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1 Khintchine’s inequality

We aim to prove the matrix Khintchine’s inequality. But before that, let’s look at the
same for scalar random variables.

Theorem 1
Let a1, -+ ,a, € Rand t € N. Then

where the expectation is taken over independent Gaussians gy, -+ , g, ~ N (0,1).

Proof. Denote a = (a1, - ,a,),9 = (g1, -+ ,gn). Observe that g = l9.0) ~ N (0,1) if

lall
t

g;'s are independent standard normals. Recall that E [¢*] = H(Qz —1) < (2t —1)* for

i=1
such g. The former equality has been proven in Appendix A.1. Multiplying throughout
by ||a,||§t and taking (2¢)" square roots gives the desired result. [ |

We now move on to Khintchine’s inequality for matrices whose proof relies on a bound
stated in Lemma 10 in Appendix A.2.

Theorem 2
de > 0 such that V symmetric Ay, .-, A, € R™*™ (with m > 3) we have

E

<c/lgm

1
2
2

Z giA;
i=1

32
=1

2

where the expectation is taken over independent Gaussians gy, -« , g, ~ N (0,1).
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Proof. Denote X = Z giA;. Then X is symmetric and ||X||, is the absolute value of

=1

its largest sized eigenvalue. Say X has eigenvalues Ay, -+, A\, € R such that |A,,| >

|\i| Vi€ [m]. Let 0 = Zn: A?|l which is also the absolute value of the eigenvalue of
i=1 9

S A? with largest size. Then for any t € N we have || X5’ = |\ | < Z A= Tr(X?),

whence

E[|X],] < E [(Tr(xX*) ]

Jensen

<" (B [m(x))

1
2t
Lemma 10

< V2t-1|Tr

n t
=1
< V=1 (mo*)™ = 3 — 1om®,

lgem—1 lgm+1
2 2

Choosing t €

7 gives E[||X],] < o/Igm - 22 @/ | ]
}m gives E[|IX]l,) < o/gm

C

Now let’s move on to Khintchine’s inequality with Rademacher weights, instead of
Gaussian. We expect such a statement to be true because somehow the ‘tails’ in the
Rademacher case are bounded above by Gaussians. What we precisely want is stated in
Appendix A.3.

Theorem 3
de > 0 such that V symmetric Ay, -+, A, € R™*™ we have

where the expectation is taken over a uniform draw of b € {£1}".

Proof. Immediate from Theorem 2 and Lemma 11 (different ¢ from Theorem 2). [

2 Sums of independent random variables

n
> (H,~E[H))
=1 2
uniformly from the set of m x m real symmetric matrices. In such cases, a symmetrization

We now want to look at quantities like where the H;’s are chosen
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trick is really useful which is presented in Appendix A.4. We shall use this to prove the
following expected deviation.

Theorem 4

3 ¢ > 0 such that if Hy,--- , H, € R™™ are symmetric and chosen uniformly randomly,
we have
H;, — E[H; < cy/lgm
g[Sz | <evig |

=1

Proof. Lemma 12 says that the LHS is at most 2 . But this is the same

be{ﬁ:l}"
be{il} <

rem 3, this expression is at most 2¢" /lgm
Ny

ZbH

Hy, - Hn>] by the law of total expectation. By Theo-

as 2 |k
H

Hla"'7Hn -

H be{il}" ‘
C

1

n 2
2
>_H

=1 2

2.1 Chernoff bound for random symmetric matrices

Theorem 5
de,d > 0 such that if Hy,---,H, € R™™ are symmetric and chosen uniform and
independently such that H; > 0 a.s. and H; < MT a.s., we have the following V ¢ > 0:

; ] <(+o)|SEmH]| + (1%) cMy/lgm

if Amax (3 E[H;])>Mlgm
<

2

Proof. First write E < E by the tri-

>

i=1

> H -E[H

2

> H, -E[H
< /M logmE

2

e
2| 0<H;=<MI
<

~Y

Theorem 4

< Vlogm

|

angle inequality. Then E

ZH2

24

D=

1
2

logm-E

. Taking x .= { |E H > H;
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gives from the last inequality that 22 — zey/Mlogm — ||>° E [H;]||, < 0. Since this is a
c/Mlogm + /M logm + 4[> E[H,]|,
2

for the previous inequality to be true. This in turn implies that

(strictly) convex quadratic, we must have z <

12
S]] - < fentsn [
1 /1
—\/—CQMlogm-\/E\/CQMlogm—l—éLHE E[H
2
GMSAM |

M logm + HZE
1M logm + ec® M logm + 4e |3 E [Hi] |,
4

1 1
:Z<2+€+g>cMlogm—i—(l—i—a)HZ]E[H

) .

The above is true for any € > 0. Doing the same arugment with ¢ replaced by % gives a
coefficient of (1 + %) in the second term (first term is unchanged), hence we can assume

e < 1. Thus, the above inequality for ¢ € (0,1) can be stated as

E[H l 2] < <1+§) c’Mlogm+(1+5)HZE[H

) .

2.2 Bernstein bound for random symmetric matrices

Theorem 6
dei, ¢ > 0 such that if Hy,--- , H, € R™™ are chosen uniformly randomly from the
space of real symmetric matrices with E [H;] = 0 and || H;||, < M almost surely V i, then

_ 1
E H * L e;Mlogm.
L 2

) < erv/iogm |k [

% Theorem 5
} <

Proof. E H

17 Jensen
2T LA ]E[H H?
} 2 cViogmE || 12,

1
: —|— " M+/log m) where the last inequality is true by replacing

Theorem 4
i z 1 ]EH H?
] o [Z ;

Viogm < HZE [H2]

H;, M with H? M? in Theorem 5 and then applying the inequality va +b < y/a + Vb
for a,b > 0 and end by taking ¢; = ¢, ¢y == cc”. |
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3 Applications

3.1 Another proof of Graph Sparsification

Problem statement and algorithm. Let’s recall the problem of graph sparsification.
Given an unweighted undirected graph G = (V, E) with n = |V/| we want to find another
undirected weighted graph G'(V',E',w) with B/ C E such that (with multiplicative

error) Z WeL, = Z L. (so that cut-values are preserved), where the edge Laplacians
eck’ eck
are Ly jy = 04 + 055 — 0;j — 05 where d,5 is the n x n matrix with a 1 entry in position
(o, B) and zero elsewhere. Recall the Laplacian of the graph (L =)Lg = ) L. and the
eeE
normalized edge Laplacian L. = LY2L,L12. With this new notation, our goal is the
same as wez ]Il Look at Lecture 1 for details.

ecE’
The ideal algorithm was based on importance sampling, to independently sample edge

L. to be included in E’, where R is to be chosen later.

. (%) 1 ~
Ifec F Il set w, = L. Then E [|E|] E:G_E: =§:—T(Le)=
e we will set w en E | P , R r

ec ec

. (¥) follows from the fact that each L, = 0 and has rank 1. To prove

e € E with probability p. == %

6

1 n—1
ETI"(IJ_):

that |E’| is concentrated around this number, we can use the usual Chernoff bound.

Ll ifeeF 1 -
Error analysis. Let Q. := ¢ ?* ne - =1le sampled] - — L, for each e € E (if
0,,x, otherwise . Pe

J/

-
We

an edge is not present in E’, then think of its weight as 0). Each Q. is positive semidefinite
>t |-2|[Ee |-

ecE’ e€R
1
(1 + —) cRlogn where the last inequality follows from Theorem 5.
€

and has all eigenvalues < R. So E[Q.] = L.. So E

) D EQ.

eeE

=E

(1+¢)

> L

ecE

2 E[Q]

ecE

Choosing R = ‘52 and noting that

logn
§ weLe

ecE’

= ||[I.]|, = 1 guarantees
2

2

<1+ 0(e).

2

3.2 ‘Machine Learning’

We have an (unknown) distribution D on R? with a random variable X ~ D satisfying
Ep[X] = 0,Ep [XXT] = £ (¥ also unknown). To learn ¥, an intuitive algorithm is


https://www.cs.princeton.edu/~kothari/matrixconclecs/Lec1.pdf
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to sample Xy, -, X,, ~ D independently and report an estimate 3= % > XX/

3 — EH < ¢ with probability
2

99%”. For ‘real life’ cases, we assume X is invertible. Since the above estimate can

depend on the eigenvalues of X, we instead demand a relative estimate so that people
can have an overall idea of €’s are good enough. So we instead demand a guarantee of the

form “HE_U 2Nl H < ¢ with probability 99%”. This is equivalent to demanding
2

We want to get theoretical guarantees of the form “

“of (2_1/222_1/2> ve(l—el+e)|v|” Vv eR? with probability 99%”.

Comparing Theorem 6 with the above expression forces us to write it as X~/ 2anl2 =

1 m
— 5 Y;Y;" where Y; = ¥72X,. Noting that E VY] = 728872 = T sug-
m

i—1

gests that we can use Theorem 6 with H; = L (Y;Y;" —I), provided we know some
K such that K > || S7Y2X]| , almost surely. The latter assumption guarantees ||H;|| <

(HY;H2 +1) < %2 Using the raw form of Bernouli (Theorem 4) gives E [HZ H; 2] <

L
m

K2
cy/logd - —+/m = cK?
m

log d

. Choosing m > 021(;1# samples does the job.

m
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A Appendix

A.1 Even moments of Gaussians

Proposition 7 (Gaussian integration by parts)
If X ~N(0,1) and f is an differentiable function such that its derivative is integrable

then E[X f(X)] = E[f/(X)].

Lemma 8 (even Gaussian moments)
¢

If X ~ N(0,1) and ¢ € N then E [X*] = [ [(2i — 1),

=1

Proof. Taking f(z) = 2®~' in Proposition 7 gives E [X*] = E[X - f(X)] = (225 -
HE [X 2“2}. This is one step in our calculation. Doing this recursively gives E [

t t
[]2i—1)-E[X?] = ]](2i - 1) because E [X?] = Var [X] = 1. |

@
Il
)

=1

A.2 Bounding expectation of trace of even powers of Gaussian
linear combination of matrices

Lemma 9
Let X, Ay, .-+, A, € R™™ be symmetric matrices, s € N. Then Tr(A4,X'4,X?7!) <
Tr(A2 X?%) for every k € [n],l € [2s] U{0}.

Proof. Consider the function f(k,1) = Tr(A4;X'A;X?57Y) for each k € [n],1 € [2s] U {0}.

m

X is symmetric, hence it can be decomposed as X = Z)\i'vivj where {vi}?il is an
i=1
orthonormal basis of R™, and \; € R are the eigenvalues of X. Then

fk, 1) = Tr(A X' A X7

m l m 25—
=Tr Ak <Z )\{U{UI) Ak (Z /\j’l)j’l);r>
i=1 j=1

=Tr (Ak <Z Aévw]) Ak (Z A?S—lvjv;r))

—Z/\AQS "Tr (A Awj))

S Z |)\Z| |/\j|28 ZTI‘ (Akvi'viTAkvij
12
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: iy (25—l : . : .
The expression E Al A7 T (Akvi'vZTAk'vj'va) is convex in [. Hence it maximizes

at the endpoints Jof the range of [, namely 0,2s. Due to the symmetry of A, the
value of the expression at [ = 0 is the same as that at [ = 2s. This common value
is >0, AP Tr (A Agwjv]) which is the same as f(k,0) (this step would not be pos-
sible 1f 2s were replaced by some odd number). Thus we have proven that for any

k€ [n],l € [2s]U{0}, Tr (A X' A X% = f(k,1) < f(k,0) = Tr(A7X?). [ |

Lemma 10
Let Ay, -+, A, € R™" be symmetric matrices and gy, -+ , g, ~ N(0,1) be independent

(£4)

Proof. We will first use Proposition 7 similar to the proof of Lemma 8, and then invoke
Lemma 9 with s =¢ — 1. We have

Gaussians. Denote X = Z g;A;. Then

i=1

L
2t

(B [Tr (X2)])* < V20— 1 |Tr

E[Tr (X*)] = En[Tr (X - X*1)]

=5 E [ Tr (4eX*1)]

k=1
o n 2t—2
Propoitlon 7 Z Z E | Tr Ale (aqu) X2t—2—l
k=1 [=0

Ay
n 2t—2

E [Tr (A X' A X271

k=1 1=0
Lemma 9 272 n
< E [Tr (A;X*7?)]
=0 k=1

=(2t—1)E |Tr ((i Ai) X2t‘2>]
T - R | | T ((Z Ai) ) - (Te(x2))'
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— (2t —1) <<Z A2> Tr (X)) }
M€ ot - 1) ((Z A2> ) E [Tr(x*)])' 7

|

— (E[Tx(X®)])" < (2t—1) _Tr ((z}; A2>

)
— (E[T(X*)])* < V2 — 1 :Tr ((;%) > N

A.3 Gauss dominates Rademacher

Lemma 11
If b is uniformly random on {£1}" and g1,---, g, ~ N(0,1) are independent (and also

independent of b), then
< T E
=/ E
2

Z 9:| b; As Z b; Igl 9i| A;
; 9 i

\/5
=/ E
T b

2

Proof. E ~E
g b

Z ngz
i 2

=K
gb

A.4 Symmetrization trick with Rademacher

Lemma 12
If Hy,---, H, € R™™ are chosen uniformly randomly and independently from the set
of m x m real symmetric matrices, then

Proof. The symmetrization trick is to introduce an independent identical copy of each
H;, namely H/, then each H;—E[H;] becomes E [H; — H|] because E [H;| = E [H|]. Then
Hl

starting from the LHS we have,
j ]

n

Z(Hi —E[Hi])

i=1

E
H

j o be{il}"

n

Z(Hi —E[H)])

=1

E
H

=E
H

ZH H!
=1

H/
2
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g |-
@HI,E%I’ be{IEl}" ébi(HZ HZ/) 2
(2) HIEI’ bG{IEI}" zzn;biﬂi 9 +HI§J’ be{Igl}" zzn;biH; j
:zbe{%}n ibzﬂz :
I = 2

“ holds because H; — H] has a symmetric distribution and hence b;(H; — H})
(%)

< is true by triangle inequality on |[|-||,.

llis;

H;,— H!.
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