed walks of length t is precisely given by

Etr

󰀣
󰁛

c∈H
bcAc

󰀤t

4Just like before, it might be the case that this is just because each hyperedge appears an even number of times in c1, . . . , cp.
5Note that for a N ×N symmetric real matrix, if t ∼ logN is even, then

󰀂A󰀂 ≤ (trAt)1/t = (λt
1 + . . .+ λt

N )1/t ≤ N1/t 󰀂A󰀂 ≤ c 󰀂A󰀂

so lower bounding the trace by the norm is sharp up to a constant.
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where bc are i.i.d. Rademacher random variables. Indeed, this is a simple consequence of the fact that
Eb2k+1

c = 0 and Eb2kc = 1.

We can use NCK6 to obtain
󰀣
Etr

󰀣
󰁛

c∈H
bcAc

󰀤t󰀤1/t

≲
󰁳

l log n

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
A2

c

󰀐󰀐󰀐󰀐󰀐

1/2

=
󰁳

l log n ·
󰁳

dmax

Therefore, if 󰁳
l log n ·

󰁳
dmax ≲ davg

we have shown that the number of trivial closed walks in Kl(H) of length t is less than the number of
closed walks in Kl(H) of length t, so there must exist an even cover of size O(t) = O(l log n).

If the graph is regular, dmax ∼ davg ∼
ml2

n2
, then this condition is precisely equivalent to m ≳ n2 log n/l.

However, this graph does not need to be regular (and in fact it isn’t). To get rid of this regularity
assumption, we can proceed as before and use the renormalization trick where we look at Γ−1/2AΓ−1/2

instead of A and show that there are more weighted closed walks of length t than weighted trivial closed
walks of length t. We skip the details as they are similar to what we did in the previous lecture.

2 A shorter refutation for random 3-SAT

Let n be the number of variables and let m be the number of clauses. Let H ⊂
󰀕
[n]

3

󰀖
be a collection of

sets of three elements contained in [n] = {1, 2, . . . , n} chosen uniformly at random. For each c ∈ H, let
f1
c , f

2
c , f

3
c be the negation patterns.7 We choose these uniformly at random as well.

We are going to show that there exists a polynomial size refutation algorithm for the random 3-SAT if
m ≳ n1.4. This is a result of Feige, Kim and Offek (’06). Note that the bounds we obtained last time could
be obtained only when m ≳ n1.5. The difference in the two is that the algorithm with m ≳ n1.5 is explicit,
whereas in this section we will show that there exists an algorithm when m ≳ n1.4, but this algorithm will
not be ”computable” in the sense that it will rely on the existence of a decomposition which is not easily
computable.

Last time we showed that if m ≳ nk/2 log n then we can find a polynomial time refutation for random
k-XOR. For m ≳ nk/2 log n/lk/2−1 we showed that there exists a refutation algorithm for the k-XOR
which runs in nO(l) time.8 We saw that there was a connection between k-XOR and 3-SAT. To the clause
x1 ∨ x2 ∨ x3 we associate the polynomial

P (x1, x2, x3) = 1− 1

8
(1− x1)(1− x2)(1− x3) =

7

8
+

1

8
(x1 + x2 + x3)−

1

8
(x1x2 + x2x3 + x3x1)−

1

8
x1x2x3

which is 1 if x1 ∨ x2 ∨ x3 is true and 0 otherwise (we identify true and false with 1 and −1). We then
consider the polynomial

Ψ3SAT =
1

m

󰁛

c∈H
P (f1

c , f
2
c , f

3
c )

6See the second lecture.
7So for example, if c = {4, 5, 8} and f1

c = 1, f2
c = −1, f3

c = 1, this corresponds to the clause x4 ∨ ¬x5 ∨ x8.
8We only showed it for k = 4, but the proof worked for any even k. The case when k is odd is more difficult and we did

not cover it, but the result is still true.
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which gives the number of satisfied clauses.

Let us split Ψ3SAT =
7

8
+Ψlinear+Ψquadratic+Ψcubic into linear, quadratic and cubic terms and analyze

them one by one.

We have

Ψlinear =
1

8m

󰁛

c∈H
(f1

c + f2
c + f3

c )

Lemma 3. With probability at least 2/3

Ψlinear ≲
󰁵

m

n

Proof. Let Ψlinear,i be the number of times i appears with a plus in Ψlinear minus the number of times it
appears with a minus9, so that

Ψlinear =
1

8m
(Ψlinear,1 + . . .+Ψlinear,n)

Note that

EΨ2
linear,i =

󰁛

j

E[Ψ2
linear,i|xi appears j times inΨlinear] · P(xi appears j times in Ψlinear)

=
󰁛

j

E[(f1 + f2 + . . .+ fj)
2] · P(xi appears j times in Ψlinear) with fj i.i.d. Rademacher

=
󰁛

j

j · P(xi appears j times in Ψlinear)

= E(number of times xi appears in Ψlinear)

=
3m

n

because we have m clauses wih n variables and the clauses are chosen uniformly at random. Then

EΨlinear,i ≤
󰀃
EΨ2

linear,i

󰀄1/2
=

󰁵
3m

n

so EΨlinear ≤
1

8m
· n ·

󰁵
3m

n
. We can use Markov’s (at the expense of a constant) to infer

Let us move on to the quadratic term

Ψquadratic =
1

8m

󰁛

c∈H
(f1

c f
2
c + f2

c f
3
c + f3

c f
1
c )

We move on to the quadratic terms

Lemma 4. With probability at least 2/3

Ψquadratic ≲
󰁵

m

n
9In other words, we count how many times xi appears as it is in a clause minus the number of times it appears negated.
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Proof. We write Ψquadratic =
1

8m
1TA1 where A is the n× n which has

Aij =
1

2
(number of clauses {i, j, k} with sign(i) = sign(j)− number of clauses {i, j, k} with sign(i) ∕= sign(j))

Indeed, to see the equality just note that if we have a clause c on {i, j, k}, if i, j appear with the same sign,
i.e. f1

c = f2
c , then f1

c f
2
c = 1 and otherwise f1

c f
2
c = −1. The 1/2 in the definition of Aij is because both

(i, j) and (j, i) contribute to the sum 1TA1.

Therefore

Ψquadratic =
1

8m
1TA1 ≤ n

8m
λ1(A)

so we need to estimate the spectral norm of A. For each triple i < j < k we distinguish three pairs: pair
1 is (i, j), pair 2 is (i, k) and pair 3 is (j, k). We define the matrices A1, A2, A3 by

(Al)ij =
1

2
(number of clauses {i, j, k} with (i, j) as pair l and sign(i) = sign(j)

− number of clauses {i, j, k} with (i, j) as pair l and sign(i) ∕= sign(j))

Then A1, A2, A3 are symmetric matrices with independent entries10 of mean zero. The variance of each
entry can be computed in a similar way to the previous lemma to be equal to

E(number of of times xi, xj both appear in a clause) =
3m󰀕
n

2

󰀖 ∼ m

n2

By Füredi-Komlós(’80), the largest eigenvalue of such a matrix is less than
√
size of the matrix ·

√
variance of entries

with high probability, so

λ1(A) ≲
√
n

󰁵
m

n2
=

󰁵
m

n

with high probability.

For the cubic terms we could try to use the bound for random 3-XOR to obtain that

Ψ3SAT ≤ 7

8
+ Õ

󰀕󰁵
n

m

󰀖
+ Õ

󰀳

󰁃

󰁶
n3/2

m

󰀴

󰁄

but this clearly shows that any such refutation algorithm needs m ≳ n1.5. We need to do better for the
cubic terms.

We are going to use the following result from last time11

Theorem. Given a 3-uniform hypergraph H on n vertices with |H| ≥ cn
󰁳

n/l log n, then H contains an
even cover of size l log n.

10The entries with i ≥ j are independent.
11We only proved the result for 4-uniform hypergraphs (or more generally k-uniform hypergraphs with k even), but it is

true for any k-uniform hypergraph, although the numerology needs to be adjusted accordingly.
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Assume that we start with a 3-uniform hypergraph H with |H| ≥ 100cn
󰁳

n/l log n. Find an even cover
of size O(l log n), call it H1. In H −H1, find another even cover of size O(l log n) and so on until we can
no longer do it. We obtain

H = H1 ∪H2 ∪ . . . ∪Hs ∪H∗

We have that H1, . . . , Hs are all even covers and H∗ has at most cn
󰁳

n/l log n elements (otherwise we
would apply the theorem above again). Each Hi is unstastifiable with probability at least 1/2. If Hi

is unsatisfiable, it contains at least one unsatisfiable equation. Therefore the number of unsatisfiable
equations is at least

1

2
0.99

m

l log n

so the fraction of satisfiable equations is 1−O

󰀕
1

l log n

󰀖
. We thus get the bound

7

8
+ Õ

󰀕󰁵
n

m

󰀖
+

1

8

󰀕
1−O

󰀕
1

l log n

󰀖󰀖
= 1 + Õ

󰀕󰁵
n

m

󰀖
− 1

8
O

󰀕
1

l log n

󰀖

so in order to get a refutation (i.e. the above less than 1), we need l2 ≲ m

n
. We chose m ≳ n

󰁳
n/l, so we

can take l ∼ n1/5 to have l2 ≃ m/n ≃
󰁳

n/l. For this choice of l, we get

m ≳ n1.4
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