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1 Introduction

Let G = (V, E) be a finite graph and let w : E — R, be a weight function. Given a set S C V' of vertices,
we define E(S) as all the edges in E between a vertex in S and one in V' —S. We define the cut of S'in G

as
cutg(S) = Z We

ecE(S)

If no weights are specified, then it is understood that all the weights are identically one, in which case
cutg(S) is just the number of edges between S and V' — S.

Definition: Given a graph G, a subgraph G’ is said to be an e-cut-sparsifier of G if
cuter (S) € (1 —¢e,1 4 ¢)cutg(S)
for any subset S of V.
The main result that we are going to prove is that given a graph on n vertices , there exists an e-cut-

sparsifier of G with O(nlogn/e?) edges. Let us now mention a result which will play a key role in the
proof:

Theorem (Matrix Khintchine inequality). Let Aj, As, ..., Ar be symmetric n X n real matrices and let
S1,82,...,8 be i.i.d. symmetric Bernoulli random variables, i.e. P(s; =1) =P(s; = —1) = % Then

Ells1 A1 + ... + spdp|| < c| A2 + ...+ A2[|Y/?\/logn
for some universal constant ¢ > 0.

In section 2 we introduce the graph Laplacian, which is a crucial tool in the proof, and we explore some
of its properties. In section 3 we state and prove the main result.

2 The graph Laplacian

2.1 Definition

Given a graph G = (V, E) on n vertices (with no weights, or equivalently all weights equal to one), we
define the graph Laplacian as
deg vy
LG = . - A
deg v,



where A is the adjacency matrix given by A;; = 1 cg- Note that L is a symmetric matrix.

i,05)

We can define for each edge e = (i, j) the matrix L, which has (L¢)i; = (Le)jj = 1, (Le)ij = (Le)ji = —1
and all the other entries zero. We then have
Le =) L

eeE

Note that if z € R™ then

SO

This shows in particular that Lg is a positive semidefinite matrix.

If the graph G has a weight function w : £ — R one can similarly define the graph Laplacian as

Lg = Z weLe

ecE
in which case L¢ is again symmetric and since
e Loz = g Wwe(w; — x)?
(i.j)eE

it is also positive semidefinite.

2.2 The pseudoinverse

Consider the (unweighted) graph G' = (V, E) on n vertices. The graph Laplacian is not invertible since
(1,1,...,1) is in the kernel of Lg. Nonetheless, Lg is a symmetric matrix, so if we let vq,...,v, be an
orthonormal basis (of R™) of eigenvectors with corresponding eigenvalues A1, ..., A,, then

n

T

Lo = Z Ai Vi3
=1

Since L¢ is positive semidefinite, we have \; > 0, so we can define its pseudoinverse

1
Lt = —viva
Ai>0

and in particular we can also write

@HY2=3" \/l_viviT

Ai>0
Define the following normalized version of Le:
Z/e — (L+)1/2L€(L+)1/2

Note that

Z -Ee = (L+)1/2LG(L+)1/2 = I(KerLg)l
eckE



T, shows that

Indeed, a simple computation using Lg = Z A fuz (L) 1/2 =
i=1 /\1>0

(LHY2Lo(LT)Y? = sz
Xi>0

)\

which is the projection on the eigenspaces corresponding to strictly positive eigenvalues. We will need the
following in the proof of the main theorem:

Lemma: We have that

SOl <n

eceE

Proof. Note that L. = (e; — e;)(e; — ;)T where e; is the vector having 1 on position i and 0 everywhere
else. Then L, = ((L*)Y%(e; — €;)) ((LF)Y2(e; — ej))T so L, = za for some vector z. This implies that
|Le|| = Tr L, and therefore

n

DoMLel =Tr Y Le=3"(3" Leviuy) = Y (Y vivf vj,vj) = Y 1<n

ecE ecFE j=1 e€cE 7=1 X\;>0 Ai>0
O
As an observation which will be useful later, w.L. can also be written as xzaz by choosing = =

VWe(LT)'/?(e; — e;). This implies in particular that |JweLe| = Tr(weLe).

2.3 Connection to cuts and sparsification

Let G = (V, E) be a graph with weight function w : E — Ry. Given a subset S C V of vertices, we can
choose the vector y as follows: y; = % if vertex ¢ is in S and y; = —% otherwise. Then

Y Ley = leen(s)

yTLGy = Z weyTLey = Z weleeE Z We = CUtG )

eeE eckE ecE(S

and so

Consider now the unweighted graph G = (V, E) and consider a weighted subgraph G’ = (V, E’) with
weight function w : B/ — R. The condition that G’ is an e-cut-sparsifier of G is

lcute (S) — cutg(S)| < ecutg(S) for any S C V
which by the above observation can be equivalently written as
ly"Lery — y" Lay| < ey’ Lay for any y € {£1/2}"
If the stronger condition

ly" Loy — y" Lay| < ey’ Lgy for any y € R™



holds, then in particular G’ is an e-cut-sparsifier of G. Since (L*)/? is invertible, we can let y = (L)Y/2z

and the stronger condition is equivalent to
2T Lepa — :cTI(KETLG)Lx] < E(ETI(KET.LG)LI]Z’ for any x € R"

or equivalently’
T (Z wef}e> T — acT:E] < exl'x for any x € R®
ecE’

which in turn is equivalent to

Z wef/e —I,|| <e
ecE'’

To summarize, if
Z wef/e —I,|| <e

e€E'’

then G’ = (V, E’) with w : E/ — R is an e-cut-sparsification of G = (V, E).

3 Graph sparsification

We now state the main result:

Theorem (Spielman-Srivastava ’06). Given a graph G = (V,E) on n vertices, there exists an e-cut-

sparsifier G' = (V, E') with
|E'| = O(nlogn/e?)

Proof. We will construct by induction the subgraphs with edges F = Ey D E1 D Es D ..

following three properties for ¢ > 1:

1 3
§|E1'71| <|Ei| < Z’Ei71|

> JlwiLell < 2n

ecE;
S wil S Wil nlogn
weLe — We Le S Co ﬁ
eck; ecl; 4 -1

. with the

where w' : E; — R, is the weight of G; = (V, E;) (which we will construct inductively as well) and co > 0

is a universal constant .

The result follows quickly once we have constructed the sets E; as above. Indeed, by (3)

k

waie_jn SZ Zwéﬂe— Z wi L < e \/nlognz:\/’ET

e€Ey 1=1 ||e€FE; ecF;_4

'The only thing to note is that if # € KerLg then (L*)Y2z = 0.

Cw/nlogn

Vx|



where we have used that |E;| > (4/3)*?|Ey|. Thus, if we want an e-cut-sparsifier, it suffices to have

nlogn
| Ek|

nlogn

so |Eg| ~ and therefore Gy, = (V, E}) is an e-cut-sparsifier with O(nlogn/e?) edges.

For the induction step, assume that we are given the subgraph G; = (V, E;) with the weight function
w': B; — Ry and we want to construct G411 = (V, E;;1) and its weight function w'*!: E;;; -+ R,. Asa
preliminary remark, by the induction hypothesis we can show like above that

which implies by the triangle inequality that

. o V/Togn
wyLe — I,
= VT
\/7

wL <1+C
2 VIEi]

eckE;

nlogn
| Ek|

since we have |E;| > |Ey| and

The plan is now as follows: the edges with a ”large” value of |JwiLe|| will be kept in Eji; (with the
same weights), and we will choose a a subset of the edges with a ”small” value of ||w?Le| to keep in Ej;y
and their weights will double.

We know by (2) that
D llwiLell < 2n
ecE;

This implies that half of the terms in the sum above are less than 4n/|E;|. To see that, let |E;| = 2m
and label the edges in F; as ey, e, ..., e, so that

[we, Ley | < llwe, Leo || < - < [l

€2m, 62m H

Then
2m s
mfwh, Lol < fJwd Le; || < 2n
j=m+1

0 i, Le, | < [[uf, Loy, | < 2n/m = 4n/|E for any j < m.

We will leave edges €41, - .., €2, in F;1 with their weights untouched. For the rest of the edges, we
use the following

Lemma: There exists a choice of signs si,..., s, € {—1,1} such that
e P nlogn
Z 8jWe;Lie; || < co B
=1 ‘

for some universal constant cg > 0.



Proof. By the matrix Khintchine inequality we have

1/2

m m
E Z sjwéjLej Z w Lej vd1ogn
=1 =1
where s1, ..., s, are i.i.d. symmetric Bernoulli random variables. Since We, f/ej is a matrix of the form zzT
for some x € R", it follows that (wéj ﬂej)2 = (2Tx)(z2T) = waij f)ej Hwéj f/ej. We therefore have
m m
S .
S (Wl Le)? =3 |lwi Le, [Jwl Le, < |E|Zwe] e; < |E| "N wiL
j=1 j=1 ecE;

where the inequality is in the sense of positive semidefinite matrices, i.e. A < B iff vT Av < vT Bo for all
v € R™. This implies that

o 4n . 8n
i 2 7
g (wejLej) < i X E wWeLe, || < A

BEEi
O
Out of the two signs in the previous lemma, one sign corresponds to at most half of the edges, assume

without the loss of the generality that it’s the plus sign. We then keep all the edges with s; = 1 in F; 14
and double their weights. We don’t keep any of the edges with s; = —1 in E;;4.

To summarize what we’ve done so far, we started with the edges eq, ..., es, of F; and we decided that
that we construct F;41 as follows

BJ'EEH_l, with = w? ifm+1<j5<2m

€j €j

ej € Bip1, wit' = 2w, if j <mands; =1

ej ¢ Eiq if j <mands; =—1

We will now check that E;;; and w't! : E;.; — R, satisfy the three assumptions from our induction
hypothesis. Note that because we chose the sign with at most half of the first m edges, we have

1 3
5 |Eil < |Bia| < 7| Eil
which gives assumption (1) for i + 1.
We also have by construction

m
— . o ]
E wéHLe—g weLe|| = E SjwéjLej < ¢ n|;g|n
j=1 !

ecE; 1 eck;

which is precisely assumption (2).

Finally, since |Tr A| < n||A|| for any n x n matrix, note that

S wi Lell = D Hwilell| =T | >0 wifLe— Y wile |[<n| > wiMLe— > wile

ecl; 1 eck; ecl; 11 ecE; ecl; 1 eckE;



which by the above implies

17 P = nlogn
D wE el = 3 lwiLel | < meoy | =
e€FEi+1 eckE; !

Writing the analogous relation for all the smaller indices, summing them up and using

DIl <n

ecE
we obtain
ARY) -« 1 nlogn
S it Ll <n [ 1+ cov/mlogn Y “n <1+c s ) o
ecE; 1 j=0 V |E.7‘ ‘ l|
which is assumption (3). .

It turns out that using the matrix Khintchine inequality is lossy and one can do much better by a
deterministic choice of sign. It follows from the work of Batson-Spielman-Srivastava that the following is
true

Theorem. Given Aj,..., Ay symmetric n X n matrices of rank 1 such that ||4;]] < p for all 1 <i <k,
then there exists a choice of signs s1,...,s; € {—1,1} such that

||81A1 + ...+ skAkH < Cp1/2
for a universal constant ¢ > 0.

Note that the lemma we have used in the proof above gave? the bound cp'/2y/logn, so this theorem
is a significant improvement as it gets rid of the y/logn term. It’s immediate to see that if we use this
theorem instead of our lemma, the error will now be

k k
= ;7 ; = 1 \/ﬁ
k i i—1
g wyLe — I, || < E E weLe — E wi T Le|| < cov/n E <C ~ e
e€EFEy =1 ||e€E; ecFE; 1 =1 ’Ei_l‘ V ’Ek‘

so we can obtain an e-cut-sparsifier with O(n/e?) edges.

4n

%In the case of our proof we had A; = wéj Eﬁj and p = ﬁ
i



