
COS 598 I: Matrix Concentration and Applications Lecture #2
Proving some matrix concentration inequalities
Princeton University Friday, 7 Feb, 2025

Lecture #2: Friday, 7 Feb, 2025
Lecturer: Pravesh Kothari
Scribe: Nilava Metya

1 Khintchine’s inequality

We aim to prove the matrix Khintchine’s inequality. But before that, let’s look at the
same for scalar random variables.

Theorem 1
Let a1, · · · , an ∈ R and t ∈ N. Then

E

( n∑
i=1

giai

)2t
 1

2t

≤
√
2t− 1

√√√√ n∑
i=1

a2i

where the expectation is taken over independent Gaussians g1, · · · , gn ∼ N (0, 1).

Proof. Denote aaa = (a1, · · · , an), ggg = (g1, · · · , gn). Observe that g :=
⟨ggg,aaa⟩
∥aaa∥2

∼ N (0, 1) if

gi’s are independent standard normals. Recall that E
[
g2t
]
=

t∏
i=1

(2i − 1) ≤ (2t − 1)t for

such g. The former equality has been proven in Appendix A.1. Multiplying throughout
by ∥aaa∥2t2 and taking (2t)th square roots gives the desired result. ■

We now move on to Khintchine’s inequality for matrices whose proof relies on a bound
stated in Lemma 10 in Appendix A.2.

Theorem 2
∃c > 0 such that ∀ symmetric A1, · · · , An ∈ Rm×m (with m ≥ 3) we have

E

[∥∥∥∥∥
n∑

i=1

giAi

∥∥∥∥∥
2

]
≤ c
√

lgm

∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥
1
2

2

where the expectation is taken over independent Gaussians g1, · · · , gn ∼ N (0, 1).
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Proof. Denote X :=
n∑

i=1

giAi. Then X is symmetric and ∥X∥2 is the absolute value of

its largest sized eigenvalue. Say X has eigenvalues λ1, · · · , λm ∈ R such that |λm| ≥

|λi| ∀ i ∈ [m]. Let σ =

∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥
2

which is also the absolute value of the eigenvalue of

∑
A2

i with largest size. Then for any t ∈ N we have ∥X∥2t2 = |λm|2t ≤
m∑
i=1

λ2t
i = Tr(X2t),

whence

E [∥X∥2] ≤ E
[(
Tr(X2t)

) 1
2t

]
Jensen

≤
(
E
[
Tr(X2t)

]) 1
2t

Lemma 10

≤
√
2t− 1

[
Tr

[(
n∑

i=1

A2
i

)t]] 1
2t

≤
√
2t− 1

(
mσ2t

) 1
2t =

√
2t− 1σm

1
2t .

Choosing t ∈
[
lgm− 1

2
,
lgm+ 1

2

]
∩ Z gives E [∥X∥2] ≤ σ

√
lgm · 2

1
2
+ 1

lg(9/4)︸ ︷︷ ︸
c

. ■

Now let’s move on to Khintchine’s inequality with Rademacher weights, instead of
Gaussian. We expect such a statement to be true because somehow the ‘tails’ in the
Rademacher case are bounded above by Gaussians. What we precisely want is stated in
Appendix A.3.

Theorem 3
∃c > 0 such that ∀ symmetric A1, · · · , An ∈ Rm×m, we have

E

[∥∥∥∥∥
n∑

i=1

biAi

∥∥∥∥∥
2

]
≤ c
√
lgm

∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥
1
2

2

where the expectation is taken over a uniform draw of bbb ∈ {±1}n.

Proof. Immediate from Theorem 2 and Lemma 11 (different c from Theorem 2). ■

2 Sums of independent random variables

We now want to look at quantities like

∥∥∥∥∥
n∑

i=1

(Hi − E [Hi])

∥∥∥∥∥
2

where the Hi’s are chosen

uniformly from the set ofm×m real symmetric matrices. In such cases, a symmetrization
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trick is really useful which is presented in Appendix A.4. We shall use this to prove the
following expected deviation.

Theorem 4
∃ c > 0 such that if H1, · · · , Hn ∈ Rm×m are symmetric and chosen uniformly randomly,
we have

E
HHH

[∥∥∥∥∥
n∑

i=1

(Hi − E [Hi])

∥∥∥∥∥
2

]
≤ c
√

lgm E
HHH

∥∥∥∥∥∑
i

H2
i

∥∥∥∥∥
1
2

2

 .

Proof. Lemma 12 says that the LHS is at most 2 E
bbb∈{±1}n

HHH

∥∥∥∥∥
n∑

i=1

biHi

∥∥∥∥∥
2

. But this is the same

as 2 E
HHH

[
E

bbb∈{±1}n

(∥∥∥∥∥
n∑

i=1

biHi

∥∥∥∥∥
2

∣∣∣∣∣ H1, · · · , Hn

)]
by the law of total expectation. By Theo-

rem 3, this expression is at most 2c′︸︷︷︸
c

√
lgm E

HHH

 E
bbb∈{±1}n

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
1
2

2

∣∣∣∣∣∣ H1, · · · , Hn

 =

c
√
lgm E

HHH

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
1
2

2

. ■

2.1 Chernoff bound for random symmetric matrices

Theorem 5
∃c, c′ > 0 such that if H1, · · · , Hn ∈ Rm×m are symmetric and chosen uniform and
independently such that Hi ⪰ 0 a.s. and Hi ⪯ MI a.s., we have the following ∀ ε > 0:

E

[∥∥∥∥∥
n∑

i=1

Hi

∥∥∥∥∥
2

]
≤ (1 + ε)

∥∥∥∑E [Hi]
∥∥∥
2
+

(
1 +

1

ε

)
cM
√

lgm

if λmax(
∑

E[Hi])≫M lgm

≤ (1 +O(ε))

∥∥∥∥∥
n∑

i=1

E [Hi]

∥∥∥∥∥
2

.

Proof. First write E

[∥∥∥∥∥
n∑

i=1

Hi

∥∥∥∥∥
2

]
≤ E

[∥∥∥∥∥∑
i

Hi − E [Hi]

∥∥∥∥∥
2

]
+

∥∥∥∥∥∑
i

E [Hi]

∥∥∥∥∥
2

by the tri-

angle inequality. Then E

[∥∥∥∥∥∑
i

Hi − E [Hi]

∥∥∥∥∥
2

]
Theorem 4

≲
√
logmE

∥∥∥∥∥∑
i

H2
i

∥∥∥∥∥
1
2

2

 0⪯Hi⪯MI

≲

√
logm·E

√M

∥∥∥∥∥∑
i

Hi

∥∥∥∥∥
1
2

2

 ≤
√
M logmE

[∥∥∥∥∥∑
i

Hi

∥∥∥∥∥
2

] 1
2

. Taking x :=

√
E
[∥∥∥∥ n∑

i=1

Hi

∥∥∥∥
2

]
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gives from the last inequality that x2 − xc
√
M logm − ∥

∑
E [Hi]∥2 ≤ 0. Since this is a

(strictly) convex quadratic, we must have x ≤
c
√
M logm+

√
c2M logm+ 4 ∥

∑
E [Hi]∥2

2
for the previous inequality to be true. This in turn implies that

E
[∥∥∥∑Hi

∥∥∥
2

]
= x2 ≤ 1

2
c2M logm+

∥∥∥∑E [Hi]
∥∥∥
2
+

1

2

√
1

ε
c2M logm ·

√
ε

√
c2M logm+ 4

∥∥∥∑E [Hi]
∥∥∥

GM≤AM

≤ 1

2
c2M logm+

∥∥∥∑E [Hi]
∥∥∥
2
+

1
ε
c2M logm+ εc2M logm+ 4ε ∥

∑
E [Hi]∥2

4

=
1

4

(
2 + ε+

1

ε

)
c2M logm+ (1 + ε)

∥∥∥∑E [Hi]
∥∥∥
2
.

The above is true for any ε > 0. Doing the same arugment with ε replaced by 1
ε
gives a

coefficient of
(
1 + 1

ε

)
in the second term (first term is unchanged), hence we can assume

ε < 1. Thus, the above inequality for ε ∈ (0, 1) can be stated as

E
[∥∥∥∑Hi

∥∥∥
2

]
≤
(
1 +

1

ε

)
c′M logm+ (1 + ε)

∥∥∥∑E [Hi]
∥∥∥
2
.

■

2.2 Bernstein bound for random symmetric matrices

Theorem 6
∃c1, c2 > 0 such that if H1, · · · , Hn ∈ Rm×m are chosen uniformly randomly from the
space of real symmetric matrices with E [Hi] = 0 and ∥Hi∥2 ≤ M almost surely ∀ i, then

E
[∥∥∥∑Hi

∥∥∥
2

]
≤ c1

√
logm

∥∥∥∑E
[
H2

i

]∥∥∥ 1
2

2
+ c2M logm.

Proof. E
[∥∥∥∑Hi

∥∥∥
2

] Theorem 4

≤ c
√

logmE
[∥∥∥∑H2

i

∥∥∥ 1
2

2

]
Jensen

≤ c
√

logmE
[∥∥∥∑H2

i

∥∥∥
2

] 1
2 Theorem 5

≤

c
√
logm

(
c′
∥∥∥∑E

[
H2

i

]∥∥∥ 1
2

2
+ c′′M

√
logm

)
where the last inequality is true by replacing

Hi,M with H2
i ,M

2 in Theorem 5 and then applying the inequality
√
a+ b ≤

√
a +

√
b

for a, b ≥ 0 and end by taking c1 := cc′, c2 := cc′′. ■
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3 Applications

3.1 Another proof of Graph Sparsification

Problem statement and algorithm. Let’s recall the problem of graph sparsification.
Given an unweighted undirected graph G = (V,E) with n = |V | we want to find another
undirected weighted graph G′(V ′, E ′, w) with E ′ ⊆ E such that (with multiplicative

error)
∑
e∈E′

weLe
1±ε≃
∑
e∈E

Le (so that cut-values are preserved), where the edge Laplacians

are L{i,j} := δii + δjj − δij − δji where δαβ is the n× n matrix with a 1 entry in position
(α, β) and zero elsewhere. Recall the Laplacian of the graph (L =)LG =

∑
e∈E

Le and the

normalized edge Laplacian L̃e = L†/2LeL
†/2. With this new notation, our goal is the

same as
∑
e∈E′

weL̃e
1±ε≃ I⊥. Look at Lecture 1 for details.

The ideal algorithm was based on importance sampling, to independently sample edge

e ∈ E with probability pe :=
1
R

∥∥∥L̃e

∥∥∥
2
to be included in E ′, where R is to be chosen later.

If e ∈ E ′ we will set we =
1
pe
. Then E [|E ′|] =

∑
e∈E

pe =
∑
e∈E

1

R

∥∥∥L̃e

∥∥∥
2

(∗)
=
∑
e∈E

1

R
Tr
(
L̃e

)
=

1

R
Tr (III⊥) =

n− 1

R
. (∗) follows from the fact that each L̃e ⪰ 0 and has rank 1. To prove

that |E ′| is concentrated around this number, we can use the usual Chernoff bound.

Error analysis. Let Qe :=

{
1
pe
L̃e if e ∈ E ′

000n×n otherwise
= 111[e sampled] · 1

pe︸ ︷︷ ︸
we

L̃e for each e ∈ E (if

an edge is not present in E ′, then think of its weight as 0). Each Qe is positive semidefinite

and has all eigenvalues ≤ R. So E [Qe] = L̃e. So E

[∥∥∥∥∥∑
e∈E′

weL̃e

∥∥∥∥∥
2

]
= E

[∥∥∥∥∥∑
e∈E

Qe

∥∥∥∥∥
2

]
≤

(1+ε)

∥∥∥∥∥∑
e∈E

E [Qe]

∥∥∥∥∥
2

+

(
1 +

1

ε

)
cR log n where the last inequality follows from Theorem 5.

Choosing R = ε2

logn
and noting that

∥∥∥∥∑
e∈E

E [Qe]

∥∥∥∥
2

=

∥∥∥∥∑
e∈E

L̃e

∥∥∥∥
2

= ∥III⊥∥2 = 1 guarantees

E

[∥∥∥∥∥∑
e∈E′

weL̃e

∥∥∥∥∥
2

]
≤ 1 +O(ε).

3.2 ‘Machine Learning’

We have an (unknown) distribution D on Rd with a random variable X ∼ D satisfying
ED [X] = 0,ED

[
XX⊤] = Σ (Σ also unknown). To learn Σ, an intuitive algorithm is

https://www.cs.princeton.edu/~kothari/matrixconclecs/Lec1.pdf
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to sample X1, · · · , Xm ∼ D independently and report an estimate Σ̂ := 1
m

∑m
i=1XiX

⊤
i .

We want to get theoretical guarantees of the form “
∥∥∥Σ̂− Σ

∥∥∥
2
≤ ε with probability

99%”. For ‘real life’ cases, we assume Σ is invertible. Since the above estimate can
depend on the eigenvalues of Σ, we instead demand a relative estimate so that people
can have an overall idea of ε’s are good enough. So we instead demand a guarantee of the

form “
∥∥∥Σ−1/2Σ̂Σ−1/2 − III

∥∥∥
2
≤ ε with probability 99%”. This is equivalent to demanding

“vvv⊤
(
Σ−1/2Σ̂Σ−1/2

)
vvv ∈ (1− ε, 1 + ε) ∥vvv∥2 ∀ vvv ∈ Rd with probability 99%”.

Comparing Theorem 6 with the above expression forces us to write it as Σ−1/2Σ̂Σ−1/2 =
1

m

m∑
i=1

YiY
⊤
i where Yi := Σ−1/2Xi. Noting that E

[
YiY

⊤
i

]
= Σ−1/2ΣΣ−1/2 = III sug-

gests that we can use Theorem 6 with Hi := 1
m

(
YiY

⊤
i − III

)
, provided we know some

K such that K ≥
∥∥Σ−1/2X

∥∥
2
almost surely. The latter assumption guarantees ∥Hi∥ ≤

1
m

(
∥Yi∥2 + 1

)
≲ K2

m
. Using the raw form of Bernouli (Theorem 4) gives E

[∥∥∥∑Hi

∥∥∥
2

]
≤

c
√
log d · K

2

m

√
m = cK2

√
log d

m
. Choosing m > c2K4 log d

ε2
samples does the job.
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A Appendix

A.1 Even moments of Gaussians

Proposition 7 (Gaussian integration by parts)
If X ∼ N (0, 1) and f is an differentiable function such that its derivative is integrable
then E [Xf(X)] = E [f ′(X)].

Lemma 8 (even Gaussian moments)

If X ∼ N (0, 1) and t ∈ N then E
[
X2t
]
=

t∏
i=1

(2i− 1).

Proof. Taking f(x) = x2t−1 in Proposition 7 gives E
[
X2t
]
= E [X · f(X)] = (2t −

1)E
[
X2t−2

]
. This is one step in our calculation. Doing this recursively gives E

[
X2t
]
=

t∏
i=2

(2i− 1) · E
[
X2
]
=

t∏
i=1

(2i− 1) because E [X2] = Var [X] = 1. ■

A.2 Bounding expectation of trace of even powers of Gaussian
linear combination of matrices

Lemma 9
Let X,A1, · · · , An ∈ Rm×m be symmetric matrices, s ∈ N. Then Tr(AkX

lAkX
2s−l) ≤

Tr(A2
kX

2s) for every k ∈ [n], l ∈ [2s] ∪ {0}.

Proof. Consider the function f(k, l) = Tr(AiX
lAiX

2s−l) for each k ∈ [n], l ∈ [2s] ∪ {0}.

X is symmetric, hence it can be decomposed as X =
m∑
i=1

λivvvivvv
⊤
i where {vvvi}mi=1 is an

orthonormal basis of Rm, and λi ∈ R are the eigenvalues of X. Then

f(k, l) = Tr(AkX
lAkX

2s−l)

= Tr

Ak

(
m∑
i=1

λivvvivvv
⊤
i

)l

Ak

(
m∑
j=1

λjvvvjvvv
⊤
j

)2s−l


= Tr

(
Ak

(
m∑
i=1

λl
ivvvivvv

⊤
i

)
Ak

(
m∑
j=1

λ2s−l
j vvvjvvv

⊤
j

))
=
∑
i,j

λl
iλ

2s−l
j Tr

(
Akvvvivvv

⊤
i Akvvvjvvv

⊤
j

)
≤
∑
i,j

|λi|l |λj|2s−l Tr
(
Akvvvivvv

⊤
i Akvvvjvvv

⊤
j

)
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The expression
∑
i,j

|λi|l |λj|2s−l Tr
(
Akvvvivvv

⊤
i Akvvvjvvv

⊤
j

)
is convex in l. Hence it maximizes

at the endpoints of the range of l, namely 0, 2s. Due to the symmetry of Ak, the
value of the expression at l = 0 is the same as that at l = 2s. This common value
is
∑

i,j λ
2s
j Tr

(
Akvvvivvv

⊤
i Akvvvjvvv

⊤
j

)
which is the same as f(k, 0) (this step would not be pos-

sible if 2s were replaced by some odd number). Thus we have proven that for any
k ∈ [n], l ∈ [2s] ∪ {0}, Tr

(
AkX

lAkX
2s−l
)
= f(k, l) ≤ f(k, 0) = Tr(A2

kX
2s). ■

Lemma 10
Let A1, · · · , An ∈ Rn×n be symmetric matrices and g1, · · · , gn ∼ N (0, 1) be independent

Gaussians. Denote X :=
n∑

i=1

giAi. Then

(
E
[
Tr
(
X2t
)]) 1

2t ≤
√
2t− 1

[
Tr

[(
n∑

i=1

A2
i

)t]] 1
2t

.

Proof. We will first use Proposition 7 similar to the proof of Lemma 8, and then invoke
Lemma 9 with s = t− 1. We have

E
[
Tr
(
X2t
)]

= E
[
Tr
(
X ·X2t−1

)]
=

n∑
k=1

E
[
gk Tr

(
AkX

2t−1
)]

Proposition 7
=

n∑
k=1

2t−2∑
l=0

E

Tr
AkX

l (∂gkX)︸ ︷︷ ︸
Ak

X2t−2−l




=
n∑

k=1

2t−2∑
l=0

E
[
Tr
(
AkX

lAkX
2t−2−l

)]
Lemma 9

≤
2t−2∑
l=0

n∑
k=1

E
[
Tr
(
A2

kX
2t−2
)]

=
2t−2∑
l=0

E

[
Tr

((
n∑

k=1

A2
k

)
X2t−2

)]

= (2t− 1)E

[
Tr

((
n∑

k=1

A2
k

)
X2t−2

)]

Hölder

≤ (2t− 1)E

[Tr((∑
k

A2
k

)t)] 1
t

·
(
Tr(X2t)

)1− 1
t


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= (2t− 1)

[
Tr

((∑
k

A2
k

)t)] 1
t

E
[(
Tr(X2t)

)1− 1
t

]
Jensen

≤ (2t− 1)

[
Tr

((∑
k

A2
k

)t)] 1
t (

E
[
Tr(X2t)

])1− 1
t

=⇒
(
E
[
Tr(X2t)

]) 1
t ≤ (2t− 1)

[
Tr

((∑
k

A2
k

)t)] 1
t

=⇒
(
E
[
Tr(X2t)

]) 1
2t ≤

√
2t− 1

[
Tr

((∑
k

A2
k

)t)] 1
2t

.

■

A.3 Gauss dominates Rademacher

Lemma 11
If bbb is uniformly random on {±1}n and g1, · · · , gn ∼ N (0, 1) are independent (and also
independent of bbb), then

E
bbb

∥∥∥∥∥∑
i

biAi

∥∥∥∥∥
2

≤
√

π

2
E
ggg

∥∥∥∥∥∑
i

giAi

∥∥∥∥∥
2

.

Proof. E
ggg

∥∥∥∥∥∑
i

giAi

∥∥∥∥∥
2

=E
ggg,bbb

∥∥∥∥∥∑
i

|gi| biAi

∥∥∥∥∥
2

≥E
bbb

∥∥∥∥∥∑
i

bi E
ggg
|gi|Ai

∥∥∥∥∥
2

=

√
2

π
E
bbb

∥∥∥∥∥∑
i

biAi

∥∥∥∥∥
2

. ■

A.4 Symmetrization trick with Rademacher

Lemma 12
If H1, · · · , Hn ∈ Rm×m are chosen uniformly randomly and independently from the set
of m×m real symmetric matrices, then

E
HHH

[∥∥∥∥∥
n∑

i=1

(Hi − E [Hi])

∥∥∥∥∥
2

]
≤ 2 E

bbb∈{±1}n
HHH

[∥∥∥∥∥
n∑

i=1

biHi

∥∥∥∥∥
2

]
.

Proof. The symmetrization trick is to introduce an independent identical copy of each
Hi, namely H ′

i, then each Hi−E [Hi] becomes E
HHH′

[Hi −H ′
i] because E [Hi] = E [H ′

i]. Then

starting from the LHS we have,

E
HHH

[∥∥∥∥∥
n∑

i=1

(Hi − E [Hi])

∥∥∥∥∥
2

]
=E

HHH

[∥∥∥∥∥EHHH′

[
n∑

i=1

Hi −H ′
i

∥∥∥∥∥
2

]]
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Jensen

≤ E
HHH
E
HHH′

[∥∥∥∥∥∑
i

Hi −H ′
i

∥∥∥∥∥
2

]
(∗)
= E

HHH,HHH′

[
E

bbb∈{±1}n

∥∥∥∥∥
n∑

i=1

bi(Hi −H ′
i)

∥∥∥∥∥
2

]
(∗∗)
≤ E

HHH,HHH′

[
E

bbb∈{±1}n

∥∥∥∥∥
n∑

i=1

biHi

∥∥∥∥∥
2

]
+ E

HHH,HHH′

[
E

bbb∈{±1}n

∥∥∥∥∥
n∑

i=1

biH
′
i

∥∥∥∥∥
2

]

= 2 E
bbb∈{±1}n

HHH

∥∥∥∥∥
n∑

i=1

biHi

∥∥∥∥∥
2

.

(∗)
= holds because Hi−H ′

i has a symmetric distribution and hence bi(Hi−H ′
i)

D≡ Hi−H ′
i.

(∗∗)
≤ is true by triangle inequality on ∥·∥2. ■
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