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1 Introduction

Let G = (V,E) be a finite graph and let w : E → R+ be a weight function. Given a set S ⊂ V of vertices,
we define E(S) as all the edges in E between a vertex in S and one in V − S. We define the cut of S in G
as

cutG(S) =


e∈E(S)

we

If no weights are specified, then it is understood that all the weights are identically one, in which case
cutG(S) is just the number of edges between S and V − S.

Definition: Given a graph G, a subgraph G′ is said to be an ε-cut-sparsifier of G if

cutG′(S) ∈ (1− ε, 1 + ε)cutG(S)

for any subset S of V .

The main result that we are going to prove is that given a graph on n vertices , there exists an ε-cut-
sparsifier of G with O(n log n/ε2) edges. Let us now mention a result which will play a key role in the
proof:

Theorem (Matrix Khintchine inequality). Let A1, A2, . . . , Ak be symmetric n × n real matrices and let
s1, s2, . . . , sk be i.i.d. symmetric Bernoulli random variables, i.e. P(si = 1) = P(si = −1) = 1

2 . Then

Es1A1 + . . .+ skAk ≤ cA2
1 + . . .+A2

k1/2


log n

for some universal constant c > 0.

In section 2 we introduce the graph Laplacian, which is a crucial tool in the proof, and we explore some
of its properties. In section 3 we state and prove the main result.

2 The graph Laplacian

2.1 Definition

Given a graph G = (V,E) on n vertices (with no weights, or equivalently all weights equal to one), we
define the graph Laplacian as

LG =




deg v1

. . .

deg vn



−A

1



where A is the adjacency matrix given by Aij = 1(vi,vj)∈E . Note that LG is a symmetric matrix.

We can define for each edge e = (i, j) the matrix Le which has (Le)ii = (Le)jj = 1, (Le)ij = (Le)ji = −1
and all the other entries zero. We then have

LG =


e∈E
Le

Note that if x ∈ Rn then
xTLex = (xi − xj)

2

so
xTLGx =



(i,j)∈E
(xi − xj)

2

This shows in particular that LG is a positive semidefinite matrix.

If the graph G has a weight function w : E → R+ one can similarly define the graph Laplacian as

LG =


e∈E
weLe

in which case LG is again symmetric and since

xTLGx =


(i,j)∈E
we(xi − xj)

2

it is also positive semidefinite.

2.2 The pseudoinverse

Consider the (unweighted) graph G = (V,E) on n vertices. The graph Laplacian is not invertible since
(1, 1, . . . , 1) is in the kernel of LG. Nonetheless, LG is a symmetric matrix, so if we let v1, . . . , vn be an
orthonormal basis (of Rn) of eigenvectors with corresponding eigenvalues λ1, . . . ,λn, then

LG =

n

i=1

λiviv
T
i

Since LG is positive semidefinite, we have λi ≥ 0, so we can define its pseudoinverse

L+ =


λi>0

1

λi
viv

T
i

and in particular we can also write

(L+)1/2 =


λi>0

1√
λi

viv
T
i

Define the following normalized version of Le:

L̃e = (L+)1/2Le(L
+)1/2

Note that 

e∈E
L̃e = (L+)1/2LG(L

+)1/2 = I(KerLG)⊥
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Indeed, a simple computation using LG =

n

i=1

λiviv
T
i , (L+)1/2 =



λi>0

1√
λi

viv
T
i , shows that

(L+)1/2LG(L
+)1/2 =



λi>0

viv
T
i

which is the projection on the eigenspaces corresponding to strictly positive eigenvalues. We will need the
following in the proof of the main theorem:

Lemma: We have that 

e∈E
L̃e < n

Proof. Note that Le = (ei − ej)(ei − ej)
T where ei is the vector having 1 on position i and 0 everywhere

else. Then L̃e =

(L+)1/2(ei − ej)

 
(L+)1/2(ei − ej)

T
so L̃e = xxT for some vector x. This implies that

L̃e = Tr L̃e and therefore



e∈E
L̃e = Tr



e∈E
L̃e =

n

j=1

〈


e∈E
L̃evj , vj〉 =

n

j=1

〈


λi>0

viv
T
i vj , vj〉 =



λi>0

1 < n

As an observation which will be useful later, weL̃e can also be written as xxT by choosing x =√
we(L

+)1/2(ei − ej). This implies in particular that weL̃e = Tr(weL̃e).

2.3 Connection to cuts and sparsification

Let G = (V,E) be a graph with weight function w : E → R+. Given a subset S ⊂ V of vertices, we can
choose the vector y as follows: yi =

1
2 if vertex i is in S and yi = −1

2 otherwise. Then

yTLey = 1e∈E(S)

and so
yTLGy =



e∈E
wey

TLey =


e∈E
we1e∈E(S) =



e∈E(S)

we = cutG(S)

Consider now the unweighted graph G = (V,E) and consider a weighted subgraph G′ = (V,E′) with
weight function w : E′ → R+. The condition that G′ is an ε-cut-sparsifier of G is

|cutG′(S)− cutG(S)| ≤ εcutG(S) for any S ⊂ V

which by the above observation can be equivalently written as

|yTLG′y − yTLGy| ≤ εyTLGy for any y ∈ {±1/2}n

If the stronger condition

|yTLG′y − yTLGy| ≤ εyTLGy for any y ∈ Rn

3



holds, then in particular G′ is an ε-cut-sparsifier of G. Since (L+)1/2 is invertible, we can let y = (L+)1/2x
and the stronger condition is equivalent to

|xT L̃G′x− xT I(KerLG)⊥x| ≤ εxT I(KerLG)⊥x for any x ∈ Rn

or equivalently1

|xT



e∈E′

weL̃e


x− xTx| ≤ εxTx for any x ∈ Rn

which in turn is equivalent to 


e∈E′

weL̃e − In

 ≤ ε

To summarize, if 


e∈E′

weL̃e − In

 ≤ ε

then G′ = (V,E′) with w : E′ → R+ is an ε-cut-sparsification of G = (V,E).

3 Graph sparsification

We now state the main result:

Theorem (Spielman-Srivastava ’06). Given a graph G = (V,E) on n vertices, there exists an ε-cut-
sparsifier G′ = (V,E′) with

|E′| = O(n log n/ε2)

Proof. We will construct by induction the subgraphs with edges E = E0 ⊃ E1 ⊃ E2 ⊃ . . . with the
following three properties for i ≥ 1:

1

2
|Ei−1| ≤ |Ei| ≤

3

4
|Ei−1| (1)



e∈Ei

wi
eL̃e < 2n (2)





e∈Ei

wi
eL̃e −



e∈Ei−1

wi−1
e L̃e


≤ c0


n log n

|Ei−1|
(3)

where wi : Ei → R+ is the weight of Gi = (V,Ei) (which we will construct inductively as well) and c0 > 0
is a universal constant .

The result follows quickly once we have constructed the sets Ei as above. Indeed, by (3)





e∈Ek

wk
e L̃e − In


≤

k

i=1





e∈Ei

wi
eL̃e −



e∈Ei−1

wi−1
e L̃e


≤ c0


n log n

k

i=1

1
|Ei−1|

≤ C

√
n log n
|Ek|

1The only thing to note is that if x ∈ KerLG then (L+)1/2x = 0.
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where we have used that |Ei| ≥ (4/3)k−i|Ek|. Thus, if we want an ε-cut-sparsifier, it suffices to have


n log n

|Ek|
∼ ε

so |Ek| ∼
n log n

ε2
and therefore Gk = (V,Ek) is an ε-cut-sparsifier with O(n log n/ε2) edges.

For the induction step, assume that we are given the subgraph Gi = (V,Ei) with the weight function
wi : Ei → R+ and we want to construct Gi+1 = (V,Ei+1) and its weight function wi+1 : Ei+1 → R+. As a
preliminary remark, by the induction hypothesis we can show like above that





e∈Ei

wi
eL̃e − In


≤ C

√
n log n
|Ei|

which implies by the triangle inequality that




e∈Ei

wi
eL̃e


≤ 1 + C

√
n log n
|Ei|

< 2

since we have |Ei| ≥ |Ek| and


n log n

|Ek|
∼ ε.

The plan is now as follows: the edges with a ”large” value of wi
eL̃e will be kept in Ei+1 (with the

same weights), and we will choose a a subset of the edges with a ”small” value of wi
eL̃e to keep in Ei+1

and their weights will double.

We know by (2) that 

e∈Ei

wi
eL̃e < 2n

This implies that half of the terms in the sum above are less than 4n/|Ei|. To see that, let |Ei| = 2m
and label the edges in Ei as e1, e2, . . . , e2m so that

wi
e1L̃e1 ≤ wi

e2L̃e2 ≤ . . . ≤ wi
e2mL̃e2m

Then

m · wi
emL̃em ≤

2m

j=m+1

wi
ej L̃ej < 2n

so wi
ej L̃ej ≤ wi

emL̃e2m < 2n/m = 4n/|Ei| for any j ≤ m.

We will leave edges em+1, . . . , e2m in Ei+1 with their weights untouched. For the rest of the edges, we
use the following

Lemma: There exists a choice of signs s1, . . . , sm ∈ {−1, 1} such that


m

j=1

sjw
i
ej L̃ej


≤ c0


n log n

|Ei|

for some universal constant c0 > 0.
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Proof. By the matrix Khintchine inequality we have

E



m

j=1

sjw
i
ej L̃ej


≤ c



m

j=1

(wi
ej L̃ej )

2



1/2


log n

where s1, . . . , sn are i.i.d. symmetric Bernoulli random variables. Since wej L̃ej is a matrix of the form xxT

for some x ∈ Rn, it follows that (wi
ej L̃ej )

2 = (xTx)(xxT ) = wi
ej L̃ejwi

ej L̃ej . We therefore have

m

j=1

(wi
ej L̃ej )

2 =

m

j=1

wi
ej L̃ejwi

ej L̃ej ≤
4n

|Ei|

m

j=1

wi
ej L̃ej ≤

4n

|Ei|


e∈Ei

wi
eL̃e

where the inequality is in the sense of positive semidefinite matrices, i.e. A ≤ B iff vTAv ≤ vTBv for all
v ∈ Rn. This implies that 

m

j=1

(wi
ej L̃ej )

2


≤ 4n

|Ei|





e∈Ei

wi
eL̃ej


≤ 8n

|Ei|

Out of the two signs in the previous lemma, one sign corresponds to at most half of the edges, assume
without the loss of the generality that it’s the plus sign. We then keep all the edges with sj = 1 in Ei+1

and double their weights. We don’t keep any of the edges with sj = −1 in Ei+1.

To summarize what we’ve done so far, we started with the edges e1, . . . , e2m of Ei and we decided that
that we construct Ei+1 as follows






ej ∈ Ei+1, wi+1
ej = wi

ej if m+ 1 ≤ j ≤ 2m

ej ∈ Ei+1, wi+1
ej = 2wi

ej if j ≤ m and sj = 1

ej /∈ Ei+1 if j ≤ m and sj = −1

We will now check that Ei+1 and wi+1 : Ei+1 → R+ satisfy the three assumptions from our induction
hypothesis. Note that because we chose the sign with at most half of the first m edges, we have

1

2
|Ei| ≤ |Ei+1| ≤

3

4
|Ei|

which gives assumption (1) for i+ 1.

We also have by construction




e∈Ei+1

wi+1
e L̃e −



e∈Ei

wi
eL̃e


=



m

j=1

sjw
i
ej L̃ej


≤ c0


n log n

|Ei|

which is precisely assumption (2).

Finally, since |Tr A| ≤ nA for any n× n matrix, note that




e∈Ei+1

wi+1
e L̃e −



e∈Ei

wi
eL̃e


=


Tr






e∈Ei+1

wi+1
e L̃e −



e∈Ei

wi
eL̃e






≤ n





e∈Ei+1

wi+1
e L̃e −



e∈Ei

wi
eL̃e
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which by the above implies





e∈Ei+1

wi+1
e L̃e −



e∈Ei

wi
eL̃e


≤ nc0


n log n

|Ei|

Writing the analogous relation for all the smaller indices, summing them up and using



e∈E
L̃e < n

we obtain



e∈Ei+1

wi+1
e L̃e ≤ n



1 + c0


n log n

i−1

j=0

1
|Ej |



 ≤ n


1 + C


n log n

|Ei|


< 2n

which is assumption (3).

It turns out that using the matrix Khintchine inequality is lossy and one can do much better by a
deterministic choice of sign. It follows from the work of Batson-Spielman-Srivastava that the following is
true

Theorem. Given A1, . . . , Ak symmetric n × n matrices of rank 1 such that Ai ≤ ρ for all 1 ≤ i ≤ k,
then there exists a choice of signs s1, . . . , sk ∈ {−1, 1} such that

s1A1 + . . .+ skAk ≤ cρ1/2

for a universal constant c > 0.

Note that the lemma we have used in the proof above gave2 the bound cρ1/2
√
log n, so this theorem

is a significant improvement as it gets rid of the
√
log n term. It’s immediate to see that if we use this

theorem instead of our lemma, the error will now be





e∈Ek

wk
e L̃e − In


≤

k

i=1





e∈Ei

wi
eL̃e −



e∈Ei−1

wi−1
e L̃e


≤ c0

√
n

k

i=1

1
|Ei−1|

≤ C

√
n
|Ek|

∼ ε

so we can obtain an ε-cut-sparsifier with O(n/ε2) edges.

2In the case of our proof we had Aj = wi
ej L̃ej and ρ =

4n

|Ei|
.
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