
COS 598I Lecture 4: Refuting constraint satisfaction problems

Lecturer: Pravesh Kothari Scribe: Ştefan Tudose

Spring 2025

In this lecture we look at the δ-refutation problem for random k-XOR with k even. We give a polynomial
time algorithm in the regime where the number of clauses m satisfies m ≳ nk/2 log n, where n is the number
of variables. We then give a refutation of random k-XOR (with k even) in the case when the number of
clauses m is between n and nk/2 which runs in subexponential time. To do so, we introduce the Kikuchi
matrices and see how they transform a hypergraph problem into a graph problem. We briefly discuss at
the end the connection between random 3-SAT and random k-XOR.
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1 Introduction

The 3-SAT problem is a collection of m clauses (or constraints) on n Boolean variables. Each clause is a
disjunction of three variables (possibly negated), such as xi∨¬xj ∨xk. The goal is to find x1, . . . , xn which
satisfy all the constraints. This is known to be an NP-complete problem.

In the random 3-SAT, we still have a collection of m clauses (each of which is a disjunction of three

variables) on n variables, but the m clauses are chosen i.i.d. from the set of all 2

󰀕
n

3

󰀖
possible clauses.

We are interested in the random 3-SAT because it provides an ”average case” instance of 3-SAT which is
easier to analyze.

The bigger the number the clauses m is, the more likely it is that the formula (the set of clauses) will
be unsatisfiable. To be more precise:
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Lemma 1. For random 3-SAT, if m > cn/ε2, then for any assignment x = (x1, . . . , xn), x satisfies a

fraction of at most
7

8
+ ε of the constraints with high probability1.

Proof. If Ci(x) is 1 if x satisfies clause i and 0 otherwise, it is easy to see that C1(x), . . . , Cm(x) are i.i.d.
taking the value 1 with probability 7/8 and the value 0 with probability 1/8. By Hoeffding’s inequality

P
󰀕󰀕

C1(x)−
7

8

󰀖
+ . . .+

󰀕
Cm(x)− 7

8

󰀖
> εm

󰀖
≤ e−2mε2 ≤ e−cn

so P
󰀕
number of clauses satisfied by x ≥

󰀕
7

8
+ ε

󰀖
m

󰀖
= P

󰀕
C1(x) + . . .+ Cm(x) ≥

󰀕
7

8
+ ε

󰀖
m

󰀖
≤ e−cn.

Given an unsatisfiable formula (collection of clauses), our goal is to find a short certificate of unsatisfi-
ability. The word short is not very precise, but it’s just to draw attention to the fact that the brute-force
method of listing all 2n possible values x = (x1, . . . , xn) and plugging them in the formula to check is
already an upper bound on the length of the certificate, but ideally we would like to do better.

Let us now introduce the δ-refutation problem. Fix m,n in the random 3-SAT problem. We want to
find an algorithm which does the following:

Input: A 3-SAT formula ψ on n variables and with m clauses.

Output: A value v ∈ [0, 1].

Correctness: v should upper bound the maximum fraction of clauses satisfied by any of the 2n pos-
sible assignments x = (x1, . . . , xn) when plugged into ψ.

Utility: v satisfies v < 1− δ with probability at least 0.99 (over the draws of m clauses). Note that
δ depends on m and n.

Note that the first three ”conditions” (input, output and correctness) are deterministic and have noth-
ing to do with the randomness of the problem. The randomness comes in only through the last condition,
utility. The utility condition is necessary in order to say something meaningful, otherwise the algorithm
can always output v = 1.

In other words, we want an algorithm which takes as input a 3-SAT formula and outputs either 1− δ
or outputs don’t know. If it outputs 1 − δ, then it must be true that the formula which it took as input
has a fraction of at most 1 − δ satisfiable clauses. A trivial algorithm would be to always output don’t
know (which is equivalent to always saying v = 1). But that’s what the utility condition is for: to make
sure that the algorithm says something notrivial and that in at least 99% of the cases it guarantees that
we have at most 1− δ satisfiable clauses. Clearly δ must depend on m,n, but we won’t have that δ > 0 for
any m,n. If m is too small then (almost) all formulas will be satisfiable. We clearly must be in a regime
where most formulas are not satisfiable, which for example is the case if m ≫ n by Lemma 1. But even
in this regime, it seems intuitively clear that the larger m is, the more likely it should be for a formula to
not be satisfiable, so the complexity/runtime of the algorithm should be lower.

1Here probability refers to the random draws of m clauses.
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The best results available for 3-SAT are as follows. For m ≲ n2 we only have exponential time algo-
rithms. If2 m ≳ n3, then there exists a polynomial time approximation scheme by [AKK95]. However,

in between, if m ≳ n2+δ, there exist a subexponential approximation scheme with runtime 2O(n1−δ) by
[FLP16] (for 0 < δ < 1). The exponential time hypothesis would imply that these results are sharp.

The situation for random 3-SAT is much better. For m ≲ n we only have exponential time algorithms
for the refutation problem. If m ≳ n3/2+ , then there exist polynomial time refutation algorithms by [GK01]

and [FG01]. In between, if m ≳ n1+δ, there exists a refutation algorithm with runtime 2O(n1−2δ) by [RRS17]
(for 0 < δ < 1/2).

Instead of working with random 3-SAT, we will be working with random k-XOR for convenience of
notation. There is a way to recover bounds for random 3-SAT which we will see in the last section.

2 k-XOR

We are going to look at the δ-refutation problem for the k-XOR. The k-XOR problem can be formulated
as follows: we are given m clauses in n variables x1, . . . , xn ∈ {−1, 1}. Each clause is a k-tuple (a1, . . . , ak)
and a number ba1,a2,...,ak ∈ {−1, 1}. We say that an assignment x = (x1, . . . , xn) satifies all the constraints
if

xa1 · xa2 · . . . · xak = ba1,a2,...,ak

for all m clauses.

We consider random k-XOR, where the m clauses are chosen i.i.d. uniformly from the set of 2

󰀕
n

k

󰀖

possible clauses. It’s easy to see as before that if m > cn/ε2, then any assignment x = (x1, . . . , xn) satisfies

a fraction of at most
1

2
+ ε of the constraints with high probability. The δ-refutation algorithm is defined

as for the 3-SAT.

For k = 2 and k = 4 (and in fact any even k) we are going to show the following

Theorem. If m ≳ nk/2 log n, then there exists δ = δ(m,n) > 0 so that the random k-XOR has a δ-
refutation algorithm which runs in polynomial time.

We are going to show in fact something even stronger: we don’t need to take fully random k-XOR, we
can have the m k-tuples (a1, . . . , ak) fixed and then only the values ba1,...,ak are chosen randomly. This is
what random k-XOR will mean for us below.

We are then going to prove an interpolation result as well:

Theorem. For random 4-XOR, if m ≳ n1+ε log n, then we can construct a δ(m,n)-refutation algorithm
for random 4-XOR with runtime 2n

1−ε
.

The result again works for any even k, but for ease of notation we prove it for k = 4.

2Note that there are at most 2

󰀣
n

3

󰀤
clauses possible, so m ≳ n3 is equivalent to m ≃ n3.
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2.1 The random 2-XOR refutation algorithm

In this section we show that if m ≳ n log n, then random 2-XOR has a polynomial time δ-refutation algo-
rithm.

If we let H be the set of clauses, we label the clauses as xC = bC where xC =
󰁜

i∈C
xi. Note that we can

view this as a graph, where there is an edge between vertices i, j if (i, j) ∈ H (i.e. if there is a constraint
xixj = bij).

Consider the polynomial

Ψ(x) =
1

m

󰁛

c∈H
bCxC

We see that if x is an assignment satisfying all the constraint, then Ψ(x) = 1. Moreover, if Ψ(x) does
not satisfy exactly l out of the m constraints, then Ψ(x) = 1− 2l/m. Therefore, if Ψ(x) < 1− 2δ, then x
satisfies at most a fraction of 1− δ of the constraints. This will be the basis for our refutation algorithm.

2.1.1 A first attempt

Note that

Ψ(x) =
1

m

󰁛

(i,j)∈H
bijxixj = xT

󰀳

󰁃 1

m

󰁛

(i,j)∈H
bijAij

󰀴

󰁄x

where Aij = eie
T
j + eje

T
i is the matrix which has 1 in entries (i, j) and (j, i) and 0 everywhere else (note

that i ∕= j).

We can now bound

Ψ(x) ≤ 󰀂x󰀂2
󰀐󰀐󰀐󰀐󰀐󰀐
1

m

󰁛

(i,j)∈H
bijAij

󰀐󰀐󰀐󰀐󰀐󰀐
= n

󰀐󰀐󰀐󰀐󰀐󰀐
1

m

󰁛

i,j

bij1(i,j)∈HAij

󰀐󰀐󰀐󰀐󰀐󰀐

Our algorithm will take as input a set ψ of m clauses (xC , bC) and output

v(ψ) = min

󰀳

󰁃1, n

󰀐󰀐󰀐󰀐󰀐󰀐
1

m

󰁛

(i,j)∈H
bijAij

󰀐󰀐󰀐󰀐󰀐󰀐

󰀴

󰁄

Note that this is a polynomial time algorithm due to the following

Theorem. Given a n×n matrix, we can compute all eigenvalues of the matrix in polynomial time3 up to
δ additive error.

Correctness is satisfied by the remark above. The only thing we need to check is utility.

By the matrix Khintchine inequality,

E

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H
bijAij

󰀐󰀐󰀐󰀐󰀐󰀐
≤ c

󰁳
log n

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H
A2

ij

󰀐󰀐󰀐󰀐󰀐󰀐

1/2

= c
󰁳

log n
󰁳

dmax

3Here polynomial time means polynomial in the dimension n, the complexity of the entries of the matrix and log 1/δ.
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where dmax = max
1≤i≤n

deg i = max
1≤i≤n

#{j| (i, j) ∈ H}. In fact, the inequality

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H
bijAij

󰀐󰀐󰀐󰀐󰀐󰀐
≤ c

󰁳
log n

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H
A2

ij

󰀐󰀐󰀐󰀐󰀐󰀐

1/2

≤ c
󰁳

log n
󰁳

dmax

holds with high probability.4

We therefore get the bound
v(ψ) ≤ cn

󰁳
log n

󰁳
dmax/m

Let’s assume that the graph is (almost) regular. Then dmax ≃ davg = 2m/n. Therefore

v(ψ) ≤ c

󰁵
n log n

m

Therefore, if m ≳ n log n, v(ψ) < 1− δ with high probability.

The only thing that’s left is to get rid of the assumption that the graph is (almost) regular. We will
do this in the next section.

2.1.2 Getting rid of the regularity assumption

Lemma 2. If the matrix Γ is diagonal with Γii = deg i+ davg where davg = 2m/n, then we have
󰀐󰀐󰀐󰀐󰀐󰀐
Γ−1/2

󰀳

󰁃
󰁛

(i,j)∈H
bijAij

󰀴

󰁄Γ−1/2

󰀐󰀐󰀐󰀐󰀐󰀐
≤ c

󰁶
log n

davg

with high probabiliy.

Proof. We write 󰀐󰀐󰀐󰀐󰀐󰀐
Γ−1/2

󰀳

󰁃
󰁛

(i,j)∈H
bijAij

󰀴

󰁄Γ−1/2

󰀐󰀐󰀐󰀐󰀐󰀐
=

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H
bij

󰀓
Γ−1/2AijΓ

−1/2
󰀔
󰀐󰀐󰀐󰀐󰀐󰀐

We would like to apply the matrix Khintchine inequaliy and Talagrand’s concentration inequality.

Note that Γ−1/2AijΓ
−1/2 has the value

1󰁳
(deg i+ davg) · (deg j + davg)

4If X =
󰁛

(i,j)∈H

bijAij , then recall from the second lecture that we have a way of going from Rademacher to Gaussian

coefficients and then apply the matrix Khintchine inequality:

E 󰀂X󰀂 ≤
󰁵

π

2
E

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H

gijAij

󰀐󰀐󰀐󰀐󰀐󰀐
≤ cσ(X)

󰁳
log n

From the third lecture we know that Talagrand’s concentration inequality gives that

P(󰀂X󰀂 − E 󰀂X󰀂 ≥ t) ≤ e−t2/(2σ(X)2)

so P(󰀂X󰀂 ≥ Cσ(X)
√
log n) ≤ P(󰀂X󰀂 ≥ E 󰀂X󰀂+ cσ(X)

√
log n) ≤ e−cn.
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in entries (i, j) and (j, i) and 0 otherwise. Therefore
󰀃
Γ−1/2AijΓ

−1/2
󰀄2

has the value

1

(deg i+ davg) · (deg j + davg)

in entries (i, i) and (j, j) and 0 otherwise. Therefore,

󰁛

(i,j)∈H

󰀓
Γ−1/2AijΓ

−1/2
󰀔2

is diagonal and on the ith diagonal entry it has value

󰁛

(i,j)∈H

1

(deg i+ davg) · (deg j + davg)

so the norm of
󰁛

(i,j)∈H

󰀓
Γ−1/2AijΓ

−1/2
󰀔2

is the maximum of the above expressions. Note that

󰁛

(i,j)∈H

1

(deg i+ davg) · (deg j + davg)
=

1

deg i+ davg
·

󰁛

(i,j)∈H

1

deg j + davg

≤ 1

deg i+ davg
·

󰁛

(i,j)∈H

1

davg

=
deg i

deg i+ davg
· 1

davg
≤ 1

davg

and therefore 󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H

󰀓
Γ−1/2AijΓ

−1/2
󰀔2

󰀐󰀐󰀐󰀐󰀐󰀐
≤ 1

davg

We can now apply matrix Khintchine and Talagrand’s concentration inequality to conclude.

If
󰀐󰀐Γ−1/2AΓ−1/2

󰀐󰀐 ≤ K then xT
󰀃
Γ−1/2AΓ−1/2

󰀄
x ≤ KxTx for any x ∈ Rn, so xTAx ≤ K ·xTΓx for any

x ∈ Rn. In particular, if x ∈ {−1, 1}n, we obtain from this observation and the previous lemma that

Ψ(x) = xT

󰀳

󰁃 1

m

󰁛

(i,j)∈H
bijAij

󰀴

󰁄x ≤

󰀐󰀐󰀐󰀐󰀐󰀐
Γ−1/2

󰀳

󰁃
󰁛

(i,j)∈H
bijAij

󰀴

󰁄Γ−1/2

󰀐󰀐󰀐󰀐󰀐󰀐
c(xTΓx)/m ≤ c

󰁶
log n

davg

󰀃
xTΓx

󰀄
/m

with high probability. But note that if x ∈ {−1, 1}n then xTΓx = tr Γ =

n󰁛

i=1

(deg i+ davg) = 4m, so

Ψ(x) ≤ c

󰁶
log n

davg
= c

󰁵
n log n

m

with high probability.

If m ≳ n log n, we can take

v(ψ) = min

󰀳

󰁃1,

󰀐󰀐󰀐󰀐󰀐󰀐

󰁛

(i,j)∈H
bij

󰀓
Γ−1/2AijΓ

−1/2
󰀔
󰀐󰀐󰀐󰀐󰀐󰀐

󰀴

󰁄

and this will give a δm,n-refutation algorithm which runs in polynomial time.
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2.2 The random 4-XOR refutation algorithm

For random 4-XOR we can do something similar. If we let H ⊂
󰀕
[n]

4

󰀖
be the set of clauses (which are

chosen uniformly at random i.i.d.), then we define

Ψ(x) =
1

m

󰁛

c∈H
xCbC

Again, if exactly l assignments are not satisfied, then ψ(x) = 1− 2l/m, so if ψ(x) < 1− 2δ then a fraction
of at most 1− δ assignments is satisfied.

We can write

Ψ(x) =
1

m

󰁛

{i,j,k,l}∈H
xixjxkxlbijkl =

󰀃
x⊗2

󰀄T
󰀳

󰁃
󰁛

{i,j,k,l}∈H
bijklAij,kl

󰀴

󰁄x⊗2

where Aij,kl is a n2 × n2 matrix which has 1 on entries (ij, kl) and (kl, ij) and 0 in all the other. One can
then proceed as in the case of 2-XOR. We have proven

Theorem 3. For random 4-XOR, if m ≳ n2 log n, then there exissts a polynomial time δm,n-refutation
algorithm.

Clearly this strategy works for any even dimension, so we have that for random k-XOR with k even, if
m ≳ nk/2 log n, then there exists a polynomial time refutation algorithm.

We are now going to prove the interpolation result

Theorem 4. For random 4-XOR, if m ≳ n1+ε log n, then we can construct a δ(m,n)-refutation algorithm
for random 4-XOR with runtime 2n

1−ε
.

Recall that H ⊂
󰀕
[n]

4

󰀖
is the set of clauses (which are chosen uniformly at random i.i.d.).

We now introduce the so-called Kikuchi matrices, which are a very versatile tool to translate hyper-
graph problems into graph problems (of a bigger dimension).

Fix l a positive integer. Given c ∈ H (so c is a subset with 4 elements of {1, 2, . . . , n}), we define the󰀕
n

l

󰀖
×
󰀕
n

l

󰀖
matrix Kc having as rows and columns all the subsets S with l elements of {1, 2, . . . , n}. The

entry corresponding to subsets S and T will have the value

(Kc)S,T = 1S∆T=c =

󰀝
1 if S∆T = c
0 otherwise

where S∆T = (S − T ) ∪ (T − S) is the symmetric difference of S and T .

The Kikuchi matrix K =
󰁛

c∈H
Kc is just the adjacency matrix of the graph on

󰀕
n

l

󰀖
vertices where

vertices S, T (corresponding to two sets with l elements of {1, 2, . . . , n}) have an edge iff there exists c ∈ H
such that S∆T = c (note that if c exists, it is unique).
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The reason why the Kikuchi matrices Kc are useful in this case is that we can write Ψ(x) =
1

m

󰁛

c∈H
xcbc

in terms of a quadratic form of the Kcs. To that end, note that we have the following

Lemma 5. Given S a subset with l elements of {1, 2, . . . , n}, if we define yS =
󰁜

j∈S
xj , then

yTKcy =

󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖
xc

Proof. This is a simple counting argument. Note that if S∆T = c, then

4 = |c| = |S|+ |T |− 2|S ∩ T | = 2l − |S ∩ T |

so |S ∩ T | = l − 2. This means that S and T each have two elements of c and then l − 2 other elements
in common. To count how many S and T we have such that S∆T = c, note that the 4 elements in c can

be split into two subsets of 2 elements in

󰀕
4

2

󰀖
ways, and then we have to add l − 2 more elements from

the remaining n − 4 elements, which can be done in

󰀕
n− 4

l − 2

󰀖
. The conclusion follows after noticing that

yS · yT =
󰁜

i∈S∆T

xi.

We can now write

Ψ(x) =
1

m

󰁛

c∈H
xcbc =

1󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖yT

󰀣
1

m

󰁛

c∈H
bcKc

󰀤
y

2.2.1 A first attempt

We have the following spectral bound

Ψ(x) ≤ 1󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖
󰀕
n

l

󰀖
1

m

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
bcKc

󰀐󰀐󰀐󰀐󰀐

Our algorithm is then taking as input ψ and outputs

v(ψ) = min

󰀳

󰁅󰁅󰁃1,
1󰀕

4

2

󰀖󰀕
n− 4

l − 2

󰀖
󰀕
n

l

󰀖
1

m

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
bcKc

󰀐󰀐󰀐󰀐󰀐

󰀴

󰁆󰁆󰁄

We need to show the utility, i.e. show that there exists δm,n > 0 such that v(ψ) < 1 − δm,n with high
probability.

Note that by the matrix Khintchine inequality and Talagrand’s concentration inequality,

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
bcKc

󰀐󰀐󰀐󰀐󰀐 ≤ c

󰁶

log

󰀕
n

l

󰀖󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
K2

c

󰀐󰀐󰀐󰀐󰀐

1/2

≤ c
󰁳

l log n
󰁳

dmax
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with high probability. To see the last inequality, note that

(K2
c )S,T =

󰁛

U

(Kc)S,U (Kc)U,T =
󰁛

U

1S∆U=c · 1U∆T=c = 1S=T

󰁛

U

1S∆U=c

so K2
c is diagonal. We get that the (S, S) entry of

󰁛

c∈H
K2

c is

󰀣
󰁛

c∈H
K2

c

󰀤

S,S

=
󰁛

c∈H

󰁛

U

1S∆U=c = degS

Let us assume again that dmax ≃ davg =

2 ·
󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖
m

󰀕
n

l

󰀖 . Then

1󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖
󰀕
n

l

󰀖
1

m

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
bcKc

󰀐󰀐󰀐󰀐󰀐 ≤ c
1󰀕

4

2

󰀖󰀕
n− 4

l − 2

󰀖
󰀕
n

l

󰀖
1

m

󰁳
l log n

󰁳
dmax

= c

󰁹󰁸󰁸󰁸󰁸󰁸󰁷

l(log n)

󰀕
n

l

󰀖

m

󰀕
4

2

󰀖󰀕
n− 4

l − 2

󰀖

≤ c

󰁵
n2 log n

ml

Thus, if m ≳ n2 log n

l
, there exists a δm,n-refutation algorithm with running time nO(l). It’s immediate

to see that this gives Theorem 4.

Of course, we need a proof which does not rely on the assumption that dmax ≃ davg. We will see this
in the next subsection.

2.2.2 Getting rid of the regularity assumption

Just like before, we define the

󰀕
n

l

󰀖
×

󰀕
n

l

󰀖
diagonal matrix Γ with entries ΓS,S = degS + davg. We then

have

Lemma 6. If K =
󰁛

c∈H
Kc is the Kikuchi matrix, then

󰀐󰀐󰀐Γ−1/2KΓ−1/2
󰀐󰀐󰀐 ≤ c

󰁶
l log n

davg

Proof. As in lemma 2, the only thing that needs to be done is to bound

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
(Γ−1/2KcΓ

−1/2)2

󰀐󰀐󰀐󰀐󰀐

1/2

9



We again have that (Γ−1/2KcΓ
−1/2)2 is diagonal and

󰀣
󰁛

c∈H
(Γ−1/2KcΓ

−1/2)2

󰀤

S,S

=
1

degS + davg

󰁛

c∈H

󰁛

S∆T=c

1

deg T + davg
≤ 1

davg

by the same reasoning as before.

If m ≳ n2 log n

l
, we can take

v(ψ) = min

󰀣
1,

󰀐󰀐󰀐󰀐󰀐
󰁛

c∈H
bc

󰀓
Γ−1/2KcΓ

−1/2
󰀔󰀐󰀐󰀐󰀐󰀐

󰀤

This gives a δm,n-refutation algorithm with complexity nO(l). The reasoning is almost identical to that of
section 2.1.2.

2.3 A word on the random 3-XOR refutation algorithm

For the random 3-XOR problem we can write again the polynomial

Ψ(x) =
1

m

󰁛

c∈H
xcbc

The basic issue is that 3 is odd so none of the strategies from before work. Nevertheless, we can write

Ψ(x) =
1

m

󰁛

(i,j,k)∈H
xixjxkbijk

=
1

m

n󰁛

i=1

xi ·

󰀳

󰁃
󰁛

c∈H, c∋i
xc−{i}bC

󰀴

󰁄

≤ 1

m

󰀣
n󰁛

i=1

x2i

󰀤1/2

·

󰀳

󰁃
n󰁛

i=1

󰀳

󰁃
󰁛

c∈H, c∋i
xc−{i}bc

󰀴

󰁄
2󰀴

󰁄

1/2

≤ n

m

󰁛

C,C′∈H, c∋i, c′∋i
bcbc′xc−{i}xc′−{i}

Now xc−{i}xc′−{i} contains an even number of variables, so we are in a good spot to try to do similar thing
as before. There is a catch however, as the random coefficients are now bcbc′ instead of bc, so we cannot
simply apply the matrix Khintchine inequality. The proof is beyond the scope of the lecture.

3 Random 3-SAT refutation via random k-XOR refutation

Given a 3-SAT clause c, say x1 ∨ x2 ∨ x3, we define

Ψc(x) =
7

8
+

1

8
(x1 + x2 + x3 − x1x2 − x2x3 − x3x1 + x1x2x3)

where we view −1 as false and 1 as true. Note that Ψc(x) is 1 if and only if x = (x1, . . . , xn) satisfies the
clause c and is 0 otherwise. Define

Ψ(x) =
󰁛

c∈H
Ψc(x)

10



Then
Ψ(x) < (1− δ)m

will mean that a fraction of at least δ of the clauses must be violated by x. Given the bounds for random
k-XOR, we can readily infer a bound for random 3-SAT as well.
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