
COS 598I Lecture 3: Tail bounds for matrix concentration

Lecturer: Pravesh Kothari Scribe: Ştefan Tudose

Spring 2025

In this lecture we will see how to estimate the variance of the largest eigenvalue of random matrices
with bounded entries by using the Efron-Stein theorem (also known as the tensorization trick). We will also
obtain a bound on the largest eigenvalue of random symmetric matrices with Gaussian entries, as well as
tail bounds for the eigenvalues and the operator norm. These will be consequences of the Gaussian Poincaré
inequality and Gaussian concentration. At the end we briefly discuss about Talagrand’s inequality, which
is an analogue of Gaussian concentration for bounded random variables.
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1 The Efron-Stein inequality

Given independent random variables X1, . . . , Xn, a function f(X1, . . . , Xn) tends to stay close to its mean
as long as it is not too sensitive to changes in any entry. The Efron-Stein theorem is an instance of this
phenomenon.

For a function f : Rn → R, define Varxif : Rn−1 → R by

(Varxif)(x1, . . . , xi−1, xi+1, . . . , xn) = Exi (f(x1, . . . , xn)− Exif(x1, . . . , xn))
2

In other words, Varxif is the variance of f with respect to the ith variable when we freeze all the other
variables. When we will write EVarxif below, we refer to the expectation with respect to all the variables.

Theorem 1 (Efron-Stein). Let X1, . . . , Xn be independent random variables and let f : Rn → R. Then

Varf ≤
n󰁛

i=1

EVarxif

Proof. For 1 ≤ k ≤ n, define E[k]f = Ex1,...,xk
f the expectation of f with respect to the first k variables.

We also define E[0]f = f . We can then write

f − Ef =

n−1󰁛

k=0

󰀃
E[k]f − E[k+1]f

󰀄
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Note that if k < l then
E
󰀃󰀃
E[k]f − E[k+1]f

󰀄 󰀃
E[l]f − E[l+1]f

󰀄󰀄

is zero. Indeed, the only term inside the expectation which depends on xk+1 is E[k]f and

Exk+1
E[k]f = E[k+1]f

Therefore

Varf = E(f − Ef)2 =
n−1󰁛

k=0

E
󰀃
E[k]f − E[k+1]f

󰀄2

By Jensen we have

󰀃
E[k]f − E[k+1]f

󰀄2
= (E[k](f − Exk+1

f))2 ≤ E[k](f − Exk+1
f)2

and so

Varf ≤
n−1󰁛

k=0

E(f − Exk+1
f)2 =

n󰁛

k=1

EExk
(f − Exk

f)2 =

n󰁛

k=1

EVarxk
f

Remark: Note that the inequality is sharp as shown by linear functions

f(x1, . . . , xn) = a1x1 + . . .+ anxn + b

We make the observation that given f : Rn → R, we have

ExVarxif =
1

2
Ex,y(f(x1, . . . , xi, . . . , xn)− f(x1, . . . , yi, . . . , xn))

2

where y = (y1, . . . , yn) is an independent copy of x = (x1, . . . , xn). The Efron-Stein alternatively says that

Varf ≤ 1

2
Ex,y

n󰁛

i=1

(f(x1, . . . , xi, . . . , xn)− f(x1, . . . , yi, . . . , xn))
2

We will also use that if X,Y are independent and identically distributed, then

E((X − Y )2) = E((X − Y )21X>Y + (X − Y )21X=Y + (X − Y )21X<Y ) = 2E((X − Y )21X>Y )

and therefore

Varf ≤ Ex,y

n󰁛

i=1

(f(x1, . . . , xi, . . . , xn)− f(x1, . . . , yi, . . . , xn))
2 · 1f(x1,...,xi,...,xn)≥f(x1,...,yi,...,xn)

As a consequence, we can estimate the variance of the eigenvalues of random symmetric matrices with
bounded entries:

Theorem 2. Let W be a n× n symmetric random matrix such that |Wij | ≤ K for all i, j almost surely.
Then

Var(λ1(W )) ≤ 16K2

where λ1 is the largest eigenvalue of W .
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Proof. By the above observation, it suffices to understand how λ1 changes when changing entry (i, j) (and
implicitly (j, i) since W is symmetric). Consider then the matrix W ′

ij which differs from W only in entries
(i, j) (and (j, i)). Let v be an unit eigenvector of λ1(W ).

We have

λ1(W )− λ1(W
′
ij) = vTWv − max

󰀂u󰀂=1
uTW ′

iju ≤ vTWv − vTW ′
ijv = vT (W −W ′

ij)v ≤ 4K|vi||vj |

where the last inequality follows because W − W ′
ij has at most two entries which are not equal (namely

(i, j) and (j, i)), and the values there are at most 2K. This means
󰀃
λ1(W )− λ1(W

′
ij)

󰀄2 · 1λ(W )>λ(W ′
ij)

≤ 16K2v2i v
2
j

We use theorem 1 (Efron-Stein) in the form of the observation above to get

Var(λ1(W )) ≤ E
󰁛

i≥j

󰀃
λ1(W )− λ1(W

′
ij)

󰀄2 · 1λ(W )>λ(W ′
ij)

≤ E

󰀳

󰁃
󰁛

i≥j

16K2v2i v
2
j

󰀴

󰁄 ≤ 16K2

where we used that v is a unit vector and

󰁛

i≥j

v2i v
2
j =

󰁛

i

v2i v
2
i +

󰁛

i>j

v2i v
2
j ≤

󰁛

i

v2i v
2
i + 2

󰁛

i>j

v2i v
2
j =

󰀣
󰁛

i

v2i

󰀤2

= 1

2 Gaussian concentration

We will see in this section that C1 functions f : Rn → R with a well-behaved gradient (e.g. Lipschitz
functions), when evaluated on i.i.d. standard Gaussians, tend to be close to their mean.

We will repeatedly use the following fact: given f1, f2 : Rn → R two C1 functions and g1, . . . , gn i.i.d.
standard Gaussians, we have

Cov(f1(g1, . . . , gn), f2(g1, . . . , gn)) =

󰁝 1

0
E∇f1(g1, . . . , gn) ·∇f2(g1(t), . . . , gn(t))dt

where gi(t) = tgi +
√
1− t2g′i and g′1, . . . , g

′
n are independent copies of g1, . . . , gn. A proof can be found in

the appendix. Note that g1(t), . . . , gn(t) are i.i.d. standard Gaussians as well.

Theorem 3 (Gaussian Poincaré inequality). Given f : Rn → R a C1 function,

Varf(g1, . . . , gn) ≤ E
󰀓
󰀂∇f󰀂2 (g1, . . . , gn)

󰀔

Proof 1. Using the covariance identity above

Varf = Cov(f, f) =

󰁝 1

0
E∇f(g1, . . . , gn) ·∇f(g1(t), . . . , gn(t))dt

so by Cauchy-Schwarz

Varf ≤
󰁝 1

0

󰀓
E
󰀓
󰀂∇f󰀂2 (g1, . . . , gn)

󰀔󰀔1/2 󰀓
E
󰀓
󰀂∇f󰀂2 (g1(t), . . . , gn(t))

󰀔󰀔1/2
dt

and since g1(t), . . . , gn(t) are i.i.d. standard Gaussians, the conclusion follows.
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Proof 2. Using theorem 1 (Efron-Stein), we can reduce it to the one-dimensional case. Indeed, suppose we
have proven the one-dimensional result. Then we can write by Efron-Stein

Varf(g1, . . . , gn) ≤
n󰁛

i=1

EVargif(g1, . . . , gn) ≤
n󰁛

i=1

EEgi |∂xif(g1, . . . , gn)|2 = E
󰀓
󰀂∇f󰀂2 (g1, . . . , gn)

󰀔

The advantage of one-dimension is that we have the central limit theorem (CLT) at our disposal. Let
f : R → R be a C1 function and let g be a standard Gaussian. Let Z1, . . . , Zk be independent Rademacher
random variables. We then have1

Varf(g) ≃ Varf

󰀕
Z1 + . . .+ Zk√

k

󰀖
by CLT

≤
k󰁛

i=1

EVarif
󰀕
Z1 + . . .+ Zk√

k

󰀖
by Efron-Stein

=
1

2

k󰁛

i=1

E

󰀳

󰁃f

󰀳

󰁃 1√
k

󰁛

j ∕=i

Zj +
1√
k

󰀴

󰁄− f

󰀳

󰁃 1√
k

󰁛

j ∕=i

Zj +
−1√
k

󰀴

󰁄

󰀴

󰁄
2

≃ 1

2

k󰁛

i=1

E

󰀳

󰁃 2√
k
f ′

󰀳

󰁃 1√
k

󰁛

j ∕=i

Zj +
−1√
k

󰀴

󰁄

󰀴

󰁄
2

by Taylor series approximation

≃ 1

2

k󰁛

i=1

E

󰀳

󰁃 2√
k
f ′

󰀳

󰁃 1√
k

󰁛

j ∕=i

Zj

󰀴

󰁄

󰀴

󰁄
2

by Taylor series approximation

≃ 1

2

k󰁛

i=1

4

k
E
󰀃
f ′(g)2

󰀄
= 2E

󰀃
f ′(g)

󰀄2
by CLT

In particular, if the functions is Lipschitz, we obtain the following simple bound:

Corollary 3.1. Let f : Rn → R be a Lipschitz function with

|f(x)− f(y)| ≤ σ 󰀂x− y󰀂

If g1, . . . , gn are i.i.d. standard Gaussians, then

Varf(g1, . . . , gn) ≤ σ2

As a consequence, we can bound the variance of the largest eigenvalue of matrices with independent
Gaussian entries:

1There are some caveats for the one-dimensional proof. We use a Berry-Esséen bound: if h : R → R has bounded derivatives
up to third order and Z1, . . . , Zk are i.i.d. Rademacher random variables, then

󰀏󰀏󰀏󰀏Eh(g)− Eh
󰀕
Z1 + . . .+ Zk√

k

󰀖󰀏󰀏󰀏󰀏 ≤ C
1√
k
sup
x∈R

|h′′′(x)|

We also use that |h(x0+ε)−h(x0)| ≤ ε sup
x∈R

|h′(x)|, |h′(x0+ε)−h′(x0)| ≤ ε sup
x∈R

|h′′(x)|. In all of these we need more information

on the function f from the statement of the theorem than it just being C1. These issues can be overcome by approximating
f by smoother functions which have bounded derivatives.
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Theorem 4. Let W be a n × n symmetric random matrix with the entries on and above the diagonal
independent, Wij ≃ N (µij ,σ

2
ij). Then

Var λ1(W ) ≤ 2max
i,j

σ2
ij

where λ1(W ) is the largest eigenvalue of W . In fact, if λ1(W ) ≥ λ2(W ) ≥ . . . ≥ λn(W ) are all the
eigenvalues, then

Var λi(W ) ≤ 2max
i,j

σ2
ij

Proof. Let W = (µij + σijxij)1≤i,j≤n and W ′ = (µij + σijyij)1≤i,j≤n with xij = xji, yij = yji. By Weyl’s
inequality2 and Cauchy-Schwarz we have

|λi(W )− λi(W
′)| ≤

󰀐󰀐W −W ′󰀐󰀐 = sup
󰀂v󰀂=1

󰀏󰀏〈v, (W −W ′)v〉
󰀏󰀏

≤ sup
󰀂v󰀂=1

󰁛

i,j

|σij | · |xij − yij | · |vi| · |vj |

≤ sup
󰀂v󰀂=1

󰀳

󰁃
󰁛

i,j

|σij |2|xij − yij |2
󰀴

󰁄
1/2

·

󰀳

󰁃
󰁛

i,j

|vi|2|vj |2
󰀴

󰁄
1/2

≤ max |σij | ·

󰀳

󰁃
󰁛

i,j

|xij − yij |2
󰀴

󰁄
1/2

≤
√
2max |σij | ·

󰀳

󰁃
󰁛

i≥j

|xij − yij |2
󰀴

󰁄
1/2

so the Lipschitz constant of the function (xij)i≥j 󰀁→ λi(W ) is at most
√
2max |σij |. By corollary 3.1 we

obtain
Var λi(W ) ≤ 2max

i,j
σ2
ij

We saw that when evaluated on standard Gaussians, the variance of a Lipschitz function with Lipschitz
constant σ is at most σ2. We can in fact show that the deviation from the mean is subgaussian:

Theorem 5 (Gaussian concentration). Let f : Rn → R be a Lipschiz function with

|f(x)− f(y)| ≤ σ 󰀂x− y󰀂

Then
P(|f(g1, . . . , gn)− Ef(g1, . . . , gn)| ≥ t) ≤ 2e−t2/(2σ2)

2For λ1 we don’t actually need Weyl’s inequality and we can use the trick we have seen before. If v is a unit eigenvector
corresponding to λ1(W ), then

λ1(W )− λ1(W
′) = vTWv − max

󰀂u󰀂=1
uTW ′u ≤ vTWv − vTW ′v = vT (W −W ′)v ≤

󰀐󰀐W −W ′󰀐󰀐

and similarly for the bound on λ1(W
′)− λ1(W ).

5
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Proof. Note that it suffices to show

P(f(g1, . . . , gn)− Ef(g1, . . . , gn) ≥ t) ≤ e−t2/(2σ2)

since we can then work with −f as well to obtain the desired inequality.

We use the standard exponentiation trick and Markov’s inequality:

P(f(g1, . . . , gn)− Ef(g1, . . . , gn) ≥ t) = P(eλ(f(g1,...,gn)−Ef(g1,...,gn)) ≥ eλt) ≤ e−λtEeλ(f(g1,...,gn)−Ef(g1,...,gn))

If we let h(λ) = Eeλ(f(g1,...,gn)−Ef(g1,...,gn)), then

h′(λ) = E
󰀓
eλ(f(g1,...,gn)−Ef(g1,...,gn))f(g1, . . . , gn)

󰀔
− E

󰀓
eλ(f(g1,...,gn)−Ef(g1,...,gn))

󰀔
Ef(g1, . . . , gn)

so h′(λ) = Cov(eλ(f(g1,...,gn)−Ef(g1,...,gn)), f(g1, . . . , gn)). Using the covariance formula in the appendix

h′(λ) =

󰁝 1

0
E∇

󰀓
eλ(f(g1,...,gn)−Ef(g1,...,gn))

󰀔
·∇f(g1(t), . . . , gn(t))dt

=

󰁝 1

0
Eλeλ(f(g1,...,gn)−Ef(g1,...,gn))∇f(g1, . . . , gn) ·∇f(g1(t), . . . , gn(t))dt

≤
󰁝 1

0
Eλeλ(f(g1,...,gn)−Ef(g1,...,gn)) |∇f(g1, . . . , gn) ·∇f(g1(t), . . . , gn(t))| dt

≤
󰁝 1

0
Eλeλ(f(g1,...,gn)−Ef(g1,...,gn)) 󰀂∇f(g1, . . . , gn)󰀂 · 󰀂∇f(g1(t), . . . , gn(t))󰀂 dt

≤ λσ2Eeλ(f(g1,...,gn)−Ef(g1,...,gn))

= λσ2h(λ)

where we used that 󰀂∇f󰀂 ≤ σ since f is σ-Lipschitz. From h′(λ) ≤ λσ2h(λ) and h(0) = 1 it follows that

h(λ) ≤ eλ
2σ2/2

Therefore
P(f(g1, . . . , gn)− Ef(g1, . . . , gn) ≥ t) ≤ e−λteλ

2σ2/2

Choosing λ =
t

σ2
gives

P(f(g1, . . . , gn)− Ef(g1, . . . , gn) ≥ t) ≤ e−t2/(2σ2)

We can now easily see that for random Gaussian matrices, the deviation of the largest eigenvalue from
its mean and the deviation of the operator norm from its mean are sub-gaussian:

Corollary 5.1. Let A1, . . . , Ak be n× n symmetric matrices, g1, . . . , gk are i.i.d. standard Gaussians and
let

X =

k󰁛

i=1

giAi

Then λ1(X)− Eλ1(X) and 󰀂X󰀂 − E 󰀂X󰀂 are sub-gaussian with sub-gaussian norm at most σ∗(X), where

σ∗(X) = sup
󰀂v󰀂=1

󰀣
n󰁛

i=1

(vTAiv)
2

󰀤1/2
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In other words,
P(|λ1(X)− Eλ1(X)| ≥ t) ≤ 2e−t2/2σ∗(X)2

P(| 󰀂X󰀂 − E 󰀂X󰀂 | ≥ t) ≤ 2e−t2/2σ∗(X)2

Proof. We will show that the Lipschitz constants of λ1(X)−Eλ1(X) and 󰀂X󰀂−E 󰀂X󰀂 are at most σ∗(X).
The conclusion follows by the Gaussian concentration result in theorem 5. Note that constants do not
affect the Lipschitz norm, so it’s enough to compute the Lipschitz constants of λ1(X) and 󰀂X󰀂.

Let X =

k󰁛

i=1

xiAi and Y =

k󰁛

i=1

yiAi. Note that

|λ1(X)− λ1(Y )| ≤ 󰀂X − Y 󰀂

| 󰀂X󰀂 − 󰀂Y 󰀂 | ≤ 󰀂X − Y 󰀂

The first inequality follows as in the proof of theorem 4 and the second inequality is just the triangle
inequality. We now compute like in the proof of theorem 4

󰀂X − Y 󰀂 = sup
󰀂v󰀂=1

|〈v, (X − Y )v〉|

= sup
󰀂v󰀂=1

󰀏󰀏󰀏󰀏󰀏

k󰁛

i=1

(xi − yi)〈v,Aiv〉

󰀏󰀏󰀏󰀏󰀏

≤ sup
󰀂v󰀂=1

󰀣
k󰁛

i=1

(xi − yi)
2

󰀤1/2

·
󰀣

k󰁛

i=1

〈v,Aiv〉2
󰀤1/2

=

󰀣
k󰁛

i=1

(xi − yi)
2

󰀤1/2

· sup
󰀂v󰀂=1

󰀣
k󰁛

i=1

〈v,Aiv〉2
󰀤1/2

so the Lipschitz norms of the functions

(x1, . . . , xk) 󰀁→ λ1(x1A1 + . . .+ xkAk)

(x1, . . . , xk) 󰀁→ 󰀂x1A1 + . . .+ xkAk󰀂

are at most σ∗(X).

Note that in the second lecture we proved that if X =

k󰁛

i=1

giAi is like in Corollary 5.1, then

E 󰀂X󰀂 ≤ σ(X)
󰁳

log n

where σ(X) =

󰀐󰀐󰀐󰀐󰀐

k󰁛

i=1

A2
i

󰀐󰀐󰀐󰀐󰀐

1/2

=
󰀐󰀐EX2

󰀐󰀐1/2. One may wonder which of the two parameters, σ(X) or σ∗(X),

is larger. It turns out that it’s always the case that σ∗(X) ≤ σ(X):

σ∗(X)2 = sup
󰀂v󰀂=1

k󰁛

i=1

(〈v,Aiv〉)2 ≤ sup
󰀂v󰀂=1

k󰁛

i=1

(󰀂v󰀂 · 󰀂Aiv󰀂)2 = sup
󰀂v󰀂=1

〈v,
k󰁛

i=1

A2
i v〉 = σ(X)2
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3 Talagrand’s inequality

We would like to have an analogue of Corollary 3.1 for random variables which are bounded, but it turns
out that such a result is not true if we just replace g1, . . . , gn with X1, . . . , Xn bounded independent random
variables. However, if we impose that the function is also convex, then the following result is true:

Theorem 6 (Talagrand’s concentration inequality). Let X1, . . . , Xn be independent random variables such
that |Xi| ≤ K almost surely. If f : Rn → R is Lipschitz

|f(x)− f(y)| ≤ σ 󰀂x− y󰀂

and moreover f is convex, then

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ t) ≤ 2e−t2/(2σ2K2)

We will prove this result in the next lecture. To see that convexity is necessary, we consider the following
example due to Paata Ivanishvili. Consider the set

A =

󰀫
(x1, . . . , xn) ∈ {0, 1}n|

n󰁛

i=1

xi ≤
n

2

󰀬

Consider the function f : Rn → R given by

f(x) = inf
y∈A

󰀂x− y󰀂

Note that f is 1-Lipschitz (by the triangle inequality), but it is not convex.

Let X1, . . . , Xn be independent random variables such that P(Xi = 0) =
1

2
, P(Xi = 1) =

1

2
. If

Talagrand’s concentration inequality was true, then we would have

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ n1/4) ≤ 2e−
√
n

In particular,
lim
n→∞

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ n1/4) = 0

But notice that

f(X1, . . . , Xn) =

󰁵
max

󰀓
X1 + . . .+Xn − n

2
, 0
󰀔

because Xi ∈ {0, 1} so

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ n1/4)

= P
󰀕󰀏󰀏󰀏󰀏

󰁵
max

󰀓
X1 + . . .+Xn − n

2
, 0
󰀔
− Ef

󰀕󰁵
max

󰀓
X1 + . . .+Xn − n

2
, 0
󰀔󰀖󰀏󰀏󰀏󰀏 ≥ n1/4

󰀖

= P

󰀳

󰁅󰁅󰁃

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

󰁹󰁸󰁸󰁸󰁸󰁷max

󰀳

󰁅󰁃

2X1 − 1

2
+ . . .+

2Xn − 1

2√
n

, 0

󰀴

󰁆󰁄− Ef

󰀳

󰁅󰁅󰁃

󰁹󰁸󰁸󰁸󰁸󰁷max

󰀳

󰁅󰁃

2X1 − 1

2
+ . . .+

2Xn − 1

2√
n

, 0

󰀴

󰁆󰁄

󰀴

󰁆󰁆󰁄

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
≥ 1

󰀴

󰁆󰁆󰁄

which converges as n → ∞ by the central limit theorem to

P(|
󰁳

max(g, 0)− E
󰁳

max(g, 0)| ≥ 1)

where g is a standard Gaussian.3 As the above quantity is nonzero, we obtain a contradiction.
3Note that

E
󰁳

max(g, 0) =
1√
2π

󰁝 ∞

−∞

󰁳
max(x, 0)e−x2/2dx =

1√
2π

󰁝 ∞

0

xe−x2/2dx =
1√
2π
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4 Appendix: The Gaussian covariance formula

Lemma 7. Given f1, f2 : Rn → R two C1 functions and g1, . . . , gn i.i.d. standard Gaussians, we have

Cov(f1(g1, . . . , gn), f2(g1, . . . , gn)) =

󰁝 1

0
E∇f1(g1, . . . , gn) ·∇f2(g1(t), . . . , gn(t))dt

where gi(t) = tgi +
√
1− t2g′i and g′1, . . . , g

′
n are independent copies of g1, . . . , gn.

Proof. Let E(t) = E(f1(g1, . . . , gn)f2(g1(t), . . . , gn(t))). Note that

Cov(f1(g1, . . . , gn), f2(g1, . . . , gn)) = E(1)− E(0) =

󰁝 1

0
E′(t)dt

We compute using Gaussian integration by parts

E′(t) =
d

dt
Ef1(g1, . . . , gn)f2(g1(t), . . . , gn(t))

=

n󰁛

i=1

Ef1(g1, . . . , gn)(∂if2)(g1(t), . . . , gn(t))g′i(t)

=

n󰁛

i=1

Ef1(g1, . . . , gn)(∂if2)(g1(t), . . . , gn(t))
󰀕
gi −

t√
1− t2

g′i

󰀖

=

n󰁛

i=1

󰀳

󰁃E(∂if1)(g1, . . . , gn)(∂if2)(g1(t), . . . , gn(t)) +
n󰁛

j=1

Ef(g1, . . . , gn)(∂i∂jf2)(g1(t), . . . , gn(t))t

󰀴

󰁄

− t√
1− t2

n󰁛

i=1

n󰁛

j=1

Ef1(g1, . . . , gn)(∂i∂jf2)(g1(t), . . . , gn(t))
󰁳

1− t2

=

n󰁛

i=1

E(∂if1)(g1, . . . , gn)(∂if2)(g1(t), . . . , gn(t)) = E∇f1(g1, . . . , gn) ·∇f2(g1(t), . . . , gn(t))

where we used that
∂

∂gi
gi(t) = t,

∂

∂g′i
gi(t) =

√
1− t2.
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