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Abstract

In this note we show that the homogeneous ABP complexity of the Elementary Symmetric
Polynomial on n variables and degree d is Θ(nd).

1 Introduction

Algebraic Branching Program (ABP) over a field F on variables x1, x2, . . . , xn is a directed
acyclic graph (DAG) which has a designated source node s (with in-degree 0), a designated sink
node t (with out-degree 0) and in which every edge is labelled with an affine linear form from
F[x1, . . . , xn].

Let π be a path in the ABP. The weight of the path π, denoted as w(π), is a polynomial
obtained by taking the product of all the linear forms labelling the edges along π. The polynomial
computed at a particular vertex v in the ABP, denoted as [v], is the sum of the weights of all
the paths from s to v. In particular, the polynomial computed by the ABP is [t]. The size of
the ABP is the number of vertices in the underlying DAG.

An ABP is said to be homogeneous if the polynomial computed at every node of the ABP is
homogeneous.

Definition 1. Let X = {x1, . . . , xn}. We say that the homogeneous ABP complexity of a
polynomial p(X) ∈ F[X], which we denote by αF(p), is the size of the smallest homogeneous
ABP computing that polynomial. We drop the subscript F if the underlying field is clear from
the context.

In [Kum17] it was shown that αF(Pn,d) is Ω(nd), where Pn,d =
∑n

i=1 x
d
i and F is any

algebraically closed field of characteric zero or relatively prime to d. In fact they showed that
αF(Pn,d) is at least dn/2e(d− 1) + 2. Over algebraically closed fields one can show that1 there is
a homogeneous ABP computing Pn,d of size dn/2e(d− 1) + 2. This shows that the bound proved
in [Kum17] is tight.

Here we analyse the homogeneous ABP complexity of the Elementary Symmetric polyno-
mials. The Elementary Symmetric polynomial on n variables of degree d is defined as follows:
Symd

n(X) =
∑

S⊆[n],|S|=d

∏
i∈S xi. We show the following about Symd

n(X).

Theorem 2. Let F be any algebraically closed field. The homogeneous ABP complexity of
Symd

n(X) over the field F is Θ(nd).

In what follows, we first introduce some background and notations. The proof of the lower
bound is our main contribution, which is presented in Section 3. The upper bound of O(nd) on
α(Symd

n(X)) is folklore and we present it for the sake of completeness.

1Consider dn/2e disjoint paths from source s to t. The ith path computes xd
2i + xd

2i+1. Since F is algebraically
closed, we can factor xd

2i + xd
2i+1 into d linear terms and keep these as the ABP edge weights.
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2 Preliminaries

Let X = {x1, . . . , xn}. Let F be any algebraically closed field. As mentioned earlier, Symd
n(X) is

the Elementary Symmetric polynomial on n variables of degree d. For S ⊆ X and |S| ≤ n−d, we
use Symd

−|S|(X \S) to denote the Elementary Symmetric polynomial on |X \S| many variables of

degree d. If S is a singleton set, say S = {i}, then we use Symd
−i(X) to denote Symd

−|{i}|(X \{i}).
For a point ã ∈ Fn, we use Symd

n(ã) (or Symd
−i(ã)) to denote the polynomial Symd

n(X) (or
Symd

−i(X)) evaluated at ã. We use [n] to denote the set {1, 2, . . . , n}.

2.1 Structural results about homogeneous ABPs

Here we present some preliminaries about homogeneous ABPs. The results mentioned here are
from [Kum17]. Let A be a homogeneous ABP. Let π be a path from s to v. We say that the
index of the path, w′(π), is k if there are k edges along the path with non-constant weights. Let
the formal degree of a vertex v be the maximum index along any s to v path.

Lemma 3 ([Kum17]). Let A be a homogeneous ABP with s vertices. It can be converted to an
ABP B with at most s vertices such that for all vertices, the formal degree equals the degree of
the polynomial computed at that vertex.

Lemma 4 ([Kum17]). Let A be a homogeneous ABP with s vertices, computing an n-variate
polynomial p(X) ∈ F[X] of degree d. For any i ∈ [d− 1], let Si = {u1, . . . , um} denote the set of
vertices in A with formal degree equal to i, where m ≤ s. Then

p(X) = (
m∑
j=1

[uj ]hj) +R

for some polynomials h1, . . . , hm ∈ F[X] and R ∈ F[X] such that the degree of R is at most d− 1.

2.2 Ideals, Varieties and Projective spaces

For a set of n-variate polynomials S = {p1, p2, . . . , pk} in F[X], let V(S) be the affine variety of
S in Fn, i.e., the set of common zeroes of S.

V(S) = {a ∈ Fn | p(a) = 0 ∀p ∈ S} .

For a variety V ∈ Fn, the ideal generated by the variety, I(V), is defined as

I(V) = {q ∈ F[X] | q(a) = 0 ∀a ∈ V}

Consider the equivalence relation ∼ on Fn+1 given by (a0, . . . , an) ∼ (a′0, . . . , a
′
n) if there is a

constant λ ∈ F such that (a0, . . . , an) = λ(a′0, . . . , a
′
n). Then the n dimensional projective space

over F is defined as
Pn(F) = (Fn+1 − {0})/ ∼

where 0 denotes the all zero point in Fn+1.
Let V ⊂ Fn be an affine variety. The coordinate ring F[V] is defined as the set of all

polynomial maps from V to F. In particular, F[V] ∼= F[X]/ I(V). For a polynomial p, we denote
by [p] its coset in F[X]/ I(V).

A set of elements f1, . . . , fr ∈ F[V] is said to be algebraically independent if there is no
non-zero polynomial p such that p(f1, . . . , fr) = 0 in F[V].

2



An important property of a variety V is its dimension. Informally, the dimension is the
minimum number of hyperplanes in general position whose intersection with the variety is a
finite and non-zero set of points. We state some results without proof. The details of these can
be found in a wonderful exposition by Cox, Little and O’Shea [CLO07].

Lemma 5. Let S be a set of polynomials in F[x1, . . . , xn], where F is algebraically closed and
|S| ≤ n. Let V = V(S) be non-empty. Then dim(V) ≥ n− |S|.

Lemma 6. Let F be an algebraically closed field and V1 ⊆ V2 ⊆ Fn be two affine varieties. Then
dim(V1) ≤ dim(V2).

Theorem 7. Let F be algebraically closed and V ⊂ Pn(F) be a projective variety with dim(V) > 0.
If f is any non-constant homogeneous polynomial, then

dim(V) ≥ dim(V∩V(f)) ≥ dim(V)− 1

In particular we will be interested in intersection of V with the plane V(x0).

Lemma 8. Let V = V(f1, . . . , fs) ⊂ Pn(F) be a projective variety. Let U =
{
a ∈ Fn+1 | a0 6= 0

}
.

Then V ∩U can be identified with the affine variety W = V(g1, . . . , gs) where gi = fi(1, x1, . . . , xn)
for 1 ≤ i ≤ s.

In particular, Lemma 6 gives us that dim(W ) ≤ dim(V ).

Theorem 9. Let V ⊂ Fn be an affine variety. Then the dimension of V is equal to the maximum
number of elements of F[V ] that are algebraically independent.

Moreover, if dim(V ) = d, then there are coordinates xi1 , . . . , xid such that [xi1 ], . . . , [xid ] are
algebraically independent with respect to F[V ].

3 Lower bound on the ABP complexity of Symd
n(X)

In this section we prove the following theorem.

Theorem 10. Let B be a homogeneous ABP of formal degree at most d over C, computing
Symd

n(X). Then number of vertices in B is at least (d− 1) · (n− d+ 1)/2 + 2.

We follow the proof outline of [Kum17] closely to prove a lower bound on the ABP complexity
of Symd

n(X). We prove the following technical lemma about Symd
n(X). A very similar Lemma

was proved by [Kum17] for P d
n(X). Once this lemma is proved, the rest of the proof of the

Theorem is exactly like in [Kum17]. In order to prove the following lemma, we will need an
upper bound on the dimension of the variety of the first derivatives of Symd

n(X). This bound is
proved using Lemma 12 and Lemma 13. These two lemmas are the new contributions of this
note.

Lemma 11. Suppose Symd
n(X) can be expressed in the following form

Symd
n(X) = P +

k∑
i=1

QiRi,

where polynomial P has degree at most d − 1, and S = {Q1, . . . , Qk, R1, . . . , Rk} is such that

V(S) is non-empty. Then k ≥ (n− d+ 1)/2.

Assuming this lemma, the proof of the theorem follows easily.
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Proof of Theorem 10. Let B be a homogeneous ABP of formal degree at most d over algebraically
closed field F, computing Symd

n(X). We will show that for any i ∈ [d− 1], the number of vertices
in B with formal degree i is at least b(n− d+ 1)/2c. This will give us the theorem.

Fix an i0 ∈ [d− 1]. Using Lemma 4, we know that Symd
n(X) can be expressed as follows:

Symd
n(X) = (

m∑
j=1

[uj ]hj) +R,

where {u1, . . . , um} denotes the set of vertices in B with formal degree equal to i0, and
h1, . . . , hm, R ∈ F[X] are some polynomials such that the degree of R is at most d − 1. For
j ∈ [m], let D1,j denote the degree of uj and D2,j denote the degree of hj . Now for each j ∈ [m],
we will write uj as Pj + pj and each hj as Qj + qj , where Pj and Qj are degree D1,j and degree
D2,j homogeneous components of uj and hj , respectively. Now we can rewrite Symd

n(X) as
follows.

Symd
n(X) = (

m∑
j=1

PjQj) +R′

where R′ still has degree at most d− 1. Moreover, 0 is the variety of {P1, . . . , Pm, Q1, . . . , Qm}.
Now, using Lemma 11, we get that m ≥ (n− d+ 1)/2.

As this lower bound holds for each i ∈ [d− 1] and as there is one node in layer 0 (i.e. s) and
one in layer d, we get the lower bound mentioned in Theorem 10.

Proof of Lemma 11. Suppose k < (n− d+ 1)/2. Then consider V(S) which has 2k polynomials,
each over n variables. By Lemma 5, dim(V(S)) ≥ n− 2k > d− 1.
Differentiating with respect to some xj , we have that

Symd−1
−j −

∂P

∂xj
=
∂Symd

n

∂xj
− ∂P

∂xj
=

k∑
i=1

(
Qi
∂Ri

∂xj
+
∂Qi

∂xj
Ri

)
Since all Qi and Ri vanish on V(S), the right hand side does too. Thus

V(S) ⊆ V

({
Symd−1

−j −
∂P

∂xj
for j ∈ [n]

})
= V1 (say)

By Lemma 6, dim(V1) ≥ dim(V(S)) > d− 1. On the other hand as P is of degree at most d− 1,
its derivatives are of degree at most d− 2. Hence by Lemma 12 (stated and proved below) we
have that dim(V1) ≤ d− 1, giving us a contradiction.

Lemma 12. Let d > 0 be a parameter, g1, . . . , gn ∈ F[X] be of degree less than d − 1, and

S =
{
Symd−1

−i (X)− gi for i ∈ [n]
}

. Then dim(V(S)) ≤ d− 1.

Proof. Let V = V(S), and the set S′ be the homogenized version of S, given by

S′ =
{
Symd−1

−i − gi · x
d−1−deg(gi)
0 for i ∈ [n]

}
We think of V(S′) as a projective variety in Pn(F). By Theorem 7 and Lemma 8, we have that

dim(V ) ≤ dim(V(S′)) ≤ dim(V(S′) ∩ V(x0)) + 1

From Lemma 13 (stated and proved below), we have that dim(V(S′) ∩ V(x0)) ≤ d− 2 giving
the desired result.
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Lemma 13. Let S =
{
Symd−1

−i (X) for i ∈ [n]
}

and V = V(S). Then dim(V ) ≤ d− 2.

Proof. Suppose that dim(V ) > d− 2. Then by Theorem 9, we have that some [xi1 ], . . . , [xid−1
]

are algebraically independent over F[V ]. By symmetry we can assume these to be [x1], . . . , [xd−1].
We shall show this is not possible. Consider the following polynomial on d− 1 variables:

p(y1, . . . , yd−1) =
( ∏

1≤i≤d−1
yi

)( ∏
1≤i<j≤d−1

(yi − yj)
)

We know p([x1], . . . , [xd−1]) = [p(x1, . . . , xd−1)] 6= [0] in F[V ]. Hence there is a point ã =
(a1, . . . , an) ∈ V such that p(a1, . . . , ad−1) 6= 0. For that point we have:
As p(a1, . . . , ad−1) 6= 0:

ai 6= 0 for all i ∈ [d− 1] (1)

ai 6= aj for all i, j ∈ [d− 1] such that i 6= j (2)

As ã ∈ V

Symd−1
−i (ã) = 0 for all i ∈ {1, . . . , n} (3)

Assuming (1), (2), (3) we will prove the following claim.

Claim 14. For any 0 ≤ j ≤ d − 2 and any j < i ≤ d − 1, if we evaluate the Elementary
Symmetric polynomial on n− j − 1 variables of degree d− j − 2, at ã at [n] \ ([j] ∪ {i}) indices,
then it evaluates to 0.

Before we prove the claim, we will first show that the claim proves Lemma 13. The claim
when applied for j = d− 2, implies that the Elementary Symmetric polynomial on n− d− 3
variables of degree 0 evaluates to 0. But we know that the degree zero Elementary symmetric
polynomial (on any number of variables) by definition is a constant 1 polynomial. This gives us
a contradiction. This proving that our initial assumption that dim(V ) > d− 2 is wrong.

Proof of Claim 14. For ease of notation, we will denote the polynomial Symd−j−2
−|([j]∪{i})|(X \ ([j] ∪

{i})) by Symd−j−2
−[j],−i(X) and its value at point ã by Symd−j−2

−[j],−i(ã).

We will prove the claim by induction on j. For the base case, let j = 0. Using (3) we get n
equations; one for each i ∈ [n]. If we add these n equations, we get that (n−d+1)·Symd−1

n (ã) = 0.
This gives us

Symd−1
n (ã) = 0. (4)

As Symd−1
n (X)−Symd−1

−i (X) = xi ·Symd−2
−i (X), using (4) and (3), we get that ai ·Symd−2

−i (ã) = 0.
Using (1), we obtain

For 0 < i ≤ d− 1, Symd−2
−i (ã) = 0. (5)

This proves the base case.
Now let us consider the inductive case. We get the following using the induction hypothesis.

For j < i ≤ d− 1, Symd−j−2
−[j],−i(ã) = 0 (6)
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From the definition of Elementary Symmetric polynomials and by simple arithmetic, we also
know the following. For all i such that j + 1 < i ≤ d− 1,

Symd−j−2
−[j],−i(X)− Symd−j−2

−[j],−(j+1)(X) (7)

= (xj+1 − xi) · Symd−j−3
−[j+1],−i(X)

Now, using (6) we can say that, the right hand side of (7) evaluated at ã must be zero.
However from (2) we also know that aj+1 − ai 6= 0 for any j + 1 < i ≤ d − 1. Hence we get

Symd−j−3
−[j+1],−i(ã) = 0, which proves the inductive statement. This finishes the proof of Claim 14.

3.1 Upper Bound on Homogeneous ABPs

In this section we sketch the construction of a homogeneous ABP computing Symd
n(X). In

particular, we prove the following statement.

Lemma 15. There is an ABP of size (n− d+ 1)(d− 1) + 2 for Symd
n(X).

Construction of an ABP for Symd
n(X) We construct an ABP with d layers each with n

nodes. Between each consecutive layers ` and `+ 1, where 1 ≤ ` ≤ d− 1, there is an edge from
node i in layer ` to a node j in (`+ 1)th layer if i < j. The weight of this edge is xj . In the first
layer, only the first node is required (and is labelled as s). In the last layer, we can merge all
the n nodes into t and adding edge weights appropriately.

The correctness of the construction follows from the fact that any term in Symd
n(X) is

uniquely of the form xi1 · xi2 . . . xid where i1 < i2 < · · · < id. Observe that in any layer j
(1 < j < d+ 1) the nodes 1, 2, . . . , j − 2 and n− d+ j, . . . , n are redundant. Hence, the total
number of nodes in the ABP is (n− d+ 1)(d− 1) + 2.
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