
Compact Algorithms for

Measuring Network Performance

Yufei Zheng

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Jennifer Rexford

September 2024

© Copyright by Yufei Zheng, 2024.

All rights reserved.

Abstract

For network administrators, performance monitoring provides valuable insights into

network quality and security. The emergence of programmable network devices makes

it possible to measure performance metrics in the data plane, where packets fly by.

Running measurement tasks directly in the data plane improves efficiency, preserves

user privacy, and enables the possibility of real-time actions based on the analysis.

However, programmable data planes have limited memory size and memory ac-

cesses. Meanwhile, measuring performance metrics fundamentally requires a large

amount of memory resources, as each packet must be processed relative to its prede-

cessor in the same flow.

This dissertation tackles the specific challenges that arise from running perfor-

mance measurements with limited memory. The first part of this dissertation intro-

duces new data-plane algorithms for monitoring two canonical performance metrics

related to Transmission Control Protocol (TCP): delay and TCP packet reordering.

• In measuring delay distribution, existing algorithms often exhibit bias against

larger delays. We present fridges, a novel data structure that allows for the

correction of the survivorship bias due to hash collisions. The main idea is to

keep track of the probability p that a delay sample is collected, and count it as 1
p

samples. Using multiple fridges together, we can further improve the accuracy

by computing a weighted average of single-fridge estimators.

• We present efficient algorithms for identifying IP prefixes with heavy packet

reordering. First, we sample as many flows as possible, regardless of their sizes,

but only for a short period at a time. Next, we separately monitor the large

flows over long periods, in addition to the flow sampling. Both algorithms

measure at the flow level, and aggregate statistics at the prefix level.

iii

Existing counter-based algorithms for identifying heavy-hitter flows could also be

modified to measure performance metrics. However, many of such algorithms, despite

of showing good empirical performance, lack theoretical guarantees. In the second

part, we present the first formal analysis for the performance of one such algorithm,

the Random Admission Policy (RAP).

• We show that, for a highly skewed packet stream with k heavy flows, RAP with

memory size k stores O(k) heavy flows with constant probability.

iv

Acknowledgements

It has been a privilege to work with my advisor, Jennifer Rexford. Jen put up with

my stubbornness, provided all the flexibility I needed to explore, all the while offering

insightful advice, whenever I needed it, on topics spanning research, careers, and life

in general. Without Jen, I would not be able to finish this journey.

Several other professors have played key roles throughout these past years. I would

like to thank Mark Braverman, for working with me during a tumultuous period of

time, and pivotally, pointing me to Jen. It was through my brief conversations with

Mark that I gradually learned to be open-minded in research, and developed my

current taste for problem selection. Huacheng Yu also helped me tremendously. I

must have been a huge pain, for constantly showing up in meetings having no clue

what to do. Huacheng has taught me numerous techniques that, towards the end,

finally make me less clueless. To Jen, Mark, and Huacheng, I need to apologize for

abandoning some of the projects, and consuming your valuable time that could have

led to better publications. Outside of Princeton, I want to express my gratitude to

Gill Barequet from Technion. Gill always believed in me, and offered me opportunities

that jump-started my research in computer science.

I have been extremely fortunate to be surrounded by the wonderful people in our

office. I am particularly thankful to Xiaoqi Chen and John Sonchack, for fixing my

code on multiple occasions, and helping me with installations I could never figure out

for myself; to Fengchen Gong and Anchengcheng Zhou, whose presence in the office

provided so much comfort to me during stressful times; to Sophia Yoo, for our deeply

personal conversations, and your constant kindness; to Sata Sengupta, for our trips to

Copa America, US Open, and your thoughtfulness in our discussions on many things

that could have been a nightmare to talk about; and finally, to Mary Hogan, my golf

instructor, my fellow F1 spectator, for all the talking, texting and laughing, it has

been so gratifying to realize our friendship goes way beyond all the fun we had.

v

Above all, I am eternally grateful for having the best parents I could ever ask for.

I come to realize, just how rare it is to be so purely happy to spend time with one’s

parents, and how bold my parents must have been to let me make all the decisions

for myself growing up, and keep calm when I messed up. Thank you for instilling all

the love, happiness, and freedom in my life.

vi

To my parents.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xii

List of Figures . xiii

Bibliographic Notes . 1

1 Introduction 2

1.1 Network Performance Monitoring . 2

1.1.1 Active Probing vs. Passive Monitoring 3

1.1.2 Performance Metrics . 3

1.1.2.1 Round-trip delay . 4

1.1.2.2 TCP packet reordering 4

1.2 Performance Monitoring in the Data Plane 5

1.3 Challenges in Designing Data-plane Algorithms for Performance Mea-

surement . 6

1.4 Contributions . 10

2 Unbiased Delay Measurement in the Data Plane 12

2.1 Passive Delay Monitoring Problem 12

2.1.1 Simple delay monitoring. 12

2.1.2 Bias against large delays. 14

viii

2.1.3 The delay distribution. 15

2.2 Unbiased Delay Estimation . 16

2.2.1 Correcting for survivorship bias. 16

2.2.2 Single fridge algorithm. 16

2.2.2.1 Probability of survival. 17

2.2.2.2 Approximated CDF. 19

2.2.3 Tuning the entry probability (p). 20

2.3 Expanding Beyond a Single Fridge 21

2.3.1 Using many pipeline stages per fridge. 22

2.3.2 Using multiple fridges. 24

2.4 Evaluation . 27

2.4.1 Comparison with simple algorithm. 29

2.4.2 Choosing the best entry probability. 30

2.4.3 Beyond a single fridge. 32

2.5 Hardware Implementation . 33

2.5.1 Implementing the fridge table 34

2.5.2 Correcting the bias . 35

2.5.3 Prototype evaluation . 36

2.6 Related Work . 38

2.7 Conclusion . 39

3 Detecting TCP Packet Reordering in the Data Plane 40

3.1 Problem Formulation: Identify Heavy Out-of-Order IP Prefixes 41

3.1.1 Flow-level reordering statistics 41

3.1.1.1 Definitions at the flow level 41

3.1.1.2 A strawman solution for identifying out-of-order

heavy flows . 43

ix

3.1.1.3 Memory lower bound for identifying out-of-order

heavy flows . 43

3.1.2 Prefix-level reordering statistics 45

3.1.2.1 Problem statement 45

3.1.2.2 Bypassing memory lower bound 46

3.2 Traffic Characterization . 47

3.2.1 Heavy-tailed size and out-of-orderness 47

3.2.2 Correlation among flows in a prefix 49

3.2.3 Packet inter-arrival times within a flow 51

3.3 Data-Plane Data Structures for Out-of-Order Monitoring 52

3.3.1 Sample flows over short periods 52

3.3.1.1 Flow sampling with array 53

3.3.1.2 Performance guarantee 55

3.3.1.3 Decrease the number of false positives 58

3.3.2 Separate large flows . 59

3.3.3 Track heavy flows over long periods 60

3.4 Evaluation . 61

3.4.1 Performance comparisons . 62

3.4.1.1 Metrics . 62

3.4.1.2 Performance evaluation 63

3.4.1.3 Performance discrepancies of the flow-sampling algo-

rithm under different workloads 65

3.4.2 Hardware feasibility . 67

3.4.3 Parameter robustness . 68

3.5 Related work . 70

3.6 Conclusion . 71

x

4 An Analysis of Random Admission Policy 72

4.1 Background . 72

4.2 Deriving the Performance Bound . 74

4.2.1 Preliminaries . 75

4.2.2 Case (I) . 77

4.2.3 Case (II) . 79

4.2.4 Case (III) . 80

4.2.5 Aggregating all cases . 90

4.3 Conclusion . 91

5 Conclusion 94

5.1 Summary of Contributions . 94

5.2 Future Directions . 96

5.3 Final Remarks . 97

Bibliography 99

xi

List of Tables

3.1 Data-plane resource usage in Tofino1. 68

xii

List of Figures

2.1 Compared with the simple approach, the fridge tracks how many in-

sertions each entry survives, and assigns higher weights to less likely

RTTs. 13

2.2 (M=210, p=2−10.4)-fridge produces a visibly more accurate delay

CDF, compared with the simple algorithm using the same memory

size M=210 and expiration threshold T=29ms. The fridge and the

simple algorithm achieves maximum relative error of 25% and 36%

respectively for percentile delay queries. 30

2.3 For a fridge with M = 212 memory size processing synthetic trace

with ground truth delay between (0, 212)ms (top), error is minimized

around entering probability p = 2−9; for ground truth delay in (0, 26)ms

(bottom), the best p increases to around 2−4, which leads to a shorter

average lifetime in the fridge. 31

2.4 Compared with the single fridge single stage variant, using two fridges

provides more benefits as memory size M decreases. 32

2.5 The single- and two-fridge algorithms exhibit much lower estimation

error for 50, 95, 99th-percentile delays, compared with the 1- and 4-

stage simple algorithms, under various total memory sizes. 33

xiii

3.1 Different source prefixes send packets over different paths. Packets on

a path are colored differently to show that traffic from a single prefix

has a mix of packets from different flows. While flows from a single

prefix may split over parallel subpaths, they do share many portions

of their network resources. 41

3.2 Heavy-tailed distributions in a 5-minute campus trace. 49

3.3 A split violin plot showing prefix sizes, distributions of flow sizes in

each prefix, and what fraction of reordering in a prefix comes for which

flow size. A split violin of rank r refers to the r-th largest prefix in the

trace. 49

3.4 Pearson coefficient on varying timescales shows that a positive corre-

lation exists between the reordering of a flow and that of its prefix.

. 50

3.5 A modification of PRECISION for tracking out-of-order packets. . . 60

3.6 The flow-sampling algorithm achieves great accuracy in small memory

ranges, and the hybrid scheme further improves the accuracy when

more memory is available. 64

3.7 Through sending more reports to the control plane, we can decrease

the false-positive rate of the flow-sampling algorithm while further im-

proving its accuracy. 64

3.8 The accuracy of the flow-sampling algorithm is workload dependent. . 66

3.9 The effect of changing parameters on the accuracy of the flow-sampling

algorithm and PRECISION. 69

xiv

Bibliographic Notes

The material presented in chapter 2 is joint work with Xiaoqi Chen, Mark Braverman,

and Jennifer Rexford, and has been previously published and presented at SIAM

APOCS 2022 [56]. The material presented in chapter 3 is joint work with Huacheng

Yu and Jennifer Rexford, and has appeared in an arXiv paper [57]. The material

presented in chapter 4 is joint work with Huacheng Yu.

1

Chapter 1

Introduction

In modern societies, many of us take fast and reliable networks for granted. Thanks

to various services built on the Internet, such as cloud services, video chatting and

streaming, the world is connected like never before. Any dip in the performance of

the Internet, be it due to congestion or attacks, could be disruptive to both companies

and individuals.

1.1 Network Performance Monitoring

Network administrators are responsible for maintaining organizations’ network quality

and security. Network performance monitoring provides valuable insights into both

these aspects. Performance monitoring helps in identifying bottlenecks and latency

issues that can impact network speed [46]. By analyzing performance metrics, network

administrators can optimize the network to ensure it operates at peak efficiency.

When performance issues arise, performance analysis helps pinpoint the network path

that experiences congestion [57]. Moreover, unusual performance metrics can be

indicative of security threats such as route hijacking and traffic interception [43].

Performance monitoring allows network administrators to route traffic away from

malicious routes, and reconfigure legitimate routing information.

2

1.1.1 Active Probing vs. Passive Monitoring

Traditionally, performance monitoring often involves active probing, which is the

process of injecting probe packets into the network, and gathering information about

their responses. There are several aspects that make active probing undesirable.

The probes add extra load on the network, and their experience is not necessarily

representative of what realistic traffic experience. For example, probe packets may

not be assigned the same priority as regular data packets, due to quality of service

settings, leading to different treatment in terms of bandwidth allocation and latency.

And, if the probes are sent and/or received by end hosts at the network periphery,

the measurements might capture access-network or end-host issues, rather than the

core network problems.

Therefore, passive monitoring, achieved by analyzing existing traffic in a network,

is often preferable. Without needing to inject probe packets, passive monitoring does

not affect the performance of a network. And by observing what packets are going

through, passive monitoring provides a more realistic view of network utilization and

congestion.

1.1.2 Performance Metrics

Naturally for performance, we want to understand what happens across packets from

the same flow. A flow typically refers to a sequence of packets that belong to a com-

munication session. Consequently, packets from the same flow share a common set of

attributes, such as source and destination IP addresses, source and destination ports,

and protocol type. In contrast to metrics that are based on counting traffic volume,

to measure network performance, each packet must be processed in conjunction with

its predecessor in the same flow.

For passive performance monitoring, it is natural to focus on Transmission Con-

trol Protocol (TCP). TCP packets contain crucial information such as source and

3

destination ports, sequence numbers, acknowledgement numbers and flags, which not

only allows us to identify flows and compute various metrics, but also provides con-

text for the network behavior we observe. Moreover, TCP is widely used by many of

today’s Internet applications, and accounts for the vast majority of network traffic.

TCP performance monitoring paints a representative picture of what most packets

experience.

In this thesis, we consider two canonical performance metrics related to TCP:

round-trip delay, and TCP packet reordering.

1.1.2.1 Round-trip delay

The round-trip delay refers to the time difference between sending a request, and

receiving its corresponding response. For example, the two-way delay for a TCP

handshake is the time between a client sending TCP SYN packet to a server and

receiving the corresponding TCP SYN/ACK packet, while the delay for a DNS lookup

is the time between a DNS query packet and its corresponding response packet. We

can also measure the time between the beginning of a TCP flow (SYN packet) and

its ending (FIN or RST packet), which characterizes the duration of a flow that

corresponds to the delay an application experienced when downloading a file.

Fine-grained information about network delays is especially useful in practice. It

is common for an Internet Service Provider (ISP) and its clients to specify a target

delay distribution in their Service-Level Agreements (SLAs) [52, 53]. For example,

an ISP might need to determine if more than 5% of TCP handshake delay exceeds

50ms.

1.1.2.2 TCP packet reordering

A reordered packet is a packet whose sequence number is out-of-order, with respect

to its predecessor in the same flow. Transmission Control Protocol (TCP) perfor-

4

mance problems are often associated with packet reordering. Packet loss, commonly

caused by congested links, triggers TCP senders to retransmit packets, leading these

retransmitted packets to appear out of order. Also, the network itself can cause

packet reordering, due to malfunctioning equipment or traffic splitting over multi-

ple links [40]. TCP overreacts to inadvertent reordering by retransmitting packets

that were not actually lost and erroneously reducing the sending rate [8, 40]. In ad-

dition, reordering of acknowledgment packets muddles TCP’s self-clocking property

and induces bursts of traffic [7]. Perhaps more strikingly, reordering can be a form of

denial-of-service (DoS) attack. In this scenario, an adversary persistently reorders ex-

isting packets, or injects malicious reordering into the network, to make the goodput

low or even close to zero, despite delivering all of the packets [1, 25].

1.2 Performance Monitoring in the Data Plane

For passive performance monitoring, traditional methods often involve two separate

steps: creating copies of the traffic out of the data plane, and analyzing the traffic

offline. With the emergence of programmable network switches, we now have the

option to do analysis directly in the data plane, as packets fly by. Simple packet-

reordering statistics can be collected directly as part of high-speed packet processing,

given software platforms like eBPF [47] and DPDK [49], smart network interface

cards [41, 55], and ASIC-based switches [10, 26, 42]. With flexible parsing, we can

extract the header fields we need to analyze the packets in a flow. Using arrays or

dictionaries, we can keep state across successive packets of the same flow. In addition,

simple arithmetic operations allow us to detect reordering, compute the delay, and

tally count.

Running measurement tasks directly in the data plane has several benefits. By

processing packets on the fly, fine-grained analysis no longer comes with significant

5

data collection overhead, and sensitive user data never needs to be transported outside

of the data plane. Moreover, it enables real-time actions on each packet based on the

analysis.

However, processing packets efficiently for high link speeds imposes significant

constraints on memory:

• Memory size: Modern data planes have a limited amount of memory, espe-

cially compared to the number of concurrent flows on high-speed links.

• Memory accesses: Since memory bandwidth has not kept pace with link

bandwidth, modern data planes can only access memory a few times per packet.

Plus, network devices perform other tasks—packet forwarding, access control, and

so on—that demand a share of the already limited memory resources. Furthermore,

since the data plane has limited bandwidth for communicating with the control-plane

software, we cannot offload monitoring tasks to the control plane. As such, we need

to design compact data structures that work within these constraints.

1.3 Challenges in Designing Data-plane Algo-

rithms for Performance Measurement

The constraints of the programmable data plane often makes it impossible for any

algorithm to generate exact answers. Fortunately for many measurement tasks, ap-

proximate answers suffice, and people often turn to the vast literature on streaming

algorithms for inspiration. However, existing works have mainly focused on volume-

based metrics. For instance, to identify the k heaviest flows in a packet stream, there

are both sketch-based ([19, 13]) and counter-based ([37, 20, 6]) algorithms. A sketch-

based algorithm keeps an array of approximate counters, and performs updates based

on hash values, while a counter-based algorithm keeps track of both the identifiers

6

and the approximate counts, but only for a subset of the traffic. Counter-based al-

gorithms are of particular interest, since they also allow the possibility of measuring

performance metrics. By storing identifiers in the data structure, these algorithms

can be extended to match packets from the same flow, thus giving, and compute

performance metrics for heavy flows on the way [57].

Among counter-based algorithms, SpaceSaving [37] has drawn the most atten-

tion in the networks community, due to its simplicity and asymptotic optimality in

reporting frequent elements. Random Admission Policy (RAP) [6] is a notable vari-

ant of SpaceSaving. Through incorporating the idea of probabilistic insertions, RAP

exhibits higher accuracy over SpaceSaving in both identifying heavy flows and esti-

mating the sizes of these flows, especially in small memory regimes. However, due

to the process of finding the minimum counter, both SS and RAP require per packet

memory accesses linear in the memory size, as a result, neither can be directly imple-

mented on programmable switches. Hardware friendly variants of SpaceSaving and

RAP include HashPipe [44] and PRECISION [4]. To reduce the number of memory

accesses, HashPipe uses a pipeline of d hash-indexed arrays, with a small constant d,

and only require one memory access in each array. PRECISION combines ideas from

RAP and HashPipe and achieved the best empirical accuracy for identifying heavy

flows in the data plane.

To use these algorithms as part of the performance monitoring, we also want to

know, given a memory size, how many heavy flows are we monitoring. As opposed to

sketch-based algorithms, which the theory community has extensively studied, all the

above counter-based algorithms beyond SpaceSaving, while showing promising em-

pirical performance, lack rigorous theoretical guarantees. Proving theoretical results

for these algorithms turned out to be highly nontrivial. In order to understand the

performance of PRECISION, the data-plane state-of-the-art, we need techniques to

analyze two of its algorithmic components: (1) random admission, as in the RAP al-

7

gorithm, and (2) approximating the global minimum using the minimum of d counter

values. In Chapter 4, we present our theoretical results on the performance of RAP,

which serves as a valuable first step towards providing bounds for PRECISION.

The lack of theoretical guarantees is clearly not the only problem, as focusing on

heavy flows using counter-based algorithms does not always suffice for the purpose of

performance monitoring. In monitoring TCP packet reordering, whilst heavy flows

might make up most traffic, they do not necessarily give us a full picture of flows from

all sources to a destination. By focusing solely on heavy flows, we might overlook

congestion that is happening on parts of the network. In the case of round-trip delay,

where we need to match pairs of requests and responses, there is not even the notion

of heaviness in this context. These examples highlights the need to design data-plane

algorithms specialized in measuring performance metrics. Next we delve into the

specific challenges we encounter in monitoring delay and packet reordering in the

data plane.

Mitigating bias in estimating delay distribution. To measure delay in the

data plane, Chen et al. [15] proposed a simple scheme which saves the request ID and

a timestamp into an array, applying a hash function over the ID to obtain an array

index. When the corresponding response arrives, we use the hash function again to

look at the same index, and if the matching request exists, calculate this request’s

delay and update the statistics of the delay distribution.

However, not all requests eventually receive a response, and those orphaned re-

quests without a response create a dilemma. A new request being inserted may suffer

from a hash collision with an existing request. If we discard the new request and keep

the existing one, the array will soon fill up with stale, orphaned requests. But simply

overwriting upon every hash collision is even worse: to produce a delay sample, the

request must stay in the array for long enough without being overwritten.

8

For large-delay pairs, the request needs to survive a large number of new insertions

into the data structure without a hash collision. Consequently, more small-delay

samples are produced, while large-delay pairs are undersampled and therefore biased

against. This phenomenon is especially problematic in applications like verifying

SLAs or measuring tail latency, since larger delays are exactly the anomalies we hope

to catch.

Previous efforts to mitigate the bias against larger delays include finding a middle

ground between favoring the existing entries and overwriting aggressively. Chen et

al. [15] used a large expiration threshold that corresponds to the 99th-percentile delay

in the network, and only evicts upon hash collision when a record gets too old. Yet it

is hard to accurately choose such a threshold, particularly when the prior distribution

is unknown. Moreover, setting such a conservative threshold means orphaned requests

stay too long in the memory, reducing the number of valid matches.

In Chapter 2, we opt for an algorithmic approach in mitigating the bias. The

main idea is that, if a delay sample is collected with probability p, to get an unbiased

count of this sample, we can count it as 1
p
samples in a tally. By keeping track of the

number of insertions each request survives, we are able to systematically account for

the bias each delay sample encounters.

Circumventing memory lower bound in detecting TCP packet reordering.

TCP packet reordering are intrinsically small probability events. Identifying flows

with heavy reordering fundamentally requires a large amount of memory, which the

programmable data plane cannot afford. To make it feasible, Liu et al. [35] considered

the problem of detecting flows with a large number of reordered packets, with the

assumption that reordered packets always arrive within some fixed period of time. Not

only does this assumption appear unnatural, the algorithm also requires a priority

queue to maintain the set of the most recent received packets, which violates the

9

memory access constraint. The authors have to further use a two-way cuckoo table

to approximate the priority queue. However, unless the size of the table is large, the

effect of hash collisions cannot be ignored.

In monitoring packet reordering, we notice that identifying every affected flow is

not necessarily what is important for network administrators. Packet reordering is

typically a property of a network path, due to congested or flaky links. As such, it is

useful to report reordering at a coarser level, such as to identify the IP prefixes asso-

ciated with performance problems. Since routing is determined at the IP prefix level,

a network administrator could choose to route the traffic for an IP prefix through

providers whose paths are not experiencing significant reordering. However, this does

not obviate the need to maintain state for at least some flows, as TCP packet reorder-

ing is still a flow-level phenomenon. Fortunately, we can identify prefixes with heavy

packet reordering without needing to track all of the flows, because packets travers-

ing the same path at the same time are often correlated in their out-of-orderness. In

Chapter 3, we show how this correlation helps in saving memory.

1.4 Contributions

This dissertation focuses on the design and analysis of compact algorithms for mea-

suring network performance in the data plane. In the first part of this dissertation,

we consider the problems of measuring delay and TCP packet reordering in the data

plane, and leverage probabilistic techniques to work with hardware constraints.

• In Chapter 2, We present fridges, a novel data structure that corrects for the

survivorship bias due to hash collisions, producing unbiased estimates of the

delay distribution. The key idea is to consider a sample that was lucky enough

to survive many insertions into the data structure as a representative for other

similar samples that did not survive. We also show how to combine results

10

from multiple fridges, each optimized for a different range of delays, for further

accuracy gains. Simulation experiments show our design outperforms prior

work using naive hash-indexed arrays, achieving 2x-4x memory saving. We

implement a prototype P4 program running on the Intel Tofino programmable

switch, using only moderate hardware resources.

• In Chapter 3, we present efficient algorithms for identifying IP prefixes with

heavy packet reordering under memory restrictions. First, we sample as many

flows as possible, regardless of their sizes, but only for a short period at a

time. Next, we separately monitor the large flows over long periods, in addition

to the flow sampling. In both algorithms, we measure at the flow level, and

aggregate statistics and allocate memory at the prefix level. Our simulation

experiments, using packet traces from campus and backbone networks, and our

P4 prototype show that our algorithms correctly identify 80% of the prefixes

with heavy packet reordering using moderate memory resources.

In the second part of this dissertation, we revisit RAP, a counter-based algorithm

for identifying heavy flows, through a purely theoretical lens, hoping to not only

provide performance guarantees for this particular algorithm, but also shed light on

the theoretical performance of other data-plane algorithms that built on RAP (d-way

RAP [6], PRECISION [4]).

• In Chapter 4, we consider the performance of RAP on highly skewed streams.

Specifically, we show that, for a highly skewed packet stream with k heavy flows,

RAP with memory size k stores O(k) heavy flows with constant probability.

11

Chapter 2

Unbiased Delay Measurement in

the Data Plane

In this chapter, we propose a data-plane algorithm that produces a provably unbiased

delay distribution, specifically designed for programmable switches using the Proto-

col Independent Switch Architecture (PISA) [9]. Our algorithms tackle the bias by

keeping track of the probability of getting each sample, and applying a correction

factor inversely proportional to this probability when computing the distribution.

2.1 Passive Delay Monitoring Problem

In this section, we first introduce the delay monitoring problem, and a “simple” data-

plane solution. Then, we explain why the simple algorithm is biased against large

delays, and define our goal of producing an unbiased estimate of the delay distribution.

2.1.1 Simple delay monitoring.

In delay monitoring, a stream of packets represents a stream of requests and responses,

where we hope to match a response with its corresponding request, to generate use-

12

(b) Correcting for survival bias

ID Request
Timestamp

97 0

22 10

13 30
15 50
26 40
78 20

Request

(a) Naive table

Response

ID=22
Time=10

ID=15
Time=90

ID Request
Timestamp

Insertion
Count

22 10 1

13 30 2
15 50 3

Request

Response

ID=22
Time=10

ID=15
Time=90

Insertion
Counter

RTT=40 RTT=40
Survived x insertions
Weight=p-1(1-1/8)-x

Insertion
Probability

p=0.5

Figure 2.1: Compared with the simple approach, the fridge tracks how many insertions
each entry survives, and assigns higher weights to less likely RTTs.

ful delay statistics. Examples of request/response pairs include NTP request and

response, DNS request and response over UDP, TCP handshake pairs (between SYN

and SYN-ACK packets), and TCP flow duration (between TCP SYN and FIN/RST

packets). In real-world applications, some requests never receive a response, for in-

stance due to server failures or cyber attacks. We assume each request and its poten-

tial response carry the same identifier (ID) unique for the pair that allows matching,

if the response exists. For example, we can extract IP addresses, port numbers,

and sequence numbers from a TCP SYN packet, and match them with that of a TCP

SYN-ACK packet. After matching a response to a request, the resulting delay sample

contributes to some larger analysis of the delay distributions.

Today’s programmable switches using the PISA pipeline architecture have tens

of megabytes of register memory that we can read or write in the data plane, while

processing individual network packets. To meet the strict speed requirements of line-

rate packet processing (Terabits per second), the switch imposes several constraints

on what packet-processing logic we can implement. The pipeline has a fixed number

of stages, therefore each packet is processed within a constant number of clock cycles.

To avoid memory hazard due to concurrent memory access, all register memory arrays

are allocated to a specific pipeline stage, and we can only access one index of each

register memory array when processing each packet.

13

Given the memory access constraints, we cannot implement traditional hash ta-

bles with sophisticated collision resolution logic. The hash-indexed array is a good

candidate data structure to implement a simple algorithm for matching packet pairs

and continuously generating delay samples, as illustrated in Figure 2.1(a).

1. Request: For each request, we compute hash(ID) to find an array index and

write in the request ID and current timestamp. To avoid filling the memory with

orphaned requests, we favor the new request upon hash collisions, by overwriting

any existing request in the same array index.

2. Response: For each response, we again compute hash(ID) as the index. If

there is a request with the same ID, we calculate the difference t of their times-

tamps, report a delay sample t, and remove the request; otherwise, there is no

match and no sample is recorded.

2.1.2 Bias against large delays.

The limited memory in the data plane poses a significant challenge. A higher delay

means the request needs to stay in memory longer while waiting for its response to

arrive, which translates to using more memory at any given point. Since we choose

to always overwrite existing requests upon hash collisions, when memory is limited a

request is more vulnerable to eviction the longer it remains in memory. This leads to

a bias against larger delays.

At first glance, we could solve this problem by favoring existing requests on colli-

sions. However, a response may never arrive, causing orphaned requests to consume

the memory. An alternative is to set an expiration threshold and evict a record

if the request stays in the data structure longer than the threshold. This method

seemingly achieves a balance between overwriting aggressively and favoring existing

requests conservatively, but in practice it is hard to find the right threshold [15]. A

14

large threshold leads to an array full of stale requests, while a small threshold causes

bias against larger delays, as such requests are quickly evicted before their responses

arrive.

2.1.3 The delay distribution.

In practice, we often hope to combine individual delay reports to generate some

statistics of interest. In this work, we specify the output of our algorithms to be

an approximated distribution of delays of all request/response pairs in the stream,

and in particular we can look at the Cumulative Distribution Function (CDF) of the

delay. We note that the estimation error of many real-world delay metrics commonly

seen in Service Level Agreements (SLAs) can be translated to the difference between

estimated and ground truth delay CDF curves. For example, the error in measuring

95th-percentile delay is the horizontal distance between the CDF curves at y = 95%,

while the error in measuring the fraction of RTTs above 40ms is the vertical distance

between the CDF curves at x = 40ms. We therefore formalize the problem as follows:

Definition 1 (Delay CDF). Given a stream of requests and responses with identifier

IDi, timestamp ti, and type ci ∈ {req, resp} differentiating requests and responses,

we pair a request i with its response i′ when IDi = IDi′ ∧ (ci, ci′) = (req, resp).

Each request has a unique ID, and has at most one matching response. The delay

of a request/response pair (i, i′) is defined to be ti′ − ti. Let f(t) denote the number

request/response pairs in the stream with delay t, and F (t) =
∑

τ<t f(τ)∑
t f(t)

the ground

truth CDF. On seeing the entire stream, we hope to output a close approximation

F̂ (t) of F (t).

In this work, we do not intend to distinguish between the delay CDF of all packets

versus some subset of packets, e.g., those of one particular flow or application. The

algorithms presented in § 3 are general enough to be applied in either case.

15

2.2 Unbiased Delay Estimation

Contrary to previous work [15], we do not attempt to mitigate bias by fine-tuning

the frequency of overwriting records. Instead, we overwrite aggressively to take in all

new requests, and correct for bias as samples are collected. We start this section with

the idea of bias correction (§ 2.2.1). Next we describe the single fridge algorithm and

its mechanism of applying correction factors (§ 2.2.2).

2.2.1 Correcting for survivorship bias.

The phenomenon that larger delays are undersampled traces back to the step where

any report, whether the delay is large or small, is considered as one sample. Instead,

we should cherish each sample with a high delay—it should account for not only itself,

but other requests with the same delay that are evicted before their responses arrived.

Thus, we define a correction factor to counter this survivorship bias. If a sample

has a probability q to survive without being evicted, upon seeing its report we set

the correction factor to 1
q
, and count it as 1

q
samples. This way, evictions from the

data structure no longer lead to biases, since the collected large-delay reports can

compensate for the missing ones.

To track a sample’s survival probability, we can analyze the number of insertions

between the time this sample’s request is inserted and its response arrives. Each

insertion has a small probability to evict the request due to hash collision, thus

the sample’s survival probability diminishes as there are more insertions before the

response.

2.2.2 Single fridge algorithm.

Now we discuss the design of a single fridge data structure, inspired by humans

checking how long a grocery item has stayed in a refrigerator when taking it out.

16

We maintain a global insertion counter and stamp its count alongside every inserted

request. Subsequently, when the response arrives we find the number of insertions

that happened between the request-response pair and calculate a correction factor,as

illustrated in Figure 2.1(b).

We formally compute the correction factor using the inverse of the probability of

a sample being collected. We define a data structure, fridge-(M, p), to be a hash-

indexed array of size M equipped with an entering probability p, which dictates

that each new request is inserted into the array with probability p (and discarded

with probability 1− p).

2.2.2.1 Probability of survival.

A request’s probability of survival decreases as it stays longer in the fridge, measured

by the number of other requests being inserted between this request and its response.

We track this number by maintaining a global insertion counter. For each new request,

an existing request in the fridge has a p
M

chance to suffer from a hash collision and

be evicted; thus requests stay for roughly M
p

insertions, which we call the average

lifetime of a fridge.

We define x as the number of insertions that happened between a request and its

matching response, which can be calculated by subtracting the recorded value of the

global insertion counter (at request time) from its current value (at response time).

Consider a sample with delay t that survives x insertions between its request and

response: it must survive three independent events: (1) its request enters the fridge

(with probability p), (2) the request survives the next x insertions into the array of

size M , and (3) the sample has delay t in the underlying ground truth distribution.

Denote f(t) as the true number of samples with delay t, and n the true number of

17

samples in the stream, we have

P[getting a sample with delay t] = p ·
(
1− p

M

)x
· f(t)

n
. (2.1)

Note that the first two terms indicates a sample’s survival probability q = p·
(
1− p

M

)x
.

We therefore set a correction factor of 1
q
= p−1 ·

(
1− p

M

)−x
for each report we observe.

After seeing the entire stream, we get a collection of reports, where each contains its

delay ti and its correction factor, in the form of a 2-tuple:
(
ti, p

−1
(
1− p

M

)−xi

)
, with

xi being the number of insertions the sample survives. From the reports we can obtain

an estimator of f(t) for all t, denoted as f̂(t), by summing up all correction factors

that correspond to t.

We show in Lemma 2.1 that f̂(t) is an unbiased estimator of f(t) with bounded

variance.

Lemma 2.1. Let Yi be in indicator of sample i, Yi = 1 if sample i has delay t, and

Yi = 0 otherwise, then

f̂(t) :=
∑
i∈[n]

p−1
(
1− p

M

)−xi

Yi

is an unbiased estimator of f(t), and

Var[f̂(t)] =
f(t)

n

∑
i∈[n]

(
p−1
1

(
1− p1

M

)−xi

− f(t)

n

)
.

Proof. Fix any t, and from Eq. 2.1,

E[Yi] = P[get a sample with delay t] = p
(
1− p

M

)xi f(t)

n
,

Var[Yi] = p
(
1− p

M

)xi f(t)

n

(
1− p

(
1− p

M

)xi f(t)

n

)
.

18

By definition, f̂(t) =
∑

i∈[n] p
−1
(
1− p

M

)−xi Yi, then

E[f̂(t)] =
∑
i∈[n]

p−1
(
1− p

M

)−xi

E[Yi] = f(t).

Since indicator Yi’s are independent,

Var[f̂(t)] =
∑
i∈[n]

p−2
(
1− p

M

)−2xi

Var[Yi]

=
f(t)

n

∑
i∈[n]

(
p−1

(
1− p

M

)−xi

− f(t)

n

)
. (2.2)

2.2.2.2 Approximated CDF.

We estimate the CDF F̂ by aggregating and normalizing the individual point-wise

estimate f̂ using discrete integration,

F̂ (t) :=
∑
i,ti≤t

f̂(ti)∑
i f̂(ti)

,∀t ∈ {ti}i. (2.3)

To compare F̂ with the ground truth CDF F , it is convenient to think of F̂ and F as

continuous functions. Throughout this work, we assume linear interpolation for both

F̂ and F .

Though f̂(ti) is unbiased, and so is
∑

i f̂(ti) by linearity of expectation, it is

important to note that the unbiasedness is not preserved under division. Therefore,

F̂ is not necessarily unbiased. Nonetheless, the single fridge algorithm improves on

the simple algorithm considerably in terms of reducing bias (§ 2.4.1). Later in § 2.4.2,

we show how the choice of p affects accuracy of the estimated CDF and how to identify

a good p based on the fridge size and the maximum delay.

19

2.2.3 Tuning the entry probability (p).

Given a fixed M , the entry probability p needs to be strategically chosen such that

the (M, p)-fridge operates optimally. Recall that on average each request survives

M/p insertions (the “average lifetime” of the fridge) before being evicted.

• If delays are short such that most request-response pairs we are measuring

are less than M/p insertions apart, almost all responses will arrive before any

collision happens to the request. For most samples, the insertion counter x

will be 0, therefore the correction factor is always p−1 with no effect of the

survivorship bias. In short, memory is “underutilized”.

• If the average lifetime M/p is too short (there are often more than M/p inser-

tions between request-response pairs), most requests cannot survive long enough

until their responses arrive — a request will suffer from hash collisions with over-

whelming probability. The very lucky requests that did survive will have very

large correction factors, leading to an enormous estimation variance. Although

our estimation is still unbiased in this case, it has little practical value. Under

this scenario, memory is “oversubscribed”.

• Ideally, the fridge operates in the regime with its average lifetime M/p aligning

with the number of insertions between most request-response pairs. In this case,

x (the number of insertions survived by a sample) is close to M/p.

We note that in the ideal regime, given a large M and the assumption x ≈M/p, typ-

ical delay samples should have a correction factor in the order of p−1
(
1− p

M

)−M/p ≈

e/p. Thus, medium-delay samples weights about e times more than samples with

very short delay.

Inferring the number of insertions (x). We further observe that, with a

constant traffic rate, the number of insertions survived by a sample (x) is proportional

to the delay observed by this sample. Therefore, it is possible to not record an

20

insertion counter alongside each request, and use the delay to approximately recover

x and calculate the correction factor. However, in many network applications, delay

is correlated with short-term spikes in traffic rate (which cause transient congestion),

which are precisely the anomalous events we want to scrutinize. Thus, we still opt to

record the exact insertion counters.

Regarding the number of table entries (M). We note that although we

expect a fridge to have thousands of entries in practice, in the extreme case we

require M ≥ 2, as we estimate each survived request’s survivorship bias using the

hash collisions happened in the other M−1 entries. A single-entry fridge with M = 1

is a degenerative case, as we cannot observe any “survivorship bias” (all samples have

x = 1). In the special case of M = 2, the surviver’s correction factor doubles every

time the other entry is replaced due to a new insertion. This estimation clearly

has a large variance, and a larger M is preferred — the estimate of survivorship bias

becomes more accurate as we observe the fate of more requests stored in other entries.

As the fridge size M is limited by the memory available under the given hardware

environment, given a fixed M it is important to provision the fridge with the appro-

priate entry probability p, based on the traffic rate (number of requests per second)

and the delay we expect to observe. In § 2.4.2 we evaluate the effect of choosing p

on a fridge’s accuracy, and demonstrate the fridge has some tolerance regarding this

choice.

2.3 Expanding Beyond a Single Fridge

In this section, we discuss how to extend the single fridge design to possibly achieve

better measurement accuracy. We first discuss why a simple design using multiple

hardware pipeline stages to build a single fridge will, surprisingly, hurt high-delay

21

samples (§ 2.3.1). Then, we show how to build multiple fridges and combine their

output correctly (§ 2.3.2).

2.3.1 Using many pipeline stages per fridge.

On a PISA programmable switch [9], we are limited to accessing only one index per

register array when processing a packet. Algorithms often span multiple pipeline

stages and allocate multiple register arrays to improve performance. For example,

the delay measurement algorithm in [15] achieves the best accuracy when the same

total memory size is split into 4-6 arrays in separate pipeline stages, each indexed

with a different hash function.

An insertion checks one location per stage, and only fails when it suffers hash

collisions on all these locations. Compared with using only a single stage, the multi-

stage design achieves better memory utilization and lowers the probability of failed

insertions, thanks to the “power of two choices” phenomenon.

Naturally, when running the fridge algorithm, we could also consider a multi-stage

design. Similar to [15], we could use multiple memory arrays indexed by different hash

functions. However, to deal with stale requests, upon a hash collision we must favor

inserting the new request and evict the existing request. We could implement a

scheme similar to HashPipe [?], where the request evicted in the first stage is inserted

again in the second stage, and likewise for later stages. The propagation stops when

an empty array slot is encountered, and a request is finally abandoned when it is

evicted from the very last pipeline stage.

To produce an unbiased delay estimator, we need to find the right correction

factor under this design. We note that a request in the first few stages is not at risk

of eviction, thus its survival has probability one; only a request appearing in the last

stage needs a correction factor for its survival probability, based on xi, the number

of insertions it survived in the last stage.

22

Unfortunately, this design works poorly for samples with larger delay. Assume

we build a D-stage fridge with total memory M and entry probability p, we can

calculate the number of insertions a request can survive in the fridge as a probability

distribution. Note that each stage has M/D entries, and for simplicity we assume

the memory is full of requests with no empty slots. For one insertion, a request

currently in stage s has probability p · D/M suffering from a collision and move to

stage s + 1. Thus, the number of insertions a request survives in stage s follows the

geometric distribution ls = Geo(p ·D/M). We can thus write the lifetime distribution

of the D-stage fridge, i.e., the total number of insertions survived before a request is

evicted from the last stage, as LD =
∑D

s=1 ls =
∑D

s=1 Geo(p ·D/M), with expectation

D · M
p·D = M/p. Meanwhile, for an ordinary fridge, we can simply plug in D = 1: its

lifetime distribution is simply Geo(p/M) with expectation M/p.

Although items in the multi-stage fridge have the same expected lifetime M
p

as

those in a single-stage fridge, its lifetime distribution is the sum of D i.i.d. geometric

variables, which is more concentrated and has a lighter tail than a single geometric

variable. This is to say, for a large delay T > M/p and D > 1, we have

P[Geo(p/M) ≥ T] > P[
D∑
s=1

Geo(p ·D/M) ≥ T]. (2.4)

Therefore, requests with delay higher than the fridge’s average lifetime have a much

smaller survival probability.

This phenomenon is most obvious when we consider the extreme case: with D =

M stages each having array size 1, the fridge essentially becomes a FIFO queue, and

the lifetime distribution becomes very narrowly concentrated. With every request

spending almost the same time in fridge, a request whose delay is higher than the

average lifetime has almost no chance to survive. Instead, we want the exact opposite:

the lifetime distribution should be heavy-tailed, so requests have some probability of

23

staying in the fridge for much longer than M
p
insertions, so our fridge can collect some

samples for large delay. Thus, analytically the multi-staged design performs poorly;

we have also verified this phenomenon empirically.

Thus, we should never use a multi-stage fridge. When we need to utilize more

memory than the capacity of a single pipeline stage, we should simply merge the

memory across multiple stages into one large logical hash-indexed array and build a

single-stage fridge. We also note that proposals like dRMT [16] would enable stateful

memory allocation across stages, so a simple one-stage algorithm can use the entire

stateful memory directly.

2.3.2 Using multiple fridges.

Requests in one fridge have an average lifetime M
p
, which can be adjusted to fit

the typical delay of the input traffic stream for higher accuracy. However, internet

traffic exhibits a wide range of delays, due to different geographic distances, server

behavior, and congestion conditions. Thus, a single fridge targeting a particular M
p

may be inadequate.

To cover a wide range of delays, we split the memory into N fridges with size

M1 + · · ·+MN = M . Requests and responses are directed to one of the fridges via a

hash function, while each fridge has its own entry probability p1 + · · · + pN < 1 and

targets a different average lifetime M1/p1, . . . ,MN/pN . When a response matches

in fridge k, we calculate the correction factor p−1
k (1− pk/Mk)

−xi based on fridge k’s

entering probability pk and the probability for surviving xi insertions in this fridge.

Since different fridges have different average lifetime, they have different variance

when estimating various ranges in the delay distribution. We need to combine their

output strategically to produce the final estimated delay distribution with minimum

estimation variance. In § 2.4.3, we demonstrate that using multiple fridges can indeed

produce more accurate estimates than a single fridge when memory size is limited.

24

We now describe the process of combining multiple fridge’s output using the In-

versed Variance Weighting method [17] in more detail.

Variance of each fridge. For a sample coming from fridge k (with size Mk

and entry probability pk) that survives x insertions, we set its correction factor as

p−1
k

(
1− pk

Mk

)−x

following Lemma 2.1. Summing up all correction factors for a t

coming out of fridge k gives an unbiased estimator f̂k(t) for f(t), the true number

of samples with delay t, where the unbiasedness follows again from Lemma 2.1. Let

ki be the index of the fridge sample i comes from, then the variance of f̂k(t) follows

directly from Eq. 2.2,

Var[f̂k(t)] =
f(t)

n

∑
i∈[n],ki=k

(
p−1
k

(
1− pk

Mk

)−xi

− f(t)

n

)
. (2.5)

The weighted average of estimators. Similar to classical sketching algorithms

such as CountMin [18] and CountSketch [14], in the multi-fridge algorithm, we keep a

set of N basic unbiased estimators {f̂1(t), f̂2(t), . . . , f̂N(t)} for f(t), each coming from

a fridge. Since the variance of each individual estimator could be large, we combine

them to get a better estimator. However, unlike [18, 14], our basic estimators have

different variance, so instead of simply taking their min or the median, we leverage

this fact to compute a weighted average of the estimators.

It is well-known in statistics [17] that given N unbiased estimators with bounded

variance, we can set weights optimally so that the weighted average of these estimators

has the minimum possible variance.

Theorem 2.2. Given N unbiased estimators f̂1, f̂2, . . . , f̂N with bounded variance

Var[f̂1],Var[f̂2], . . . ,Var[f̂N] respectively, the set of N weights {w1, w2, . . . , wN} with

wk =
1

Var[f̂k]∑
k

1

Var[f̂k]

, k ∈ [N] minimizes the variance of the combined unbiased estimator∑
k wkf̂k.

25

To combine estimators using Theorem 2.2, we need to associate each sample with

a weight, so as to calculate weights {w1, w2, . . . , wN} for a fixed delay t. Therefore,

the report sample i in the multi-fridge algorithm becomes a 4-tuple that keeps the

weight of the sample, to be determined next, as well as the fridge index ki, on top of

the delay ti and the correction factor as in the single fridge case.

However, Theorem 2.2 cannot be directly cast into our multi-fridge setup, since

we do not know variance Var[f̂1], Var[f̂2], . . . , Var[f̂N] exactly. We work around this

issue by approximating weights wk for each fridge k. From Eq. 2.5, we can safely

focus on estimating

f(t)

n

∑
i∈[n],ki=k

p−1
k

(
1− pk

Mk

)−xi

(2.6)

in the variance, since f(t)
n

<< 1 << p−1
k

(
1− pk

Mk

)−xi

. Yet, it would be false to assume

the f(t)
n

factor outside of the summation cancels out in wk, so we can obtain the rest

of (2.6) precisely from summing over correction factors from all reports. This would

have produced an underestimation, since n is the true number of samples, and the

fridges can only report fewer than n samples due to hash collisions.

We therefore use the unbiased estimator of (2.6),

∑
i∈[n]

p−2
k

(
1− pk

Mk

)−2xi

Zi, (2.7)

where indicator Zi = 1 if sample i comes from fridge k and has delay t, and Zi = 0 oth-

erwise. An argument similar to that in Lemma 2.1 suffices to verify the unbiasedness

of (2.7).

Putting all elements together, the report of a sample with delay t that survives

x insertions in fridge k, the 4-tuple (fridge index, delay, correction factor, weight

26

factor), has the following form

(
k, t, p−1

k

(
1− pk

Mk

)−x

, p−2
k

(
1− pk

Mk

)−2x
)
.

We obtain estimator f̂k(t) by summing over all correction factors of samples with

RTT t from fridge k,

f̂k(t) :=
∑
i∈[n]

p−1
k

(
1− pk

Mk

)−xi

Zi.

Denote the unbiased estimator of (2.6) as V̂k(t), by (2.7),

V̂k(t) :=
∑
i∈[n]

p−2
k

(
1− pk

Mk

)−2xi

Zi.

Finally, we obtain our multi-fridge estimator f̂(t) through a weighted average of

estimators from all fridges {f̂1(t), f̂2(t), . . . , f̂N(t)},

f̂(t) :=
∑
k

ŵk(t)f̂k(t), where ŵk(t) =

1

V̂k(t)∑
k

1

V̂k(t)

.

This concludes the process of combining the output of multiple fridges. Note that

despite of the approximation, we always have
∑

k∈[N] ŵk(t) = 1, and f̂(t) is hence

unbiased for being a convex combination of unbiased estimators.

2.4 Evaluation

In this section, we use real-world and synthetic traffic traces to show that the fridge

algorithm can effectively reduce bias in delay measurement, compared with prior

works. To experiment with different parameter settings, we run all tests using a

Python-based simulator. We discuss and evaluate a prototype running on hardware

programmable switches in § 2.5.

27

Distance metric. We evaluate the accuracy of single- and multi-fridge algo-

rithms by computing the distance between the ground truth CDF F (t) and the esti-

mated CDF F̂ (t) computed by our algorithms. As discussed in § 2.1.2, the CDF is

closely related to criteria specified in SLAs. For example, “95th-percentile delay” is

where the delay CDF curve crosses y = 95%. Since real-world delays vary widely, ab-

solute error is not an effective metric; we instead look at the relative error of percentile

delay queries:
∣∣log2 (Estimated

Ground Truth

)∣∣, which corresponds to the horizontal distance be-

tween the estimated and ground truth CDF curve under logarithmic x-axis. We are

interested in the relative error of typical percentile queries (at 50%, 95%, and 99%),

as well as the maximum error for any percentile between [5%, 95%], i.e., the maximum

horizontal gap between the CDF curves between y ∈ [5%, 95%].

Dataset. We use both real and synthetic network traffic traces in our experi-

ments.

• Real-world traffic (§ 2.4.1, 2.4.3): We use a bi-directional anonymized traffic

trace that contains 10 million packets across 11.4 seconds, collected from a

10Gbps border link of a local ISP network. We extract round-trip delay sam-

ples by treating outgoing TCP data packets as requests, and looking for their

matching incoming TCP acknowledgment packets as responses. The trace in-

cludes 61% requests and 39% responses. Approximately 13% of all requests

have a matching response, as the TCP delayed-ACK mechanism only sends one

response for every two (or more) requests, and malicious traffic such as port-

scanning attacks generates many orphan requests. The average round-trip delay

across all samples is 57.8 milliseconds.

• Synthetic trace (§ 2.4.2): We also generated synthetic traces to explore our

data structure’s performance characteristics under other traffic distributions.

We first generate request packets arriving at a constant rate of 1 million packets

per second, and randomly select a 40% subset to generate responses. Subse-

28

quently, given a maximum delay of Tms, we randomly sample a delay from a

log-uniform distribution between (0, T)ms for each response. Finally, we com-

bine the requests and responses and sort them by their timestamps. The trace

contains 0.5 million delay samples, with approximately 1.75 million packets in

total. Although the synthetic trace is not fully realistic, it allows us to test our

data structure by changing the delay distribution.

Unless otherwise noted, we repeat each experiment ten times with different hash seeds

and combine estimated CDFs, to reduce variance from individual runs and highlight

the bias. We note that our algorithm’s output exhibits a similar variance comparable

to [15]; the output distribution is almost the same across different runs, unless memory

is extremely limited.

2.4.1 Comparison with simple algorithm.

We first show that our fridges achieve higher accuracy than the simple algorithm

described in § 2.1.1.

In Figure 2.2, we visualize the advantage of the fridge algorithm by plotting the

estimated delay CDF curves alongside the ground truth (shaded). We run the single-

fridge algorithm using entry probability p = 2−10.4 and memory size M = 210, and the

simple algorithm in [15] using the same memory size on the real-world traffic trace.

The simple algorithm uses an expiry threshold T = 29ms, close to the 99%-percentile

delay in the ground truth, as suggested by the authors of [15].

As we can see from Figure 2.2, our unbiased fridge algorithm closely reproduces

the ground truth CDF curve, especially near the tail of the distribution. The sim-

ple algorithm produces a CDF curve biased against high delays, underestimating

percentile delay queries.

The fridge algorithm estimates 50th, 95th, and 99th percentile delay much more

accurately than the simple algorithm. We also plotted the maximum horizontal gap

29

Figure 2.2: (M=210, p=2−10.4)-fridge produces a visibly more accurate delay CDF,
compared with the simple algorithm using the same memory size M=210 and expi-
ration threshold T=29ms. The fridge and the simple algorithm achieves maximum
relative error of 25% and 36% respectively for percentile delay queries.

between estimated and ground truth CDF curves in [5%, 95%], which corresponds to

the maximum relative error when answering percentile delay queries for any percentile

between 5% and 95%. The fridge algorithm has a maximum relative error of 25%,

while the simple algorithm has a maximum relative error of 36%.

2.4.2 Choosing the best entry probability.

Requests in a (M, p)-fridge have an average lifetime of M/p insertions. Although the

fridge algorithm’s output is guaranteed to always be unbiased, we can improve its

accuracy by choosing p carefully to reduce the estimator’s variance. In general, we

want more samples to reduce the variance of the fridge’s estimation. When memory

is limited, a higher p shrinks the average lifetime, so fewer large-delay samples can

survive; however, a very small p means not many requests enter the fridge in the first

place, thus it cannot produce many samples either.

As high-delay samples are the hardest to measure, intuitively, the best p that

maximizes accuracy should make the fridge’s average lifetime (M
p
insertions) roughly

30

2 11 2 8 2 5 2 2

(a)

0

2

4

6

2 11 2 8 2 5 2 2

(b)

0

2

4

6
107 106 105 104max

RTT 107 106 105 104

max
RTT

Entering probability (p)

lo
g 2

 E
rro

r f
or

 p
er

ce
nt

ile

Average lifetime (M/p)
max error in [5,95]%tile 99%tile 95%tile 50%tile

Figure 2.3: For a fridge with M = 212 memory size processing synthetic trace with
ground truth delay between (0, 212)ms (top), error is minimized around entering prob-
ability p = 2−9; for ground truth delay in (0, 26)ms (bottom), the best p increases to
around 2−4, which leads to a shorter average lifetime in the fridge.

equal to the number of insertions between request-response pairs that experience the

maximum delays we are interested in measuring. In Figure 2.3, we show the error of

the fridge algorithm under different entering probabilities, under a small memory size

M = 212. We use two different synthetic traces, one with delay range (0, 212)ms and

another with delay range (0, 26)ms.

In Figure 2.3(a), the largest delay 212ms corresponds to 4×106 insertions between

request and response. The best choices of p indeed appear near average lifetime

M/p = 4 × 106. For Figure 2.3(b), the largest delay 26ms corresponds to 6.4 × 103

insertions, and we observe an increase in the best choice of p (thus decreased average

lifetime). Also, the fridge’s accuracy is not very sensitive to the exact choice of p, as

we observe similar accuracy when choosing any p within 0.5x-2x of the optimal.

We conclude that network administrators deploying the algorithm should provision

p according to the expected maximum delay to be measured in the network, by

aligning the fridge’s average lifetime to the number of insertions under this delay. It

is likely not necessary to tune p continuously to adapt to the slight temporal changes

in traffic patterns, as the fridge is robust against a 0.5x-2x change in optimal p, and

31

210 212 214 216
0.0

0.5
50.0 %tile

210 212 214 216
0.0

0.1

95.0 %tile

210 212 214 2160.0

0.5

99.0 %tile

210 212 214 2160.0

0.5
max in [0.05 ,0.95]

Memory size (M)

lo
g 2

 E
rro

r f
or

 p
er

ce
nt

ile

Single fridge Two fridges

Figure 2.4: Compared with the single fridge single stage variant, using two fridges
provides more benefits as memory size M decreases.

we only observe a 1.2x-1.3x diurnal change in per-minute average traffic rate in our

network. However, p should be re-calibrated whenever the traffic rate or the average

delay changes more than 2x.

2.4.3 Beyond a single fridge.

We now show that using multiple fridges improves accuracy by experimenting with a

two-fridge algorithm.

The two fridges each use half of the total memory size (M1 = M2 = M
2
), and we

find the best entry probabilities (p1, p2) using grid search; the outputs of two fridges

are then combined using Inversed Variance Weighting (as discussed in § 2.3.2) to

produce the final estimated CDF. In Figure 2.4, we show the two-fridge algorithm

is more accurate than a single fridge when processing the real-world traffic trace,

especially in the more challenging regime with smaller memory size.

Finally, we compare our single- and two-fridge algorithms with both the single-

stage and the four-stage simple algorithms. We similarly tuned the simple algorithm

to use the best expiration threshold for each memory size. Figure 2.5 shows that

32

211 2150.00

0.05 50 %tile

211 2150.0

0.1
95 %tile

211 2150.0

0.2
99 %tile

211 215

0.25

0.50
max in [0.05 ,0.95]

Memory size (M)

lo
g 2

 E
rro

r f
or

 p
er

ce
nt

ile

Naive 4-stage
Naive 1-stage

Two fridges
Single Fridge

Figure 2.5: The single- and two-fridge algorithms exhibit much lower estimation error
for 50, 95, 99th-percentile delays, compared with the 1- and 4-stage simple algorithms,
under various total memory sizes.

the two-fridge algorithm performs consistently better than the simple algorithms,

achieving the same accuracy using 2x-4x smaller memory.

It is not yet clear how to systematically find the best entry probability for more

than two fridges without using exhaustive search, or how much further we can reduce

error by using three or more fridges. We leave these as future work.

2.5 Hardware Implementation

We build a prototype of the fridge data structure that runs on the Intel Tofino high-

speed programmable switch, that can measure traffic delay distribution at line-rate of

100 Gbps per port across 16 ports (1.6 Tbps aggregated throughput). The prototype

program is written in the P4 [50] language and has approximately 800 lines of code.

Its source code is available on GitHub1 .

1https://github.com/Princeton-Cabernet/p4-projects/tree/master/Fridge-tofino

33

https://github.com/Princeton-Cabernet/p4-projects/tree/master/Fridge-tofino

Our prototype measures TCP handshake delay distribution by parsing handshake

packets, hashing the IP address pair, port number pair, and TCP sequence number

together into a request/response ID; it is straightforward to adapt the program to

measure other delays by similarly defining and calculating request/response IDs using

other information in the packets.

In this section, we briefly discuss some technical details about implementing the

algorithm on hardware programmable switches, and present evaluations of our pro-

totype.

2.5.1 Implementing the fridge table

We implement the fridge using three hash-indexed arrays: IDS[·], TS[·], and CTR[·],

storing the request packet’s ID, its timestamp, and the insertion counter, respectively.

When a request arrives, we first combine the relevant packet header fields (and

compress them through a digesting hash function) to generate a 32-bit request ID,

as well as generating a random array index idx = hash(ID) ∈ [M], which specifies a

location in the fridge. Subsequently, we invoke the pseudorandom number generator

to generate a 32-bit random number r ∈ [0, 232), and compare it against a threshold:

the request is only inserted if r < p·232. This way, we implement the entry probability

p, as the request is ignored with probability 1 − p. We also maintain an additional

register as the fridge’s insertion counter, which is incremented by one for each inserted

request. Subsequently, we write this request’s ID, the current timestamp, and the

insertion counter into IDS[idx], TS[idx], and CTR[idx], respectively.

When a response arrives, we calculate the same ID and index idx = hash(ID),

and check if a matching ID is currently stored in IDS[idx]. If so, we generate a

delay sample by calculating the delay (the difference between current timestamp and

TS[idx]) and the number of survived insertions (x, the difference between current

insertion counter and CTR[idx]), and also erase the current values. Otherwise, if the

34

stored ID mismatched, the request didn’t survive and we simply do not produce a

sample.

We note that the process of generating IDs using a 32-bit hash digest might lead

to mismatching request and response sharing the same ID. However, the probability

for an ID mismatch is much lower than that of a hash collision on the shorter idx

(8-16 bits), therefore a request is much more likely to be evicted by an unrelated

response than suffering from an ID mismatch and produce an incorrect delay sample.

2.5.2 Correcting the bias

Given the delay t and survived insertion count x in a reported sample, we can calculate

the single-fridge bias correction factor in the switch data plane.

As the programmable switch only supports basic arithmetic operations, we cannot

exactly calculate p−1
(
1− p

M

)−x
; instead, we notice p and M are known constants,

and exploit P4’s match-action semantics to match x with a list of prefixes, effectively

building a lookup table with pre-computed x ranges and the corresponding correction

factor.

The prefix matching logic available on the programmable switch was originally

used for routing network packets over the internet by IP address prefixes. Given

that the bias correction factor p−1
(
1− p

M

)−x
is a monotonic function over x, it is

straightforward to implement a lookup table that matches on the bit prefixes of

the binary representation of x and outputs the correction factor. To save memory,

we do not implement all possible correction factors exactly, and instead only map

x approximately to several integer correction factors starting from 1/p with 1.1x

increment. The programmable switch hardware supports matching using different

bit prefix lengths, which is very handy given that the correction factor has x in its

exponent.

35

For example, with p = 0.5 and M = 216, the first prefix-matching rule matches

x ∈ [0, 7 × 211) and outputs correction factor 2, and the next rule matches x ∈ [7 ×

211, 9× 212) and outputs correction factor 3. We use a python script to automatically

generate these rules based on p and M .

Subsequently, we tally the delay samples and build a histogram in a register array,

by adding up the correction factors of delay samples that fall into certain delay ranges.

In our prototype, we maintain a histogram with 32 bins using log(t) as the bin index,

however it is straightforward to discretize the distribution differently or use more

bins.

This implementation allows the data-plane program to track the distribution of

delay in real time, enabling diverse applications such as real-time SLA monitoring

and dynamic rerouting. We can either maintain an overall delay distribution, or split

the traffic into different subsets and maintain a separate delay distribution for each

subset.

Still, we note that various approximations incur additional error in the measure-

ment. One may collect all the produced samples and perform the bias correction

outside of the data plane, using a program running on a server (with no arithmetic

constraints), to exactly calculate the correction factors and the delay distribution.

This also allows running the more complex correction operations required by the

multi-fridge algorithm.

2.5.3 Prototype evaluation

We evaluate our prototype fridge implementation by running it on an Intel Tofino

Wedge-32X programmable switch, processing the same real-world traffic trace used

in § 3.4. We use the MoonGen [22] traffic generator to replay the trace to the switch

at real-world speed, by reading the pcap file from a ramdisk. The traffic generator

36

runs on a server with two 10-core Intel Xeon 4114 CPUs and a Mellanox ConnectX-5

100Gbps NIC, using Ubuntu 20.04 and DPDK 19.05.

We check that the fridge is producing samples correctly, by running it under

various memory sizesM and collecting all the samples reported using a server running

packet capturing. Analyzing the raw samples produces a delay distribution CDF

closely matching the ground truth, unlessM is set to be very small. The results closely

match what we observe under simulation. We also analyze the effect of approximating

the correction factor using a lookup table of x in the data plane, and find it only

negligibly affects the resulting CDF: we observe the maximum relative error increases

by between 0.2% and 0.9%, which is at least one order of magnitude smaller than the

relative error between the fridge’s estimated distribution and the ground truth.

A fridge with M = 216 entries costs about 6.4% of the total register memory

available on the programmable switch. We only need M = 212 entries to process

the real-world traffic trace used in § 3.4 and produce an accurate delay CDF, and

under this configuration we only consume 1.7% of the total register memory. Be-

sides the register memory allocated for the fridge, the prototype program also uses

23.6% of hash units (for array indexing), 7.3% of Ternary Content Addressable Mem-

ory (TCAM, for prefix lookup tables) and less than 5%-10% of any other hardware

resource.

Given that we only use moderate hardware resources, we believe our prototype

program’s performance is sufficient to process traffic at the switch’s maximum line

rate; unfortunately, our packet generator server can only replay trace at speeds up

to 8Gbps (due to single-core CPU bottleneck) and generate synthetic traffic at ap-

proximately 80Gbps. We have validated the prototype behaved correctly under both

cases. At 80Gbps, the prototype data-plane program is processing more than 160

million requests and responses per second, which is 80 times faster than a simulator

37

written in C++ (processing 2 million requests/responses per second on a single CPU

core).

2.6 Related Work

Measuring delay. PingMesh [24] and NetBouncer [48] measure round-trip delay

by running active measurement on end hosts, and calculating the time difference

between outgoing probes and incoming replies. Active measurement can generate

comprehensive reports periodically, however the probe might not experience the same

delay as actual application traffic [3]. Meanwhile, Ruru [21] and [2] measure TCP

handshake delay by passively observing the three-way handshake packets. This is

helpful for producing a flow-level distribution of delays. [51] measures delay for all

TCP packets, by adding a timestamp as a TCP option header. This method can

produce accurate samples, as long as intermediate firewalls do not drop the option

header and the client correctly echoes back the timestamp. Instead, [30] passively

measured TCP packets by observing sequence numbers, and produced delay estimates

for many but not all packets. However, these methods all require exporting a large

number of packets from the data plane for off-path analysis, which incurs significant

networking and computational overhead when measuring high-speed networks.

Delay measurement in the data plane. [23] and [15] both measure delay di-

rectly in the switch data plane. Dapper tracks TCP flows individually, and produces

one delay sample per round-trip for each TCP flow; this requires pre-allocating mem-

ory for every TCP flow being tracked. Meanwhile, [15] works directly with packets

from all flows. This allows better memory utilization (almost the entire memory is

used at all times) and does not require per-flow state, however it leads to the bias

issue against long delays, which we addressed in this work.

38

Quantile sketch. KLL [32] and DDSketch [36] are quantile sketches that ap-

proximately measure samples in a distribution and produce an estimate of certain

quantiles using only small memory. QPipe [27] implements a quantile sketch that

runs fully within the programmable switch data plane. Our work does not measure

quantiles directly as we only re-weight the produced samples to ensure the resulting

distribution is unbiased, and we rely on subsequent post-processing to aggregate the

samples and produce statistics such as quantiles. It is possible to feed the samples

and their weights output by a fridge into a quantile sketch, such that we can approx-

imately answer queries about percentile delay without the need to save the entire

distribution.

2.7 Conclusion

In this paper, we show how to compute unbiased estimates of delay in the data

plane, using the fridge data structure that tracks the number of evictions while the

request remains in the fridge. By correcting for the probability of eviction due to

hash collisions, we can produce accurate delay distributions that closely match the

ground truth. Evaluation shows that our algorithm is indeed much more accurate

at estimating delay percentiles, compared with prior works using the same amount

memory. The two-fridge algorithm achieved the same accuracy while saving 2x-4x

memory. We also build and validate a prototype implementation of the fridge running

on high-speed programmable switches, that measures the unbiased delay distribution

accurately and efficiently within the data plane.

39

Chapter 3

Detecting TCP Packet Reordering

in the Data Plane

In this chapter, we present data structures that detect and report packet-reordering

statistics to the control plane.

• We first sample as many flows as possible, regardless of their sizes, but only for

a short period at a time. Capitalizing on the correlation, we can capture the

extent of reordering in prefixes by observing only snippets of their flows. This

flow-sampling approach performs especially well when given a small amount of

memory.

• When more memory is available, we can further improve the accuracy by moni-

toring heavy flows over longer periods of time in a separate data structure, and

only sampling the rest of the flows.

The interplay between measuring at the flow level and acting at the prefix level lies

at the heart of this problem. To decide which set of flows to monitor, we need to

incorporate prefix identity in managing the data structures, which gives rise to the

idea of allocating memory at the prefix level.

40

Figure 3.1: Different source prefixes send packets over different paths. Packets on
a path are colored differently to show that traffic from a single prefix has a mix of
packets from different flows. While flows from a single prefix may split over parallel
subpaths, they do share many portions of their network resources.

3.1 Problem Formulation: Identify Heavy Out-of-

Order IP Prefixes

Consider a switch close to the receiving hosts, where we observe a stream of incoming

packets (Figure 3.1). Our goal is to identify the senders whose paths to the receivers

are experiencing performance problems, through counting out-of-order packets. In

§ 3.1.1, we first introduce notations and definitions at the flow level, and show that

identifying flows with heavy reordering is hard, even with randomness and approxi-

mation. Later, in § 3.1.2, we extend the definitions to the prefix level, then discuss

possible directions to identify heavy out-of-order prefixes.

3.1.1 Flow-level reordering statistics

3.1.1.1 Definitions at the flow level

Consider a stream S of TCP packets from different remote senders to the local re-

ceivers. In practice, TCP packets may contain payloads, and sequence numbers ad-

vance by the length of payload in bytes. But, to keep the discussions simple, we

assume sequence numbers advance by 1 at a time, and we ignore sequence number

41

rollovers. We note that these assumptions can be easily adjusted to reflect the more

realistic scenarios. Then, a packet can be abstracted as a 3-tuple (f, s, t), with f ∈ F

being its flow ID, s ∈ [I] the sequence number and t the timestamp. In this case,

a flow ID is a 4-tuple of source and destination IP addresses, and the source and

destination TCP port numbers.

Let Sf = {(f, si, ti)}
Nf

i=1 ⊆ S be the set of packets corresponding to some flow

f , sorted by time ti in ascending order. We say the packets of flow f are perfectly

in-order if si+1 = si + 1 for all i in [Nf − 1]. By common alternative definitions [40],

the ith packet in flow f is out-of-order if it has:

Def. 1 a lower sequence number than its predecessor in f , si < si−1.

Def. 2 a sequence number larger than that expected from its predecessor in f ,

si > si−1 + 1.

Def. 3 a smaller sequence number than the maximum sequence number seen in f

so far, si < maxj∈[i−1] sj.

When si < si−1 in flow f , we sometimes say an out-of-order event occurs at packet

i with respect to Def. 1. Out-of-order events with respect to other definitions are

similarly defined. Under each definition, denote the number of out-of-order packets

in flow f as Of , a flow f is said to be out-of-order heavy if Of > εNf for some small

ε > 0.

In practice, none of these three definitions is a clear winner. Rather, different

applications may call for different metrics. From an algorithmic point of view, Def. 1

and Def. 2 are essentially identical, in that detecting the out-of-order events only

requires comparing adjacent pairs of packets. An out-of-order event with respect to

Def. 3, however, is far more difficult to uncover, as looking at pairs of packets is no

longer enough—the algorithm always has to record the maximum sequence number

(over a potentially large number of packets) in order to report such events. In this

42

paper, we focus on Def. 1 and show that easy modifications to the algorithms can be

effective for Def. 2.

3.1.1.2 A strawman solution for identifying out-of-order heavy flows

A naive algorithm that identifies out-or-order heavy flows would memorize, for every

flow, the flow ID f , the sequence number s of the latest arriving packet from f when

using Def. 1, and the number of out-of-order packets o. When a new packet of f

arrives, we go to its flow record, and compare its sequence number s′ with s. If

s′ < s, the new packet is out-of-order and we increment o by 1.

For Def. 2, we simply save the expected sequence number s+1 of the next packet

when maintaining the flow record, and compare it to that of the new packet, according

to Def. 2. We see that different definitions only slightly altered the sequence numbers

saved in memory, and we always decide whether an out-of-order event has happened

based on the comparison.

3.1.1.3 Memory lower bound for identifying out-of-order heavy flows

To show that identifying out-of-order heavy flows is fundamentally expensive, we

want to construct a worst-case packet stream, for which detecting heavy reordering

requires a lot of memory. For simplicity, we consider the case where heavy reordering

occurs in only one of the |F| flows, and let this flow be f . If f is also heavy in size,

it suffices to use a heavy-hitter data structure to identify f . Problems arise when

f is not that heavy on any timescale, and yet is not small enough to be completely

irrelevant. A low-rate, long-lived flow fits such a profile. Unless given a lot of memory,

a heavy-hitter data structure is incapable of identifying f . Moreover, since the packet

inter-arrival times for a low-rate flow are large, to see more than one packet from f ,

the record of f would need to remain in memory for a longer duration, relative to

other short-lived or high-rate flows.

43

Next we formalize this intuition, and show that given some flow f , it is infea-

sible for a streaming algorithm to always distinguish whether Of is large or not,

with memory sublinear in the total number of flows |F|, even with randomness and

approximation.

Claim 3.1. Divide a stream with at most |F| flows into k time-blocks B1, B2, . . . , Bk.

It is guaranteed that one of the following two cases holds:

1. For any pair of blocks Bi and Bj with i ̸= j, there does not exist a flow that

appears in both Bi and Bj.

2. There exists a unique flow f that appears in Θ(k) blocks.

Then distinguishing between the the two cases is hard for low-memory algorithms.

Specifically, a streaming algorithm needs Ω(min (|F| , |F|
k
log 1

δ
)) bits of space to iden-

tify f with probability at least 1− δ, if f exists.

Claim 3.1 follows from reducing the communication problem MostlyDisjoint stated

in [31], by treating elements of the sets as flow IDs in a packet stream.

Claim 3.1 implies the hardness of identifying out-of-order heavy flows, as the

unique flow f may have many packets, but not be heavy enough for a heavy-hitter

algorithm to detect it efficiently. Deciding whether such a flow exists is already diffi-

cult, identifying it among other flows is at least as difficult. Consequently, checking

whether it has many out-of-order packets is difficult as well.

The same reduction also implies that detecting duplicated packets requires Ω(|F|)

space. In fact, Claim 3.1 corroborates the common perception that measuring perfor-

mance metrics such as round-trip delays, reordering, and retransmission in the data

plane is generally challenging, as it is hard to match tuples of packets that span a

long period of time, with limited memory.

44

3.1.2 Prefix-level reordering statistics

3.1.2.1 Problem statement

Identifying out-of-order heavy flows is hard; fortunately, we do not always need to

report individual flows. Since reordering is typically a property of a network path,

and routing decisions are made at the prefix level, it is natural to focus on heavily

reordered prefixes. Throughout this paper, we consider 24-bit source IP prefixes, as

they achieve a reasonable level of granularity. The same methods apply if prefixes of

a different length are more suitable in other applications.

By common definitions of the flow ID, the prefix g of a packet (f, s, t) is encoded

in f . To simplify notations, we think of a prefix g as the set of flows with that prefix,

and when context is clear, S also refers to the set of all prefixes in the stream. Let

Og =
∑

f∈g Of be the number of out-of-order packets in prefix g. A prefix g is out-

of-order heavy if Og > εNg for some small ε > 0, where Ng is the number of packets

in prefix g.

For localizing attacks and performance problems, it is not always sensible to catch

prefixes with the highest fraction of out-of-order packets. When a prefix is small, even

a single out-of-order packet would lead to a large fraction, but it might just be caused

by a transient loss. In addition, with the control plane being more computationally

powerful yet less efficient in packet processing, there is an apparent trade-off between

processing speed and the amount of communication from the data plane to the control

plane. As a result, we also want to limit the communication overhead incurred.

Therefore, for some ε, α, β, our goals can be described as:

1. Report prefixes g with Ng ≥ β and Og > ϵNg.

2. Avoid reports of prefixes with at most α packets.

3. Keep the communication overhead from the data plane to the control plane

small.

45

3.1.2.2 Bypassing memory lower bound

As a consequence of Claim 3.1, it is evidently infeasible to study all flows from a prefix

and aggregate all of that information to determine whether to report the prefix. So

why would reporting at the prefix level circumvent the lower bound? In practice,

TCP packet reordering can be categorized into:

1. TCP-induced reordering: This is when TCP reacts to the problems in the net-

work. For instance, congestion might cause TCP to lose packets and trigger

retransmissions, which leads to apparent packet reordering. In this case, TCP

reordering is the symptom of a congestion problem.

2. Network-induced reordering: Flaky network equipment might actually reorder

packets. The TCP end-point then receives a misleading signal from the way

the packets arrive, wrongly assuming that some packets were lost, and over-

reacting to perceived congestion. In this case, packet reordering is a cause of a

performance problem.

Distinguish between these two types of reordering is difficult. Fortunately, we want to

detect both kinds of reordering, since both are indicative of TCP experiencing trouble.

Moreover, both indicate some problem along the end-to-end path. Therefore, we

expect flows traversing the same path at the same time to be positively correlated in

their out-of-orderness, under both types of reordering. This effectively means that we

only need to study a subset of flows from a prefix to estimate the extent of reordering

this prefix suffers. How large a subset needs to be depends on the strength of the

correlation. Interestingly, weak correlation is already sufficient to offer significant

benefits.

We state the correlation assumption that all of our algorithms are based on as

follows, and postpone its verification to §3.2.2: Let f be a flow chosen uniformly at

46

random from all flow in prefix g. If Ng > α, and g has at least two flows,
Og−Of

Ng−Nf
and

Of

Nf
are positively correlated.

3.2 Traffic Characterization

This section presents several traffic traits that drive our algorithm design. For all

of our measurement and evaluation, we make use of the following real-world packet

traces:

• Campus: Two anonymized packet traces, collected ethically from a border

router on a university campus network on June 5, 2019, and May 9, 2022,

respectively.

• Backbone: CAIDA Anonymized Internet Traces from 2018 [11] and 2019 [12].

Note that only packets with payloads are relevant for our application, as TCP

sequence numbers must advance for our algorithms to detect reordering events. We

therefore preprocess the trace to only contain flows from servers to clients using source

and destination port numbers, with the rationale that these senders are more likely

to generate continuous streams of traffic.

3.2.1 Heavy-tailed size and out-of-orderness

Consistent with numerous prior measurement studies, in our 5-minute campus trace

(Figure 3.2a), most flows are small, and only a few flows are large. However, a small

fraction of flows and prefixes tend to account for a large fraction of the traffic. For

example, in this trace, more than 90% of the packets belong to the 5% largest flows or

prefixes. Out-of-orderness in prefixes is similarly heavy-tailed; only a small fraction

of prefixes have a significant fraction of packets out-of-order (Figure 3.2b), e.g., only

less than 12% of prefixes with at least 27 packets have more than 1% of packets out

47

of order by Def. 1. Out-of-order events defined by Def. 2 are more prevalent. But,

even so, packet reordering remains a low-probability event, with less than 10% of the

prefixes of size at least 27 experiencing more than 7% out-of-order packets by Def. 2.

If most packet reordering occurred in heavy flows and prefixes, detecting heavy

reordering would be easy, by solely focusing on large flows and prefixes using heavy-

hitter data structures. However, what happens in reality is quite the opposite. To

see that, we use an unconventional split violin plot (Figure 3.3) to show three sets

of information: the prefix size (color of the violin), the flow size distribution in a

prefix (the left half of the violin), and the fraction of reordered packets for that prefix

that lie within flows of certain size (the right half of the violin). Each split violin

corresponds to a heavily reordered prefix with at least β = 27 packets, using Def. 2

with ε = 0.02. By comparing the left halves of all violins, we see a wide variation

of flow sizes in prefixes with heavy reordering, and the sizes of such prefixes can be

orders-of-magnitude different. We see that many prefixes do not have any large flows.

Moreover, the largest flows in each heavily reordered prefix do not necessarily contain

most of the out-of-order packets in that prefix. The 131-largest prefix gives one such

example. Though the 50 largest flows in this prefix have size 27 or larger, almost

95% of the total out-of-order packets in this prefix comes from flows with size smaller

than 27. Such a prefix would be very difficult for a heavy-hitter data structure to

catch without investing significant memory. Thus, by zooming in on large flows and

prefixes, we would inevitably miss out on many prefixes of interest without any large

flow.

Fortunately, to report a prefix with a significant amount of reordering, we need not

measure every flow in that prefix, as flows in the same prefix have some correlation in

their out-of-orderness. As it turns out, the fraction of out-of-order packets in a prefix

is positively correlated with that of a flow within the prefix, which we verify next.

48

24 210 216 222

Number of packets
0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Flow sizes
Prefix sizes

(a) A small fraction of flows
and prefixes account for a
large fraction of the traffic.

2 12 52 92 132 17

Fraction of OoO packets in a prefix

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Def 1
Def 2

(b) Out-of-order heavy pre-
fixes are rare. Here prefixes
have at least β = 27 packets.

2 15 2 8 2 1 26

Inter-arrival times (s)
0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

in order
Def 2
Def 1

(c) Out-of-order events de-
fined by Def. 1 exhibit the
highest inter-arrival times.

Figure 3.2: Heavy-tailed distributions in a 5-minute campus trace.

Figure 3.3: A split violin plot showing prefix sizes, distributions of flow sizes in each
prefix, and what fraction of reordering in a prefix comes for which flow size. A split
violin of rank r refers to the r-th largest prefix in the trace.

3.2.2 Correlation among flows in a prefix

Let f be a flow drawn uniformly at random from a set of flows. Let X be the random

variable representing the fraction of out-of-order packets in flow f , X =
Of

Nf
. Denote

g as the prefix of flow f , let Y be the random variable denoting the fraction of out-

of-order packets among all flows in prefix g excluding f , that is, Y =
Og−Of

Ng−Nf
, where

Ng is the number of packets in prefix g. To ensure that Ng > Nf , the prefixes we

sample from must have at least two flows. We use the Pearson correlation coefficient

(PCC) to show that X and Y are positively correlated, which implies that the out-

of-orderness of a flow f is statistically representative of other flows in the prefix of

f . Essentially a normalized version of Cov(X, Y), PCC always lies in the interval

[−1, 1], and a positive PCC indicates a positive linear correlation. Lacking a better

49

1 5 10 20 30 40 50 60
Timescale (min)

0.0

0.1

0.2

0.3

0.4

0.5

Pe
ar

so
n

Co
ef

fic
ie

nt

CAIDA18 Def1
CAIDA19 Def1
campus Def1

campus Def2
CAIDA18 Def2
CAIDA19 Def2

Figure 3.4: Pearson coefficient on varying timescales shows that a positive correlation
exists between the reordering of a flow and that of its prefix.

reason to believe the correlation between X and Y is of higher order, we shall see

that PCC suffices for our analysis.

Given a traffic trace, let S be the set of flows whose prefixes have at least two

flows. We compute the PCC as follows:

1. Draw n flows from S, independently and uniformly at random.

2. For each of the n flows fi, let xi =
Ofi

Nfi
, yi =

∑
f ′∈g,f ′ ̸=fi

Of ′∑
f ′∈g,f ′ ̸=fi

Nf ′
,

3. The PCC r =
∑n

i=1(xi−x̄)(yi−ȳ)√∑n
i=1(xi−x̄)2

√∑n
i=1(yi−ȳ)2

, where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi.

We performm = 100 tests on each traffic trace using both definitions of reordering,

on timescales ranging from 1 minute to 60 minutes (Figure 3.4). Each point shows

the average of m = 100 tests, where we draw n = 0.5% · |S| flows in each test. The

result indicates that, a positive correlation, albeit weak, exists between X and Y for

all tested traces on all timescales, and the correlation tends to stabilize after a small

time period such as five minutes. Note that the choice of n is not essential for the

purpose of demonstrating correlation. However, the fact that the correlation exists

in a random subset of flows and prefixes lays the foundation for the discussion of

algorithm designs (§ 3.3).

50

To understand what a weak correlation means for flow sampling, consider a hypo-

thetical example where the PCC is 1. As the out-of-orderness of a flow is statistically

identical to that of its prefix, observing any flow suffices for understanding the re-

ordering of its prefix. Then, we can simply keep one entry for each prefix, and never

switch between different flows in a prefix. On the other hand, if the PCC is 0, as far

as reordering is concerned, observing a single flow provides little information of its

prefix. In that case, we would have no choice but to observe almost all flows. Though

we are not yet able to quantify the relationship between the PCC and how many flows

to sample, it is evident that having a weak correlation means that our algorithm lies

somewhere between the two cases. As we shall see in § 3.3, the proposed algorithm

capitalizes on this weak correlation to attain reasonable accuracy using small memory.

3.2.3 Packet inter-arrival times within a flow

We also study the inter-arrival time of packets within a flow to understand how

efficient the flow sampling algorithm can be. Due to TCP windowing dynamics,

where the sender transmits a window of data and then waits for acknowledgments,

in-order packets tend to have small inter-arrival times. Depending on the definition,

reordering can be a result of gaps in transmission of non-consecutive packets (Def. 2),

or worse yet the retransmissions of lost packets (Def. 1), which often lead to larger

inter-arrival times.

Indeed, Figure 3.2c shows that the inter-arrival times of out-of-order packets using

Def. 2 tend to be smaller than that of the out-of-order packets using Def. 1, with the

inter-arrival times of in-order packets being the smallest. This implies that, to detect

the reordering events in Def. 1, the algorithm has to store records for a longer waiting

period, which potentially exhausts more memory resources.

51

3.3 Data-Plane Data Structures for Out-of-Order

Monitoring

At a high level, a data-plane algorithm generates reports of flows with potentially

heavy packet reordering on the fly, and a simple control-plane program parses through

the reports to extract their prefixes. Each report includes the prefix, the number of

packets monitored, and the number of out-of-order packets of a suspicious flow. At

the end of the time interval, we can also scan the data-plane data structure to generate

reports for highly-reordered flows remaining in memory. On seeing reports, a control-

plane program simply aggregates counts from reports of the same prefix, and outputs

a prefix when its count exceeds a threshold.

In the data plane, we keep state at the flow level, and consider prefix information

in allocating memory. Assuming a positive correlation between the out-of-orderness

of a prefix and that of the flows from that prefix, we need not monitor all flows in

their entirety to gain enough information about a prefix. This leads to the simple

yet effective flow-sampling algorithm in § 3.3.1, where we sample as many flows as

possible, but only over a short period at a time. Though it is not enough to only

measure reordering in heavy flows (§ 3.2.1), in § 3.3.2, we show that there are still

benefits from combining a heavy-hitter data structure with the flow-sampling array.

3.3.1 Sample flows over short periods

To sieve through a large number of flows with limited memory, the turnover rate has

to be high. This means that, the algorithm has to be somewhat oblivious to the

various statistics of a flow, such as flow sizes and inter-arrival times, when choosing

to admit or evict a flow. To set the stage for later discussions, throughout this paper,

we refer to the unit of memory allocated to keep one flow record as a bucket. Now,

52

rather than one bucket per flow, the main idea is to use one bucket to quickly check

over multiple flows in turn.

3.3.1.1 Flow sampling with array

Under the strict memory access constraints, we again opt for a hash-indexed array as a

natural choice of data structure, where each row in the array corresponds to a bucket,

and all buckets behave independently. To check many prefixes for reordering, we do

not want some prefix with a huge number of flows to dominate the data structure.

To this end, we assign flows from the same prefix to the same bucket, by hashing

prefixes instead of flow IDs, a technique we use in all our algorithms.

Therefore, we fix a bucket b, and consider the substream of packets hashed to b.

When a packet (f, s, t) arrives at b, there are three cases:

1. If b is empty, we always admit the packet, that is, we save its flow record f ,

sequence number s, timestamp t in b, together with the number of packets n

and the number of out-of-oder packets o, both initilized to 0.

2. If flow f ’s record is already in b, we update the record as in the strawman

solution (§ 3.1.1.2), and update the timestamp in memory to t.

3. If b is occupied by another flow’s record (f ′, s′, t′, n′, o′), we only admit f if f ′

has been monitored in memory for a sufficient period specified by parameters T

and C, or the prefix of f ′ could be potentially heavily reordered with respect to

another parameter R. That is, f overwrites f ′ with record (f, s, t, n = 0, s = 0)

only if one of the following holds:

(a) f ′ is stale: t− t′ > T .

(b) f ′ has been hogging b for too long: n′ > C.

(c) f ′ might belong to a prefix with heavy reordering: o′ > R.

53

In Case 3c, the algorithm sends a 3-tuple report (g′, n′, o′) to the control plane,

where g′ is the prefix of flow f ′. On seeing reports from the data plane, a simple

control-plane program keeps a tally for each reported prefix g. Let {(g, ni, oi)}ri=1 be

the set of all reports corresponding to a prefix g. The control-plane program outputs

g if
∑r

i=1 ni ≥ α, for the same α in § 3.1.2.1. In the following sections, we refer

to the data-plane component together with the simple control-plane program as the

flow-sampling algorithm.

Lazy expiration of flow records in memory Due to memory access constraints,

many data-plane algorithms lazily expire records in memory on collisions with other

flows, as opposed to actively searching for stale records in the data structure. We again

adopt the same technique in the algorithm above, though here it is more nuanced.

We could imagine a variant of the algorithm where a flow is monitored for up to C+1

packets at a time. That is, when the (C + 1)st packet arrives, we check whether to

report this flow, and evict its record. Compared to this variant, lazy expiration helps

in preventing a heavy flow being admitted into the data structure consecutively, so

that the heavy flow can be evicted before a integer multiple of (C+1) packets, should

another flow appear in the meantime.

Robustness of flow sampling For the flow-sampling method to be effective, the

data structure needs to sample as many flows as possible. Therefore, it is not desirable

to keep a large flow in memory when we have already seen many of its packets, and

learned enough information about its packet reordering. This means the packet count

threshold C should not be too large. Neither do we want to keep a flow, regardless of

its size, that has long been finished. We can eliminate such cases by setting a small

inter-arrival timeout T .

Now the question is, how small can these parameters be. Real-world traffic can

be bursty, meaning that sometimes there are packets from the same flow arriving

54

back-to-back. In this case, even if we overwrite the existing flow record on every hash

collision (T = 0 and C = 1), the algorithm still generates meaningful samples. When

the memory is not too small compared to the number of prefixes, and hash collisions

are rare, the algorithm might even have good performance. However, setting small

T > 0 and C > 1 makes the algorithm more robust against worst-case streams.

Consider a stream of packets where no adjacent pairs of packets come from the same

flow. On seeing such a stream, a flow-sampling algorithm that overwrites existing

records on every hash collision with another flow will no doubt collect negligible

samples. In contrast, small T > 0 and C > 1 allow a small period of time for a

flow in memory to be monitored, and hence gives a better chance of capturing packet

reordering.

3.3.1.2 Performance guarantee

In this section, we analyze the number of times a flow with a certain size is sampled.

Consider a prefix g when the hash function is fixed. Let b be the bucket prefix g is

hashed to, and we know all the flows as well as the prefixes that are hashed to b.

With a slight abuse of notation, we write g ∈ b when the bucket with index h(g) is b.

We also write f ∈ b when f ’s prefix is hashed to b. To capture the essence of the flow-

sampling algorithm without excessive details, we make the following assumptions:

1. Each packet in S is sampled i.i.d. from distribution (pf)f∈F , that is, each

packet belongs to some flow f ∈ F independently with probability pf . Conse-

quently, each packet belongs to some prefix g independently with probability

pg =
∑

f∈g pf .

2. Let pf |b =
pf∑

f ′∈b pf ′
, pg|b can be similarly defined. Only a flow f with pf |b greater

than some pmin will get checked, where we think of pmin as a fixed threshold

depending on the inter-arrival time threshold T and distribution (pf)f∈F .

55

3. A flow is checked exactly C + 1 packets at a time.

Note that Assumption (2) is a way to approximate the effect of T , where we assume

a low-frequency flow would soon be overwritten by some other flow on hash collision.

In contrast to Assumption (3), the flow sampling algorithm does not immediately

evict a flow record with C + 1 packets, if there is no hash collision. In this way,

though f is monitored beyond its original C+1 packets, once a hash collision occurs,

the collided flow would seize f ’s bucket. By imposing Assumption (3), the heavier

flows would likely benefit by getting more checks, while the smaller flows would likely

suffer. Empirically, the eviction scheme of the flow-sampling algorithm (§ 3.3.1.1)

achieves better performance in comparison to Assumption (3).

Lemma 3.2. Given the total length of stream |S|, distributions (pf)f∈F , with the

assumptions above, for a fixed hash function h and any ε, δ ∈ (0, 1), a prefix g in

bucket b is checked at least (1−δ)t1pg|b times with probability at least 1−e−pmint1CFb· ε
2

24−

e−
ε2|S|

∑
g∈b pg

3 − e−
δ2t1pg|b

2 , where t1 =
⌊
|S|

∑
g∈b pg

(1+ ε
2
)CFb

⌋
and pg|b =

∑
f∈g:pf |b≥pmin

pf∑
f ′∈b pf ′

.

Proof. Let Sb the substream of S that is hashed to b. Given |S|, the length |Sb| of

substream Sb is a random variable, E |Sb| = |S|
∑

g∈b pg, then by Chernoff bound,

P[|Sb| < (1− ε)E |Sb|] < e−
ε2 E|Sb|

3 = e−
ε2|S|

∑
g∈b pg

3 . (3.1)

Let t be a random variable denoting the number of checks in b. Let random

variable Xi,j be the number of packets hashed to b after seeing the jth packet till

receiving the (j + 1)st packet from the currently monitored flow, where i ∈ [t] and

j ∈ [C]. Xi,js are independent geometric random variables, and Xi,j ∼ Geo(pfi|b),

where fi is the flow under scrutiny during the ith check, by Assumption 2, pfi|b ≥ pmin.

56

Next we look at X =
∑t

i=1

∑C
j=1Xi,j, the length of the substream in b after t checks,

EX =
t∑

i=1

C∑
j=1

EXi,j =
t∑

i=1

C∑
j=1

∑
f∈b:

pf |b≥pmin

pf |b ·
C

pf |b
= tCFb, (3.2)

where Fb =
∣∣{f ∈ b | pf |b ≥ pmin}

∣∣. By the Chernoff-type tail bound for independent

geometric random variables (Theorem 2.1 in [28]), for any ε ∈ (0, 1),

P[X > (1 +
ε

2
)EX] < e−pmin EX(ε

2
−ln (1+ ε

2
)) ≤ e−pmintCFb· ε

2

24 . (3.3)

Let t1 be the largest t such that (1 + ε
2
)EX < E |Sb|, we have t1 =

⌊
|S|

∑
g∈b pg

(1+ ε
2
)CFb

⌋
.

Consider two events:

(i) The number of checks t on seeing Sb is less than t1.

Applying 3.3 on t1, we have that with probability at most e−pmint1CFb· ε
2

24 , after

seeing (1 − ε)E |Sb| packets, the number of checks is at most t1. Together

with 3.1, by union bound,

P[t < t1] < e−pmint1CFb· ε
2

24 + e−
ε2|S|

∑
g∈b pg

3 . (3.4)

(ii) Prefix g is checked less than (1− δ)t1pg|b times. By Chernoff bound, this event

holds with probability at most e−
δ2t1pg|b

2 .

The Lemma follows from applying the union bound over these two events.

Counterintuitively, the proof of Lemma 3.2 suggests hash collisions are in fact

harmless in the flow-sampling algorithm, for a flow that is not too small (which

corresponds to pf |b greater than some pmin in Assumption 2). To see that, suppose

we add another heavy flow to bucket b, E |Sb| would increase by some factor x, which

means EX would increase by the same factor. Since Fb would only increase by 1, if

57

Fb is large enough, by (3.2), t would also increase by roughly a factor of x, while pf |b

decreases by roughly a factor of x. Then t · pf |b is about the same with or without

the added heavy flow. Therefore, colliding with heavy flows does not decrease the

number of checks of a flow that is not too small, as long as the total number of flows

in a bucket is large enough, which is usually the case in practice.

3.3.1.3 Decrease the number of false positives

Since the parameters of the flow-sampling algorithm are chosen so that many flows are

sampled, and some might get sampled multiple times, it is possible for the algorithm

to capture many out-of-order events, but not every one of them indicates that the

prefix is out-of-order heavy. After all, there is only a weak correlation between the

out-of-orderness of flows and that of their prefixes, not to mention that even if the

correlation is stronger, we are inferring the extent of reordering on a scale much larger

than the snippets of flows that we observe. In such cases, the algorithm could output

many false positives.

To reduce the number of false positives, we could imagine feeding the control plane

more information, so that the algorithm can make a more informed decision about

whether the fraction of out-of-order packets exceeds ε, for each reported prefix. To this

end, we modify the flow-sampling algorithm to always report before eviction, even if

the number of out-of-order packets is below threshold R. Again denote {(g, ni, oi)}ri=1

as the set of all reports corresponding to a prefix g, the control plane outputs g if∑r
i=1 ni ≥ α, and

∑r
i=1 oi∑r
i=1 ni

> c · ε, for some tunable parameter 0 < c ≤ 1. The

parameter c compensates for the fact that we only monitor a subset of the traffic, so

the exact fraction of out-of-order packets we observe might not directly align with ε.

58

3.3.2 Separate large flows

Though hash collisions generally do not affect the flow-sampling algorithm’s ability

to check flows that are not too small, there is still the possibility that a small flow just

so happens to arrive and finish during the short period when another flow is being

monitored in that bucket. Such a small flow would never get a second chance to enter

the data structure. If we could instead continuously monitor some large flows in a

separate data structure, then for a small flow f that is hashed to a bucket b that no

longer contains large flows, pf |b would increase, which would increase the number of

checks it gets. For some prefixes whose out-of-order packets concentrate only in one

small flow, separating large flows greatly improves the chance of catching them.

Therefore, we propose a hybrid scheme, where the packets first go through a

heavy-hitter (HH) data structure, and the array only admits flows that are not being

monitored in the HH data structure. We again assign flows with the same prefix to

the same set of buckets, and the array part of the data structure behaves exactly as

depicted in § 3.3.1.1. For the HH part, we report flows whose fraction of out-of-order

packets is above ε. We describe the specifics on the HH data structure in § 3.3.3.

Note that a subtly different design choice would be to have the array admit the

set of flows whose prefixes are not being monitored in the HH data structure. This

would have made more sense, if all the heavily reordered prefixes have most of their

out-of-order packets concentrated among the heaviest flows in that prefix. But as

we have seen in Figure 3.3, this is not always the case. Compared to our proposed

hybrid algorithm, this variant would be less accurate. However, it certainly reduces

the number of false positives and the number of reports generated by the data-plane

algorithm, since in this case, a much smaller set of flows would be monitored by the

array. In this work, we choose to prioritize accuracy over other aspects, so we prefer

the hybrid algorithm in last paragraph to this variant.

59

Figure 3.5: A modification of PRECISION for tracking out-of-order packets.

In any practical setting, the correct memory allocation between the HH data

structure and the array in the hybrid scheme depends on the workload properties:

the relationship of flows to prefixes, the heaviness of flows and prefixes, and where the

reordering actually occurs. Next we understand how these algorithms behave under

real-world workloads.

3.3.3 Track heavy flows over long periods

To capture out-of-orderness in heavy flows, we want a data structure that is capable of

simultaneously tracking heaviness and reordering. The SpaceSaving [37] data struc-

ture fits naturally for the task, as we can maintain extra state for each flow record,

while the data structure gradually identifies the flows with heavy volume by keeping

estimates of their traffic counts. However, when overwriting a flow record to admit a

new flow, SpaceSaving needs to go over all entries to locate the flow with the smallest

traffic count, which makes it infeasible for the data plane due to the constraint on

the number of memory accesses per packet.

Thus, we opt for PRECISION [4], the data-plane adaptation of SpaceSaving,

which checks only a small number of d entries when overwriting a flow record. We

emphasize that the specifics about how PRECISION works are not, in fact, important

in this context. It is enough to bear in mind that with a suitable data-plane friendly

heavy-hitter algorithm, tracking reordering is exactly the same as in the strawman

60

solution (§ 3.1.1.2), but applied only to heavy flows. Figure 3.5 shows the modified

PRECISION for tracking out-of-order packets using d stages.

We again assign flows from the same prefix to the same set of buckets, by hashing

prefixes instead of flow IDs. In a PRECISION data structure with d stages, at the end

of the stream, at most d heaviest flows from each prefix g would remain in memory.

Doing so effectively frees up buckets that used to be taken by a few prefixes with

many heavy flows, and allows more prefixes to have their heaviest flows measured.

3.4 Evaluation

We start this section by evaluating our flow-sampling algorithm and hybrid scheme

(§ 3.4.1) using a Python simulator on real-world traces introduced in § 3.2. As much

as we wish that each trace is representative, we cannot simply assume that every

network administrator running our algorithms in their networks would get the exact

same performance. Therefore, we delve into the intricacies of multiple distributions

underlying the real-world traffic workload, to explain how they affect the performance

of our algorithms. In § 3.4.2, we verify that our P4 prototype of the flow-sampling

algorithm for the Tofino1 switch only consumes a small amount of hardware resources,

as promised. Finally, we recognize that the optimal parameters for our algorithms

are often workload dependent. Thus, we do not attempt to always find the optimum;

instead, we show in § 3.4.1 that reasonably chosen parameters already give good

performance. In § 3.4.3, we see that the parameters we used previously for evaluations

are indeed representative, and the algorithms are robust against small perturbations.

61

3.4.1 Performance comparisons

3.4.1.1 Metrics

We begin by introducing the three metrics we use throughout this section to evaluate

our algorithms. Let Ĝ denote the set of prefixes output by an algorithm A.

• Accuracy: Let G≥β = {g∗ ∈ S | Ng∗ ≥ β,Og∗ > ε
∑

g∈S Og} be the ground

truth set of heavily reordered prefixes with at least β packets. Define the accu-

racy A of algorithm A to be the fraction of ground-truth prefixes output by A,

that is,

A(A) =

∣∣∣Ĝ ∩G≥β

∣∣∣
|G≥β|

.

• False-positive rate: Let G>α = {g∗ ∈ S | Ng∗ > α,Og∗ > ε
∑

g∈S Og}, then

the false-positive rate of A is defined as

FP (A) =

∣∣∣Ĝ \G≥α

∣∣∣
|G≥α|

.

• Communication overhead: The communication overhead from the data

plane to the control plane is defined as the number of reports sent by A, divided

by the length of stream S, where the number of reports also accounts for the

flow records in the data structure that exceed the reporting thresholds.

Unless otherwise specified, each experiment is repeated five times with different

seeds to the hash functions, and with parameters T = 2−15, C = 24, Rarray = 1,

RHH = 0.01, and dHH = 2 (see § ?? for details on the parameters of the HH data

structure). We are interested in identifying prefixes with at least β = 27 packets, with

more than ε = 0.01 fraction of their packets reordered. Additionally, we do not wish

to output prefixes with at most α = 24 packets, irrespective of their out-of-orderness.

62

3.4.1.2 Performance evaluation

To the best of our knowledge, we are the first to consider the problem of detecting

heavily reordered prefixes, and existing related works are not directly comparable.

We therefore compare our proposed algorithms to a heavy-hitter (HH) data structure

that tracks reordering (§ 3.3.3). Figure 3.6a shows the performance of the flow-

sampling algorithm, the hybrid scheme, and the HH data structure using Def. 1, on a

5-minute campus trace consisting of 82, 359, 405 server-to-client packets, which come

from 545, 973 flows and 16, 988 24-bit source IP prefixes. In fact, the specific length

of the trace, and whether we choose to study reordering events of Def. 1 or Def. 2,

do not affect the overall trend of these curves. To show that the performance curves

in Figure 3.6a is representative, Figure 3.6b presents the performance of proposed

algorithms on a 10-minute CAIDA 2019 [12] trace using Def. 2. The trace contains

61, 791, 947 server-to-client packets that come from 2, 717, 709 flows and 54, 148 24-bit

source IP prefixes.

Flow-sampling algorithm achieves great accuracy with small memory. If

heavy reordering were concentrated in large flows, the HH data structure would per-

form very well with a small amount of memory. As seen in § 3.2.1, real-world traffic

does not always behave in that way, rendering the HH data structure ineffective when

the memory is small compared to the number of prefixes (214). This is where the per-

formance of the flow-sampling algorithm significantly dominates that of the HH data

structure. Note that this particular trace contains more than 219 flows and more

than 214 prefixes. However, using only 25 buckets, the original version of the flow-

sampling algorithm is already capable of reporting half of the out-of-order prefixes.

To put it into perspective, reordering happens at the flow level, and assigning even

one bucket per prefix to detect reordering already requires a nontrivial solution, while

63

25 27 29 211 213 215 217 219
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

25 27 29 211 213 215 217 219

Number of buckets B

0.0

0.2

0.4

0.6

0.8

Fa
lse

 p
os

iti
ve

25 27 29 211 213 215 217 219
0.00%

0.02%

0.04%

0.06%

0.08%

Co
m

m
un

ica
tio

n

(1) (2) (3)

Hybrid Flow-sampling HH

(a) Performance on a 5-minute campus trace for Def. 1.

25 27 29 211 213 215 217 219
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

25 27 29 211 213 215 217 219

Number of buckets B

0.0

0.1

0.2

0.3

Fa
lse

 p
os

iti
ve

25 27 29 211 213 215 217 219
0.0%

0.1%

0.2%

0.3%

Co
m

m
un

ica
tio

n

(1) (2) (3)

Hybrid Flow-sampling HH

(b) Performance on a 10-minute CAIDA 2019 trace for Def. 2.

Figure 3.6: The flow-sampling algorithm achieves great accuracy in small memory
ranges, and the hybrid scheme further improves the accuracy when more memory is
available.

25 27 29 211 213 215 217 2190.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

25 27 29 211 213 215 217 219

Number of buckets B

0.0

0.2

0.4

0.6

0.8

Fa
lse

 p
os

iti
ve

25 27 29 211 213 215 217 219
0.00

0.05

0.10

0.15

Co
m

m
un

ica
tio

n

(1) (2) (3)

Flow-sampling c=0.5 Flow-sampling original Flow-sampling c=1

Figure 3.7: Through sending more reports to the control plane, we can decrease the
false-positive rate of the flow-sampling algorithm while further improving its accuracy.

the flow-sampling algorithm achieves good accuracy using orders-of-magnitude less

memory.

If we are willing to generate reports for more than 10% of the traffic, with an

increased communication overhead comes a reduced false-positive rate (Figure 3.7).

Moreover, with a more carefully chosen parameter c that controls how many prefixes

64

to report (§ 3.3.1.3), the extra information sent to the control plane helps in further

improving the accuracy.

The hybrid scheme improves the accuracy when given more memory. To

fairly compare the hybrid scheme with the flow-sampling algorithm, we need to deter-

mine the optimal memory allocation between the HH data structure and the array.

Lacking a better way to optimize the memory allocation, we turn to experiments

with our packet trace. Given a total of B buckets, we assign ⌊x ·B⌋ buckets to the

HH data structure, B − ⌊xB⌋ buckets to the array, and conduct a grid search on

x ∈ I = {0.1, . . . , 0.9} to find the value of x that maximizes the performance of the

hybrid scheme. We evaluate the hybrid scheme using the optimal x we found for each

B.

Admittedly, grid I may not be fine-grained enough to reveal the true optimal

allocation; nonetheless, it conveys the main idea. When available memory is small,

the accuracy gap between the HH data structure and the flow-sampling algorithm

is huge, sparing part of the memory for filtering large flows does not improve over

the flow-sampling algorithm. As memory increases, the accuracy gap between the

flow-sampling algorithm and the HH data structure decreases, and the hybrid scheme

starts to show accuracy gains.

3.4.1.3 Performance discrepancies of the flow-sampling algorithm under

different workloads

In our numerous experiments on different traces, the accuracy of the flow-sampling

algorithm always dominates that of the HH data structure, when given much less

memory than the number of prefixes in the trace. However, we cannot always expect

to catch 50% of the heavily reordered prefixes using just B = 25 buckets. For instance,

Figure 3.8 shows the accuracy of the flow-sampling algorithm when running on a 5-

65

25 27 29 211 213 215 217 219

Number of buckets B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Campus Def1
CAIDA19 Def2
CAIDA19 Def1

(a) The accuracy of the flow-
sampling algorithm may dif-
fer under different workloads.

26 211 216 221

Total len(OoO flows) in a truth prefix
0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

CAIDA Def1
B=2^18
B=2^12
B=2^6

(b) A heavily reordered pre-
fix is easier to capture if the
total length of its flows with
reordered packets is longer.

2 15 2 8 2 1 26

Inter-arrival times (s)
0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Campus Def1
CAIDA Def2
CAIDA Def1

(c) The algorithm is more
accurate with small memory
when reordered packets arrive
shortly after their predeces-
sors.

Figure 3.8: The accuracy of the flow-sampling algorithm is workload dependent.

minute campus trace using Def. 1, and a 10-minute CAIDA 2019 [12] trace using

Def. 1 as well as Def. 2. The results are evidently workload-dependent, but what

exactly are the traffic characteristics that dictate such performance discrepancies?

The answer to this question epitomizes the intricacies involved in understanding the

multiple distributions present in real-world traffic.

To identify the subset of traffic that directly affects accuracy, we go back to how

the flow-sampling algorithm reports a prefix. If we look at a heavily reordered prefix,

its flows enter the data structure from time to time. But for the algorithm to report

it, the array has to see some flows from this prefix that actually have out-of-order

packets. The perfectly in-order flows would never contribute to the reporting of its

prefix. Now, suppose the reordered packets appear uniformly at random during the

time its flow is being monitored, then what matters is the total length (number of

packets) of the flows that have out-of-order packets in this prefix. The higher the

length, the easier it is for the flow-sampling algorithm to catch it. This is in fact an

indirect implication of Lemma 3.2. It can also be seen in Figure 3.8b, which shows the

CDF of the total length of the flows that have out-of-order packets among all heavily

reordered prefixes reported by the flow-sampling algorithm using different memory

sizes. The ground-truth prefixes reported by the smallest memory are the easiest to

66

catch, and the total length of out-of-order flows in such prefixes tends to be larger.

As we increase the memory size, the algorithm reports more ground-truth prefixes

with shorter total lengths of out-of-order flows.

However, this is not the whole story. For the traces in Figure 3.8, the CDFs of

the total length of reordered flows in ground-truth prefixes turn out to be similar in

shape. So what else in the traffic distribution is causing the difference in accuracy?

The caveat is that reordered packets may not appear uniformly at random, and their

inter-arrival times play a major role as well. For each dataset in Figure 3.8, we

plot the inter-arrival times of their out-of-order packets in the ground truth. We see

that the campus trace, for which the flow-sampling algorithm is the most accurate

in the small-memory regime, has 85% of its out-of-order packets in the ground truth

arriving within 2−8.6 seconds of its predecessor in the same flow. In contrast, in the

CAIDA trace, more than 15% of the out-of-order packets corresponding to Def. 1 do

not arrive until 32 seconds after its predecessor’s arrival. When the memory is small,

to sieve through many flows and prefixes, we simply cannot afford wasting much time

on one flow, since we may then end up missing many out-of-order events with large

inter-arrival times.

3.4.2 Hardware feasibility

We implement a P4 prototype of the flow-sampling algorithm on a Tofino1 switch

using 128 lines of code in Lucid [45]. The Lucid-compiled P4 program takes up to

33.33% of the pipeline stages in Tofino1 when using no more than B = 215 buckets.

With B = 216 buckets, using not even half of the resources in the first 41.67% pipeline

stages, we are able to report 80.44% of the heavily reordered prefixes in the 5-minute

campus trace using Def. 1, and 81.19% and 86.08% in the 10-CAIDA 2019 trace using

Def. 1 and Def. 2 respectively. Out of the pipeline stages the algorithm makes use of,

the resource usage of the prototype with different number of buckets is summarized

67

Resources B = 28 B = 216

Stages 33.33% 41.47%
TCAM 38.54% 26.67%
SRAM 9.38% 33.75%

Hash units 45.83% 36.67%
Instructions 19.53% 15.62%

Table 3.1: Data-plane resource usage in Tofino1.

in Table 3.1. In contrast, merely storing the per-flow states for a 10-minute CAIDA

2019 [12] trace could take more register memory than a Tofino1 switch could offer.

3.4.3 Parameter robustness

We started the evaluation using reasonably chosen parameters. Now we verify that

all parameters in our algorithms are either easily set, or robust to changes.

To reveal how thresholds T and C individually affect the accuracy of the flow-

sampling algorithm, ideally we want to fix one of them to infinity, and vary the other.

In this way, only one of them governs the frequency of evictions. Applying this logic,

when studying the effect of T (Figure 3.9a), we fix C to a number larger than the

length of the entire trace. We see that as long as T is small, the algorithm samples

enough flows, and has high accuracy.

Evaluating the effects on a varying C turns out to be less straight-forward. If we

make T too large, the algorithm generally suffers from extremely poor performance,

which makes it impossible to observe any difference that changing C might bring.

If T is too small, the frequency of eviction would be primarily driven by T , and C

would not have any impact. And it is not as simple as setting T larger than all inter-

arrival times, since eviction only occurs on hash collisions, inter-arrival time alone

only paints part of the picture. All evidence above points to the fact that T is the

more important parameter. Once we have a good choice of T , the accuracy boost

from optimizing C is secondary. Armed with this knowledge, we fix a T = 25, an ad

68

202 32 62 92 122 152 18

Inter-arraival timeout T (s)
0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(a) The accuracy of the
flow-sampling algorithm with
varying T , and fixed B = 28,
R = 1 and C = 108.

20 22 24 26 28 210 212

Packet count threshold C
0.00

0.01

0.02

0.03

Ac
cu

ra
cy

(b) The accuracy of the
flow-sampling algorithm with
varying C, with fixed B = 28,
R = 1 and T = 25.

212 215 218

Number of buckets B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

d = 2
d = 3
d = 4
d = 5

(c) The accuracy of the
flow-sampling algorithm with
varying d, with fixed R =
0.01.

Figure 3.9: The effect of changing parameters on the accuracy of the flow-sampling
algorithm and PRECISION.

hoc choice that is by no means perfect. Yet it is enough to observe (Figure 3.9b) that

having a small C is slightly more beneficial.

However, C cannot be too small, as inserting a new flow record into the array

requires recirculation in the hardware implementation. Programmable switches gen-

erally support recirculating up to 3%− 10% of packets without penalty. Here we set

C to be 16, which allows us to achieve line rate.

Given that each non-small flow is continuously monitored for roughly C = 16

packets at a time, we report its prefix to the control plane when we encounter any

out-of-order packet, that is, R = 1.

It is observed in [4] that a small constant d > 1 only incurs minimal accuracy loss

in finding heavy flows. Increasing d leads to diminishing gains in performance, and

adds the number of pipeline stages when implemented on the hardware. Therefore,

d = 2 is preferable for striking a balance between accuracy and hardware resources.

Building on [4], we evaluate PRECISION for d = 2, 3, 4, 5, for reporting out-of-

order heavy prefixes. The results in Figure 3.9c show that when the total memory

is small, using fewer stages provides a slight benefit. The opposite holds when there

is ample memory. However, as the performance gap using different d is insignificant,

we also suggest using d = 2 for hardware implementations.

69

3.5 Related work

Characterization of out-of-orderness on the Internet. Packet reordering is first

studied in the seminal work by Paxson [40]. It has since been well understood that

packet reordering can be caused by parallel links, routing changes, and the presence

of adversaries [7]. In typical network conditions, only a small fraction of packets are

out-of-order [40, 54]. However, when the network reorders packets, TCP endpoints

may wrongly infer that the network is congested, harming end-to-end performance

by retransmitting packets and reducing the sending rate [7, 33, 34]. Metrics for char-

acterizing reordering are intensively studied in [38] and [29], though many of the

proposed metrics are more suitable for offline analysis. In addition to the network

causing packet reordering, the stream of packets in the same TCP connection can

appear out of order because congestion along the path leads to packet losses and

subsequent retransmissions. Our techniques for identifying IP prefixes with heavy re-

ordering of TCP packets are useful for pinpointing network paths suffering from both

kinds of reordering—whether caused by the network devices themselves or induced

by the TCP senders in response to network congestion.

Data-plane efficient data structures for volume-based metrics. For heavy-

hitter queries, HashPipe [44] adapts SpaceSaving [37] to work with the data-plane

constraints, using a multi-stage hash-indexes array. PRECISION [4] further incorpo-

rates the idea of Randomized Admission Policy [?] to better deal with the massive

number of small flows generally found in network traffic. We extend PRECISION to

keep reordering statistics for large flows. However, such an extension cannot be used

to detect flows with a large number of out-of-order packets with a reasonable amount

of memory.

Data-plane efficient data structures for performance metrics. Liu et

al. [35] proposes memory-efficient algorithms for identifying flows with high latency,

or lost, reordered, and retransmitted packets. Several solutions for measuring round-

70

trip delay in the data plane [15, 56, 43] have a similar flavor to identifying out-of-order

heavy prefixes, as in both cases keeping at least some state is necessary, with the

difference that for reordering we generally need to match more than a pair of packets.

Detecting heavy reordering in the data plane. Several existing systems

can detect TCP packet reordering in the data plane. Marple is a general-purpose

network telemetry platform with a database-like query language [39]. While Marple

can analyze out-of-order packets, the compiler generates a data-plane implementation

that requires per-flow state. Unfortunately, such methods consume more memory

than the programmable switch can offer in practice. The algorithm proposed by Liu

et al. [35] for detecting flows with a large number of out-of-order packets remains the

work most related to ours. We note that our lower bound on memory consumption in

§ 3.1.1.3 is stronger than a similar lower bound (Lemma 10) in [35], as we also allow

randomness and approximation. Liu et al. [35] considers out-of-order events specified

by Def. 3, and works around the lower bound by assuming out-of-order packets always

arrive within some fixed period of time. In contrast, we circumvent the lower bound

using the more natural observation that out-of-orderness is correlated among flows

within a prefix, and identify heavily reordered prefixes instead of flows.

3.6 Conclusion

In this paper, we introduce two algorithms for identifying out-of-order prefixes in

the data plane. In particular, our flow-sampling algorithm achieves good accuracy

empirically, even with memory that is orders-of-magnitude smaller than the number

of prefixes, let alone the number of flows. When given memory comparable to the

number of prefixes, our hybrid scheme using both a heavy-hitter data structure and

flow sampling slightly improves the accuracy.

71

Chapter 4

An Analysis of Random Admission

Policy

In this chapter, we consider the performance of the Random Admission Policy

(RAP) [6].

4.1 Background

Let S be a stream of elements, where each element x belongs to some universe U .

If x appears f times in S, f is the frequency of x, and we also say that x has f

occurrences. We start by laying out the algorithm we consider in this chapter.

The Algorithm. Let RAP (m) denote the Random Admission Policy algorithm

(RAP) using m buckets, where each bucket stores both an element and a counter.

RAP (m) works as follows:

1. Initialize m empty buckets with counter value Ci ← 0 for all i ∈ [m];

2. At each step, the algorithm sees an element x in the stream:

(a) If x is in some bucket i, update counter Ci ← Ci + 1;

72

(b) Otherwise, find the minimum counter. Let imin = argmini∈[m] Ci. With

probability 1
Cimin

, store x in bucket imin and update counter Cimin
← Cimin

+

1.

Related work. In the existing literature, identifying the k most frequent elements

is the problem closest to what we study in this chapter. Solving this problem deter-

ministically is believed to be hard in the worst case [13]. A relaxed version, commonly

denoted as ApproxTop(S, k, ε), refers to finding k elements in S, such that each of

the k elements has frequency fi > (1−ε)fk, where fk is the kth highest frequency. For

any stream, SpaceSaving [37] solvesApproxTop(S, k, ε) using min(|U | , |S|
εfk

) buckets.

Among variants of SpaceSaving in the networks community [44, 6, 4], performance

guarantees exist only for a simplified version of RAP, and only for i.i.d. Zipfian

streams with skew α over universe U [5]. Specifically, when α < 1 and |S| → ∞,

SpaceSaving requires O(|U |1−α) buckets to identify the k most frequent elements with

probability 1, while simplified RAP achieves a better bound of O(|U |
1−α
1+α). For α = 1

and |S| → ∞, SpaceSaving requires O(log |U |), while simiplified RAP only needs

O(
√
log |U |). However, these guarantees do not transfer to the original RAP, since

the simplified RAP differs from the original by assuming the entering probability in

Step 2b is an absolute constant, and the proof heavily relies on this assumption to go

through. Moreover, as the authors in [5] correctly pointed out, the i.i.d. assumption

on the stream is also restrictive, as there are many real-world streams that exhibit

time locality.

Our result. In this chapter, we consider arbitrarily ordered streams. To capture

the performance of RAP (m) under the highly skewed network traffic, we make the

following simplifying assumptions to start with. Given some small constant ε < 1,

we assume the stream consists of k heavy elements, each of frequency f , and εkf

number of distinct light elements. Under these assumptions, we show that, if the

73

stream is sufficiently skewed, the RAP algorithm with k buckets are already capable

of identifying a constant fraction of the heavy elements with constant probability.

Theorem 4.1. Given ε < 10−7, RAP (k) stores at least 0.65k heavy elements at the

end of the stream, with probability at least 0.7.

We present the proof of Theorem 4.1 in § 4.2, and discuss how to relax the as-

sumptions and several extensions of Theorem 4.1 in § 4.3.

4.2 Deriving the Performance Bound

First observe that, if a counter value is large, its bucket is more likely to be storing a

heavy element. Then to show the data structure stores a constant fraction of heavy

elements at the end of the stream, it suffices to show that there are a constant fraction

of large counters at the end. We leave this argument to § 4.2.5.

A major challenge in analyzing RAP is the handling of the combination of updat-

ing counters deterministically (Step 2a) and overtaking counters with varying prob-

abilities (Step 2b). However, if the total counter value is large, there must be many

steps where some counter is incremented deterministically, which indicates that a

large fraction of the counters are large. It is trickier when the total counter value is

not as large. A key observation is that, for a bucket that is saving some element x, the

pace at which its counter value increases is related to how bunched up the occurrences

of x are. Suppose the bucket is currently storing the occurrence t of x, if later there

are many occurrences of x that are not very far from the tth occurrence, the counter

value is very likely to increase quickly. Such an occurrence t is particularly good to

us when it is stored in the smallest counter, since this implies, that even the smallest

counter value would be large at the end.

74

In § 4.2.1, we formalize the notion of good occurrences and introduce in what

sense is a bucket considered good. Following the above intuition, we consider three

cases:

Case (I) at least 2acεfk steps where the bucket with the smallest counter value is

good (§ 4.2.2);

Case (II) the total counter value at the end of the stream is at least (1− r + aε)kf

(§ 4.2.3); and

Case (III) at most 2acεkf steps where the bucket with the smallest counter value

is good, and the total counter value at the end of the stream is at most

(1− r + aε)kf (§ 4.2.4).

Note that Case (I) and Case (II) are not disjoint, but this is not a problem. The

conditions of these two cases are carefully chosen, such that together they lead to a

constant fraction of large counters.

4.2.1 Preliminaries

Let x be a heavy element of frequency f . Denote xj as the index of the j-th occurrence

of x in the stream. We start by defining good occurrences.

Definition 2 (good occurrence). The t-th occurrence of x is good with respect to

some constant factor c, if for all t < i ≤ f , xi − xt ≤ c(i − t)k. Conversely, the t-th

occurrence of x is bad with respect to some constant factor c, if there exists t < i ≤ f ,

such that xi − xt > c(i− t)f .

For each bad occurrence of some heavy element x, there must exist an interval of

the stream, in which the occurrences of x are sparse. Take all such intervals, each

from a bad occurrence of x, the union of the intervals, due to the sparsity, cannot

75

contain too many occurrences of x. This means that, each heavy element can only

have a constant fraction of bad occurrences.

Claim 4.2. For any element x of frequency f , the number of bad occurrences of x is

at most (1+ε)f
c

.

Proof. For any bad occurrence t of x, let j be the minimum index greater than t,

such that xj − xt > c(i− t)k. Define an index set It = {t, t+1, . . . , j− 1}. Note that

given t, It is uniquely determined.

Fact 4.3. Suppose the t-th and the t′-th occurrences of x are both bad, and |It| ≤ |It′ |,

then either It ∩ It′ = ∅, or It ⊆ It′.

Proof. W.l.o.g. assume t < t′, and suppose for contradiction that It ∩ It′ ⊊ It′ . Let

j = max{It}+1. By definition of It, xt′−xt ≤ ck(t′−t). Similarly, xj−xt′ ≤ ck(j−t′).

Then

xj − xt = xj − xt′ + xt′ − xt ≤ ck(j − t′ + t′ − t) = ck(j − t),

contradicting the fact that j is minimum.

By Fact 4.3,
⋃

bad t∈[f] of x It is a union of disjoint sets. Since for all bad t of x, the

average gap between two adjacent occurrences in It is greater than ck, the average

gap between two adjacent occurrences in
⋃

bad t It is also larger than ck. Additionally,

max{
⋃

bad t It}−min{
⋃

bad t It} ≤ (1+ε)kf . Then |
⋃

bad t It| ≤
(1+ε)kf

ck
= (1+ε)f

c
. By

definition of It, all bad occurrences t of x are in
⋃

bad t It, therefore, the number of

bad occurrences is upper bounded by (1+ε)f
c

.

Then a constant fraction of the stream must consist of good occurrences. To connect

good occurrences to the increments of counter values, it is convenient to introduce

one more notion, the good buckets.

Definition 3 (good bucket). A bucket B storing an element x is good at step t, if

there exists step t′ < t, such that the following holds:

76

(1) C is empty or storing x′ ̸= x at t′, and x is stored in B at all steps from t′ + 1

to t.

(2) The occurrence of x at step t′ + 1 is good.

Otherwise, we say B is bad at step t.

Note that by Definition 3, whether there is a bad occurrence of x appearing from

t′ + 2 to t has no impact on the goodness of bucket B. B is good as long as the

occurrence of x at t′ + 1 is good, and a good B can only become bad once it is taken

over by a bad occurrence, when its counter value become the smallest.

4.2.2 Case (I)

First we consider Case (I), where there are at least 2acεfk steps where the bucket with

the smallest counter value is good. For brevity, we say some bucket is the smallest

when its counter value is the smallest. In steps where the smallest bucket is good, in

the amortized sense, the smallest counter value increases by at least 1 for every ck

steps. Then, over the entire stream, given that there are at least Ω(εkf) steps where

the smallest bucket is good, the smallest counter value will be Ω(εf) at the end of the

stream. Since light elements are distinct, as we shall see in § 4.2.5, a counter value

of Ω(εf) is large enough for the bucket to be storing a heavy element with constant

probability.

Fix a bucket Bi, for each step t where Bi is bad at step t− 1 and good at step t,

define an interval I
(i)
tj = [t, j], such that Bi is good at all steps from t to j − 1, and

bad at step j.

Claim 4.4. For each interval I
(i)
tj , the counter value of Bi increases by at least

⌈
j−t
ck

⌉
from steps t to j.

Proof. Since Bi is good from steps t to j − 1, by Definition 2, the average number of

steps between adjacent increments of Bi is at most ck. Then the increment from t to

77

j − 1 is at least
⌊
j−t−1

ck

⌋
+ 1 ≥

⌈
j−t−1

ck

⌉
, where the increment 1 comes from the first

good occurrence at step t. At step j, the counter value increases by 1, which gives

that the total increment from t to j − 1 is at least
⌈
j−t−1

ck

⌉
+ 1 ≥

⌈
j−t
ck

⌉
.

For the rest of the discussion, we omit j in I
(i)
tj and only write I

(i)
t , as j is uniquely

determined by t. When a set of intervals is disjoint, increments from each interval

can be summed up to get the total increments of the smallest counter value over the

union of these intervals. Noticing that {I(i)t }t,i is not necessarily disjoint, we make use

of the folklore Claim 4.5 to only sum up increments from a disjoint subset of {I(i)t }t,i.

Claim 4.5. Let I be a set of intervals. There exists a set I ′ of disjoint intervals,

I ′ ⊆ I, such that |I ′| ≥ 1
2
|I|.

Proof Sketch. Take two sets I ′ and I ′′ of disjoint intervals greedily from I. Since

|I ′ ∪ I ′′| = |I|, at least one of I ′ and I ′′ has length at least 1
2
|I|.

Lemma 4.6. If there are at least 2acεfk steps where the smallest counter is good,

the smallest counter value is at least ⌈aεf⌉ at the end of the stream.

Proof. Consider the union of all intervals
⋃

i,t I
(i)
t . By definition,

⋃
i,t I

(i)
t contains all

the steps where the smallest bucket is good. Given that there are at least 2acεfk steps

where the smallest counter is good,
∣∣∣⋃i,t I

(i)
t

∣∣∣ ≥ 2acεfk. By Claim 4.5, there exists a

set I ′ of disjoint intervals, I ′ ⊆
⋃

i,t I
(i)
t , such that |I ′| ≥ 1

2

∣∣∣⋃i,t I
(i)
t

∣∣∣ ≥ acεfk. Since

the first and the last step in I ′ corresponds to some buckets being the smallest, the

total increment on the smallest counter value over the entire stream is lower bounded

by that over I ′, which is
⌈
acεfk
ck

⌉
= ⌈aεf⌉ following Claim 4.4.

Moreover, the disjointness of I ′ indicates that, if we take two adjacent intervals

I
(i1)
t1 and I

(i2)
t2 , where the smallest counter value increases from v1 to v′1 on I

(i1)
t1 , v2

to v′2 on I
(i2)
t2 , we must have v1 < v′1 < v2 < v′2. Therefore, given that the smallest

counter value is always 0 to begin with, the smallest counter value at the end of the

78

stream is lower bounded by the total increment on the smallest counter over the entire

stream.

4.2.3 Case (II)

Next we consider the simplest case, where the total counter value is at least (1− r+

aε)kf at the end of the stream. Since the largest and the smallest counter value at

the end of the stream cannot be more than f apart, if the total counter value at the

end of the stream is large, there cannot be a large fraction of small counters.

Denote vi(t) as the counter value of bucket Bi after seeing the t-th element in the

stream. Let v(t) =
∑

i∈[k] vi(t) be the total counter value after seeing the t-th element

in the stream. Recall that the stream has length (1+ ε)kf , then v((1+ ε)kf) denotes

the total counter value at the end of the stream.

Claim 4.7. The difference between the largest and the smallest counter value is at

most f at the end of the stream.

Proof. Fix any largest bucket Bl at the end of the stream, that is, its counter value

vl((1+ε)kf) = maxi∈[k] vi((1+ε)kf). Suppose Bl is storing x at the end of the stream,

let t be the step such that Bl stores some x′ ̸= x at time t, and Cl stores x from

time t+ 1 to (1 + ε)kf . Let Bs be any smallest bucket at the end of the stream. As

counter values are non-decreasing, Bs’s counter value vs satisfies vs((1+ε)kf) ≥ vs(t).

Moreover, a bucket only switches to saving a new element when it is the smallest,

which means vs(t) ≥ vl(t) ≥ vl((1+ε)kf)−f . Altogether, we have vs((1+ε)kf)+f ≥

vl((1 + ε)kf).

Lemma 4.8. If the total counter value v((1+ε)kf) ≥ (1−r+aε)kf , then the number

of large buckets |{i ∈ [k] | vi((1 + ε)kf) ≥ aεf}| ≥ (1− r)k.

79

Proof. Suppose |{i ∈ [k] | vi((1 + ε)kf) ≤ aεf}| > rk, we get a contradiction from

v((1 + ε)kf) < rk · aεf + (1− r)k · (aεf + f) (Claim 4.7)

= aεkf + (1− r)kf

= (1− r + aε)kf.

4.2.4 Case (III)

When there are at most 2acεkf steps where the bucket with the smallest counter value

is good, and the total counter value at the end of the stream is at most (1−r+aε)kf ,

we will not directly argue about the counter values as in previous cases. Instead,

we will show that, the conditions of Case (III) lead to contradictions with constant

probability. Then, it must fall into Case (I) and Case (II) with constant probability.

We begin with a subtly wrong but intuitive argument. On the one hand, good

occurrences make up a large constant fraction of the stream (Claim 4.2). On the other,

by conditions of Case (III), we do not have too many steps where we deterministically

increment some counter value. Together they imply that, there are many steps where

we increase the number of good buckets. If we can show the expected increase on the

number of good buckets is at least 2k on some portion of the stream, then considering

that there are only k buckets in total, we must run into contradiction with some

probability. Recall that we can only change a bad bucket into a good one when its

counter value is the smallest. Then to bound the expected increase on the number of

good buckets, we need the range of the smallest counter value.

Divide the stream into stages according to the smallest counter values, where in

stage j, the smallest counter value lies in [2j, 2j+1). Further denote Lj as the length of

stage j, Gj the number of steps in stage j where the smallest counter is good, Ij the

80

number of steps where the next occurrence updates a counter in memory, and Bj the

number of steps where the next occurrence is bad. Then in stage j, we increase the

number of good buckets with probability at least 1
2j+1 in each of the Lj−Gj−Bj− Ij

steps, and decrease the number of good buckets with probability at most 1
2j

in each

of the Gj steps. Therefore, the expected increase on the number of good buckets in

stage j is lower bounded by

(Lj −Gj −Bj − Ij) ·
1

2j+
−Gj ·

1

2j
. (4.1)

As long as there exists a stage j, such that (4.1) is greater than 2k, we can use

concentration to show that this leads to a contradiction.

While this argument provides great intuition on what we are about to do, the

probabilities are subtly incorrect. Conditioned on being in Case (III), the randomness

in Step 2b of the algorithm might be affected. Nonetheless, parts of this argument can

be rescued. Next in Lemma 4.9, we show a version of (Lj−Gj−Bj−Ij)· 1
2j+
−Gj · 12j >

2k parameterized by a constant x, where we treat factors like 1
2j+1 as numbers we

magically chose, rather than the probabilities in the flawed argument. Finally the

introduction of x helps us bound the probability of getting contradiction using the

union bound, thus circumventing the issue of conditioning.

Lemma 4.9. Fix a stream, for each fixed sequence of memory states satisfying Case

(III), given constant 0 < x < 1, if ε < (r− 1
c
)(2ac(1

x2 +1)+ a(4
x
+1)+ 1

c
− 1)−1, there

exists a stage j = j(x), such that

(Lj −Gj −Bj − Ij)−
Gj

x2
>

2j+1 · k
x

(4.2)

81

Proof. Suppose for contradiction that for all stage j, (Lj−Gj−Bj−Ij)− Gj

x2 > 2j+1·k
x

.

Taking the sum over all stages, we have

∑
j

Lj − (1 +
1

x2
)
∑
j

Gj −
∑
j

Bj −
∑
j

Ij ≤
k

x

∑
j

2j+1. (4.3)

Since
∑

j Lj is bounded by the total stream length (1 + ε)kf , the upper bounds on∑
j Gj and

∑
j Ij are given by the condition of Case II, and

∑
j Bj ≤ (1+ε)kf

c
, the

number of bad occurrences in the stream,

∑
j

Lj − (1 +
1

x2
)
∑
j

Gj −
∑
j

Bj −
∑
j

Ij

≥(1 + ε)kf − 2ac(1 +
1

x2
)εkf − (1 + ε)kf

c
− (1− r + aε)kf

=kf

(
r − 1

c
−
(
2ac

(
1

x2
+ 1

)
+

1

c
+ a

)
ε

)
.

On the other hand, we first notice that j < log(aεf), since the smallest counter value

at the end of the stream is smaller than aεf (as we are done otherwise). Then

k

x

∑
j

2j+1 <
k

x

log(aεf)∑
j=0

2j+1 <
4

x
aεkf.

For ε < (r−1
c
)(2ac(1

x2+1)+a(4
x
+1)+1

c
−1)−1, we have r−1

c
−
(
2ac

(
1
x2 + 1

)
+ 1

c
+ a
)
ε >

4
x
aε, which contradicts (4.3).

Consider all sequences of actions by the algorithm that lead to memory states

corresponding to Case (III). For any sequence S of actions in Case (III), there exists

a stage j satisfying (4.2) by Lemma 4.9. This gives us a way to categorize such

sequences of actions. We assign S to group j, if stage j in S satisfies (4.2). For an

S that has multiple stages where (4.2) is satisfied, we only assign S to one group.

Then it follows that all groups together form a partition of the set of all sequences of

actions in Case (III).

82

Let S be a sequence of actions from a fixed group j. S induces a sequence of

memory states, which further determines Lj, Gj, Bj and Ij. LetN1 = Lj−Gj−Bj−Ij,

and N2 = Gj, we have N1 > N2 as a consequence of Lemma 4.9. Further denote n1

and n2 as the number of steps where the number of good counters are increased and

decreased in stage j, respectively. We look at the probability that S occurs:

P[S occurs] = P[all stages i ̸= j of S occur] · P[stage j of S occurs]

≤ P[all stages i ̸= j of S occur]

·
(

1

2j

)n1
(
1− 1

2j+1

)N1−n1
(

1

2j

)n2
(
1− 1

2j+1

)N2−n2

. (4.4)

∑
S:j,N1,N2,n1,n2

P[S occurs] ≤
(

1

2j

)n1
(
1− 1

2j+1

)N1−n1
(

1

2j

)n2
(
1− 1

2j+1

)N2−n2

·
∑

S:j,N1,N2,n1,n2

P[all stages i ̸= j of S occur]

≤
(

1

2j

)n1
(
1− 1

2j+1

)N1−n1
(

1

2j

)n2
(
1− 1

2j+1

)N2−n2

.

(4.5)

83

Finally we upper bound the probability that there is no contradiction from sequences

S with matching j,N1, N2, n1, n2, that is, the probability of n1 − n2 ≤ k:

P[n1 − n2 ≤ k] ≤
∑

n1−n2≤k

(
N1

n1

)(
N2

n2

) ∑
S:j,N1,N2,n1,n2

P[S occurs]

≤
∑

n1−n2≤k

(
N1

n1

)(
1

2j

)n1
(
1− 1

2j+1

)N1−n1

·
(
N2

n2

)(
1

2j

)n2
(
1− 1

2j+1

)N2−n2

=

N2∑
n1=k

(
N1

n1

)(
1

2j

)n1
(
1− 1

2j+1

)N1−n1

·
n1∑

n2=n1−k

(
N2

n2

)(
1

2j+1

)n2
(
1− 1

2j+1

)N2−n2

· 2n2

≤
N2∑

n1=k

(
N1

n1

)(
1

2j

)n1
(
1− 1

2j+1

)N1−n1

· 2n1

·
n1∑

n2=n1−k

(
N2

n2

)(
1

2j+1

)n2
(
1− 1

2j+1

)N2−n2

=

N2∑
n1=k

(
N1

n1

)(
1

2j−1

)n1
(
1− 1

2j+1

)N1−n1

·
n1∑

n2=n1−k

(
N2

n2

)(
1

2j+1

)n2
(
1− 1

2j+1

)N2−n2

. (4.6)

In the remainder of this section, we spend all the efforts on bounding (4.6). Let

f(n1) =
(
N1

n1

) (
1

2j−1

)n1
(
1− 1

2j+1

)N1−n1 , g(n2) =
(
N2

n2

) (
1

2j+1

)n2
(
1− 1

2j+1

)N2−n2 . Note

that g(n2) is precisely the PMF of a binomial distribution with parameters N2 and

2−(j+1), g(n2) is hence unimodal. By setting g(n2+1)
g(n2)

≤ 1, we find that g(n2) mono-

tonically increases when n2 <
N2

2j+1 . f(n1) follows a similar trend. g(n1+1)
g(n1)

≤ 1 implies

that n1 ≥ N1+1
2j−1+ 3

4

− 1. Let n∗
1 =

N1

2j−1 , then for some small constant fraction x, we can

ensure that f(n1) monotonically increases when n1 ≤ xn∗
1.

To bound (4.6), we partition the range of k ≤ n1 ≤ N2 into two smaller ranges sep-

arated by xn∗
1, and first consider the sum over k ≤ n1 ≤ xn∗

1. Since
∑n1

n2=n1−k g(n2) ≤

84

1, and f(n1) monotonically increases in this range,

xn∗
1∑

n1=k

f(n1)

n1∑
n2=n1−k

g(n2) ≤ (xn∗
1 − k + 1) · f(xn∗

1) ≤ xn∗
1 · f(xn∗

1). (4.7)

Next we upper bound f(xn∗
1):

f(xn∗
1) =

(
N1

xn∗
1

)(
1

2j−1

)xn∗
1
(
1− 1

2j+1

)N1−xn∗
1

≤
(
eN1

xn∗
1

· 1

2j−1
· 1

1− 2−(j+1)

)xn∗
1

·
(
1− 1

2j+1

)N1

(

(
n

k

)
≤
(en
k

)k
)

=

(
1

x
· e

1− 2−(j+1)

)xn∗
1

·
(
1− 1

2j+1

)N1

(definition of n∗
1)

≤
(
2e

x

)xn∗
1
(
1− 1

2j+1

)N1

(for j ≥ 0,
e

1− 2−(j+1)
≤ 2e)

=

(
2e

x
·
(
1− 1

2j+1

) N1
xn∗

1

)xn∗
1

≤
(
2e

x
· e

− N1
xn∗

1·2
j+1

)xn∗
1

(1− x ≤ e−x for x > 0)

=

(
2e

x
· e−

1
4x

)xn∗
1

. (definition of n∗
1) (4.8)

Together with (4.7), we get
∑xn∗

1
n1=k f(n1)

∑n1

n2=n1−k g(n2) ≤ xn∗
1 ·
(

2e
x
· e− 1

4x

)xn∗
1

. We

choose x = 1
30
, and check that xn∗

1 ·
(

2e
x
· e− 1

4x

)xn∗
1

< 1
6
. Therefore, for x = 1

30
we have

xn∗
1∑

n1=k

f(n1)

n1∑
n2=n1−k

g(n2) <
1

6
. (4.9)

To bound
∑N2

n1=xn∗
1+1 f(n1)

∑n1

n2=n1−k g(n2), we make use of the fact that the max-

imizers of f(n1) and g(n2) are far apart. Let n
∗
2 =

N2

2j+1 . First we deduce several useful

consequences of Lemma 4.9.

85

Corollary 4.10. Fix a stream, for each fixed sequence of memory states satisfying

Case II, given constant 0 < x < 1, if ε < (r − 1
c
)(1

x2 + 4a
x
+ 1

c
+ a)−1, there exists a

stage j, for which the following holds simultaneously:

(1) xn∗
1 − k > n∗

2;

(2) 1
4
(xn∗

1 − k) >
n∗
2

x
; and

(3) n∗
1 >

4
x
k.

Proof. By Lemma 4.9, given x and ε, there exists a stage j, such that N1−N2

x2 > 2j+1·k
x

.

That is,
xn∗

1

4
− k >

n∗
2

x
. Corollary 4.10((1)) follows from xn∗

1− k >
xn∗

1

4
− k >

n∗
2

x
> n∗

2.

Corollary 4.10((2)) follows from 1
4
(xn∗

1 − k) >
xn∗

1

4
− k >

n∗
2

x
. Corollary 4.10((3))

follows from
xn∗

1

4
− k >

n∗
2

x
> 0.

By Corollary 4.10((1)), g(n2) monotonically decreases as n2 goes from n1 − k to

n1, and n1 > xn∗
1, then

N2∑
n1=xn∗

1+1

f(n1)

n1∑
n2=n1−k

g(n2) ≤
N2∑

n1=xn∗
1+1

kf(n1)g(n1 − k). (4.10)

Let h(n) = kf(n)g(n− k), and consider

r(n) =
h(n+ 1)

h(n)
=

4

(2j+1 − 1)2
· N1 − n

n+ 1
· N2 − n+ k

n− k + 1
. (4.11)

86

For the choice of x = 1
30
, we have r(xn∗

1) < 1:

r(xn∗
1) =

4

(2j+1 − 1)2
· N1 − xn∗

1

xn∗
1 + 1

· N2 − xn∗
1 + k

xn∗
1 − k + 1

<
4

(2j+1 − 1)2
· N1

xn∗
1

· N2

xn∗
1 − k

<
16

22(j+1)
· N1

xn∗
1

· N2

xn∗
1 − k

(
1

2j+1 − 1
≤ 2

2j+1
)

= 4 · 4N1

2j+1 · xn∗
1

· N2

2j+1 · (xn∗
1 − k)

=
4n∗

2

xn∗
1 − k

< 1. (Corollary 4.10(2))

By (4.11), r(n) monotonically decreases as n increases, combined with r(xn∗
1) < 1,

this means that r(n) < 1 for all n > xn∗
1, and consequently, h(n) < h(xn∗

1) when

n > xn∗
1. This allows us to further upper bound (4.10).

Analogous to (4.7), as a first attempt, we may try upper bounding (4.10) by

N2 · h(xn∗
1). However, since N2 is relatively large, such a loose upper bound would

not lead to a constant probability. Instead, we partition the range of xn∗
1 ≤ n1 ≤ N2

into finer intervals of lengths 2i · xn∗
1, i = 0, 1, . . . , imax, where imax is the minimum i

such that
∑imax

i=0 2i · xn∗
1 ≥ N2 − xn∗

1. (Here imax is for notational conveniences, the

specific value of imax is not used later on.) Then we make use of the monotonicity of

h(n) on each such interval:

N2∑
n1=xn∗

1+1

kf(n1)g(n1 − k) ≤
imax∑
i=0

2ixn∗
1 · h(2ixn∗

1) (4.12)

87

To bound f(2ixn∗
1) and g(2ixn∗

1 − k), we replicate the steps in (4.8), and again use

Lemma 4.9:

f(2ixn∗
1) =

(
N1

2ixn∗
1

)(
1

2j−1

)2ixn∗
1
(
1− 1

2j+1

)N1−2ixn∗
1

≤
(

eN1

2ixn∗
1

· 1

2j−1
· 1

1− 2−(j+1)

)2ixn∗
1

·
(
1− 1

2j+1

)N1

(

(
n

k

)
≤
(en
k

)k
)

=

(
1

2ix
· e

1− 2−(j+1)

)2ixn∗
1

·
(
1− 1

2j+1

)N1

(definition of n∗
1)

≤
(

2e

2ix

)2ixn∗
1
(
1− 1

2j+1

)N1

(for j ≥ 0,
e

1− 2−(j+1)
≤ 2e)

=

(
2e

2ix
·
(
1− 1

2j+1

) N1
2ixn∗

1

)2ixn∗
1

≤
(

2e

2ix
· e

− N1
2ixn∗

1·2
j+1

)2ixn∗
1

(1− x ≤ e−x for x > 0)

=

(
2e

2ix
· e−

1

4x·2i

)2ixn∗
1

. (definition of n∗
1)

(4.13)

88

g(2ixn∗
1 − k)

=

(
N2

2ixn∗
1 − k

)(
1

2j+1

)2ixn∗
1−k (

1− 1

2j+1

)N2−2ixn∗
1+k

≤
(

eN2

2ixn∗
1 − k

· 1

2j+1
· 1

1− 2−(j+1)

)2ixn∗
1−k

·
(
1− 1

2j+1

)N2

=

(
N2

2j+1(2ixn∗
1 − k)

· e

1− 2−(j+1)

)2ixn∗
1−k

·
(
1− 1

2j+1

)N2

=

(
N2

2j+1

2i · 4x(N1

2j+1 − k
2i·4x)

· e

1− 2−(j+1)

)2ixn∗
1−k

·
(
1− 1

2j+1

)N2

≤

(
1

2i · 4x
·

N2

2j+1

N1

2j+1 − k
x

· e

1− 2−(j+1)

)2ixn∗
1−k

·
(
1− 1

2j+1

)N2

≤
(

x

2i · 4
· e

1− 2−(j+1)

)2ixn∗
1−k

·
(
1− 1

2j+1

)N2

(
N2

2j+1

N1

2j+1 − k
x

≤ x2 by Lemma 4.9)

≤
(ex

2i+1

)2ixn∗
1−k

·
(
1− 1

2j+1

)N2

for j ≥ 0,
e

1− 2−(j+1)
≤ 2e

=

(
ex

2i+1
·
(
1− 1

2j+1

) N2
2ixn∗

1−k

)2ixn∗
1−k (

1− 1

2j+1

) N2
2ixn∗

1−k

≤ 1

≤
(ex

2i+1

)2ixn∗
1−k

. (4.14)

Plugging in (4.13) and (4.14) gives

2ixn∗
1 · h(2ixn∗

1) = 2ixn∗
1 · k · f(2ixn∗

1) · g(2ixn∗
1 − k)

≤ 2ixn∗
1 · k ·

(
2e

2ix
· e−

1

4x·2i

)2ixn∗
1

·
(ex

2i+1

)2ixn∗
1−k

= 2ixn∗
1 · k ·

(ex

2i+1

)−k

·
(

2e

2ix
· e−

1

4x·2i · ex

2i+1

)2ixn∗
1

= 2ixn∗
1 · k ·

(ex

2i+1

)−k

·
(
1

4i
· e2−

1

4x·2i

)2ixn∗
1

. (4.15)

Notice that the terms in (4.15) related to n∗
1, denoted as li(n

∗
1) = n∗

1

(
1
4i
· e2−

1

4x·2i

)2ixn∗
1

,

is maximized at ni =
4

2i+2x(i ln 4−2)
, and monotonically decreases when n∗

1 > ni. Fur-

89

thermore, ni is maximized when i is minimized. This means that, as long as the lower

bound of n∗
1 is greater than n0 = 4

1−8x
, we can upper bound (4.15) by replacing n∗

1

with its lower bound. One can easily check that Corollary 4.10((3)) gives such a lower

bound on n∗
1. Then we have

2ixn∗
1 · h(2ixn∗

1) ≤ 2i · 4k2 ·
(ex

2i+1

)−k

·
(
1

4i
· e2−

1

4x·2i

)2i·4k

. (4.16)

Denote the RHS of (4.16) as ai. To upper bound (4.12) by a constant, we notice that

the sequence of {ai}i is dominated element-wise by a convergent geometric series. To

see that,

qi ≜
ai+1

ai
= 21−k ·

(e

2i+2

)2i+3k

.

qi decreases very fast as i increases, we have qi ≤ q0 = 21−k ·
(
e
4

)8k
< 0.05 for all

i ≥ 0. Therefore, {ai}i is dominated by a geometric series with coefficient a0 =

4k2 ·
(
ex
2

)−k · e8k− k
x < 0.006 and common ratio q0, then

N2∑
n1=xn∗

1+1

f(n1)

n1∑
n2=n1−k

g(n2) ≤
a0

1− q0
< 0.0064. (4.17)

(4.9) together with (4.17) gives the upper bound on the probability in (4.6), that is,

P[n1 − n2 ≤ k] < 4
23
.

4.2.5 Aggregating all cases

To conclude, notice that both Case I (§ 4.2.2) and Case II (§ 4.2.3) are deterministi-

cally good, in the sense that either all counters are relatively large at the end, or at

least a significant fraction of the counters are relatively large. And the conditions of

Case III (§ 4.2.4) induce contradiction with probability at least 19
23
, which means we

90

are in the good Cases I and II with probability at least 19
23
. Then, we argue that a

large counter is unlikely to be storing a light element at the end.

For a light element l, the probability that l is stored in a counter with value at

least aεf is upper bounded by 1
aεf

, due to the distinctness of the light elements.

By linearity of expectation, there can only be at most εkf · 1
aεf

= k
a
counters in

expectation with value at least aεf that stores light elements at the end. Markov’s

inequality then gives that, with probability at least 1 − 1
b
for some constant b > 1,

there can be at most bk
a

light elements stored in the counters with value at least

aεf . Finally by union bound, with probability at least 19
23
− 1

b
, there must be at least

1− r − b
a
fraction of the counters storing heavy elements at the end.

To get the specific constants in Theorem 4.1, first recall that x was set to 1
30

in

bounding (4.9). Plugging x = 1
30

into the upper bound on ε in Lemma 4.9, we get

that given ε < (r − 1
c
)(1802ac + 121a + 1

c
− 1)−1, with probability at least 19

23
− 1

b
,

RAP (k) stores at least (1 − r − b
a
)k number of heavy elements at the end of the

stream. Ideally we want to set constants a, b, c and r such that the upper bound on ε,

the probability, and the fraction of heavy elements are all large. However, for each of

a, b and r, increasing the constant would inevitably increase one term, but decrease

another. It is only possible to optimize the upper bound on ε over c, given a and r,

by setting c =

√
12988816a2+7208ar(121a+r−1)

3604ar
+ 1. Theorem 4.1 then follows from setting

a = 85, r = 1
4
, and b = c = 8.

4.3 Conclusion

In this chapter, we proved the first performance guarantee for RAP on highly skewed

streams (Theorem 4.1). To present an argument that is as clean as possible, we

strictly assumed all the k heavy elements have the same frequency, and all light

elements are distinct. In fact, this assumption, together with the specific memory

91

size k we used, is not fundamental to our approach. In this section, we discuss several

potential extensions.

Relaxing the assumption on the stream. When heavy elements have frequen-

cies that lie in [uf, f] for some constant 0 < u < 1, we would lose a constant factor

in Lemma 4.8, which causes a constant factor loss on the fraction of buckets storing

heavy elements. If the light elements are no longer distinct, it would be messier to

account for the probability that a light element l is stored in a bucket with counter

value O(εf) (§ 4.2.5), as l would not necessarily need to enter the bucket in the last

step. However, as long as the frequency of l is upper bounded by a small constant, we

can still bound that probability, which consequently impacts all terms in Theorem 4.1

by constant factors. Regardless, it is clear that a result similar to Theorem 4.1 holds

for a more general stream.

Generalizing to different memory sizes. The easiest way to adapt the argument

to accommodate a different memory size m would be to set m = uk for some constant

u. This immediately changes Lemma 4.8 and Lemma 4.9 by constant factors, and for

(4.6), we will bound P[n1 − n2 ≤ uk].

Improving constants. In § 4.2.5, we a the version of Theorem 4.1 before nailing

down all the constants. Admittedly, given its current form, there is no hope to

come to a performance bound that closely matches what was observed in practice.

However, there are still places where we could potentially improve the constants. For

the probability of contradiction (§ 4.2.4), notice that the probability upper bound

in (4.9) is quite large compare to that in (4.17). To get (4.9), we simply used the

loose bound of
∑n1

n2=n1−k g(n2) ≤ 1. A more careful analysis could further lower the

probability of having no contradiction in Case (III) (§ 4.2.4). In addition, also in

92

Case (III), we could optimize the way the stream is partitioned into stages. Then, in

adjusting (4.2) and (4.6), we may improve all terms in Theorem 4.1.

93

Chapter 5

Conclusion

Performance monitoring is crucial in running today’s network. With the emergence of

programmable network switches, we now have the option to run performance measure-

ments directly in the data plane. However, performance metrics are fundamentally

expensive to measure. To make matters worse, programmable data planes are highly

constrained in both the memory size and the number of memory accesses per packet.

To address these challenges, this dissertation focuses on the design and analysis of

compact algorithms for measuring network performance in the data plane. Next we

summarize our contributions, future directions, and conclude with final remarks.

5.1 Summary of Contributions

The technical chapters in this thesis are divided into two parts. In the first part (§ 2

and 3), we propose novel algorithms for monitoring delay and TCP packet reordering

in the data plane. Both works leverage probabilistic techniques to attain good accu-

racy with limited memory resources. In the remaining part (§ 4), we derive the first

formal performance guarantees for RAP, introducing techniques to analyze counter-

based algorithms in practice that often couples deterministically updating counters

with probabilistically inserting new elements.

94

§ 2 introduces two data-plane algorithms, built on the fridge data structure, for

generating unbiased delay distribution. Instead of counting each delay sample col-

lected as one sample, the main idea is to think of each sample as a representative,

which accounts for not only itself, but also other samples with the same delay that

are not collected due to hash collisions. By keeping track of the number of insertions

into the data structure, for each delay sample collected, the single-fridge algorithm

computes the probability p that this sample is collected, and tallies a correction fac-

tor of 1
p
as its count. Stacking multiple fridges together, our multi-fridge algorithm

further improves the accuracy by computing a weighted average of the unbiased es-

timators from each fridge. To validate our algorithms, we build a prototype fridge

implementation on high-speed programmable switches, which measure the unbiased

delay distribution accurately, within the data-plane constraints.

§ 3 delves into the problem of monitoring TCP packet reordering in the data

plane. First we show that identifying out-of-order heavy flows fundamentally re-

quires a memory size linear in the number of flows. This lower bound result, together

with the fact that routing is decided on the prefix level, steer us into designing two

algorithms for identifying out-of-order heavy prefixes instead. In a crucial measure-

ment study, we notice that a positive correlation exists between the reordering of

a randomly chosen flow, and that of its prefix. Capitalizing on this correlation, the

flow-sampling algorithm samples as many flows as possible, and infer the extent of re-

ordering in prefixes using the flow snippets it captures. Further accuracy gains can be

found by deploying a hybrid approach. Using an adapted counter-based heavy-hitter

algorithm, we separately monitor the reordering of heavy flows over long periods of

time, and only apply the flow-sampling algorithm on the rest of the flows. To show

that the algorithms are lightweight enough for hardware resources, we provide a P4

prototype of the flow-sampling algorithm implemented using Lucid [45].

95

§ 4 is dedicated to the analysis of RAP. We show that, when the stream is highly

skewed, RAP stores a constant number of heavy elements with constant probability.

A major challenge in the analysis is to deal with the random process of inserting to a

changing minimum counter with varying probabilities, simultaneously with the deter-

ministic process of updating counter values. In an effort to decouple these processes,

we consider the performance of RAP under three cases: (1) there are many steps

where the smallest counter value increments regularly; (2) the total counter value at

the end of the stream is large; and (3) Neither of (1) and (2) holds. We show that

cases (1) and (2) are deterministically good, meaning that at least a large fraction of

counter values is would be large at the end of the stream. Meanwhile, the conditions

of case (3) induce contradiction with constant probability. Finally, we complete the

argument showing large counters are likely to store heavy elements.

5.2 Future Directions

Measuring Unbiased Statistics for Network Queries The fridge design

opened up many possibilities for measuring unbiased statistics for the “join-over-

time” queries, where two or more packets across the traffic stream need to be joined

together. It remains open whether our fridge design, or more generally, the idea

of correcting for survivorship bias, is applicable to measuring statistics beyond the

distribution of delays.

Leveraging Correlation in Performance Monitoring Notice that measuring

reordering is fundamentally memory-intensive, yet we leverage the correlation of out-

of-orderness among flows in the same prefix so that compact data structures can be

effective. In fact, there is nothing special about out-of-orderness. Other properties

of a network path could very well lead to similar correlation. For other performance

96

metrics that suffer from memory lower bounds, it would be intriguing to see whether

such correlation helps in squeezing good performance out of limited memory.

Deriving Performance Guarantees for Counter-based Algorithms in Prac-

tice In Chapter 4, we have considered the performance of RAP in terms of how

many heavy elements are stored in the data structure at the end of a stream. Empiri-

cally, RAP also shows a significant advantage over SpaceSaving [37] in approximating

the frequency of heavy elements [6]. In our proof, we have shown that a constant

fraction of the counter values are at least Ω(εf) with constant probability. In fact,

these counter values should be closer to f . It would be interesting to develop new

techniques for deriving better bounds on the counter values.

More broadly, notice that RAP is a special case of the PRECISION algorithm [6],

when the number of stages d is equal to the memory size m. Our currently analysis

cannot be applied to PRECISION with a smaller d, as our argument on the smallest

counter value in RAP does not apply for a minimum of d counter values in PRECI-

SION. It remains to open to come up with a proof that gracefully generalizes to all

number of stages d.

5.3 Final Remarks

In recent years, we observe a rigid dichotomy between the algorithms that the theory

community considers, and the algorithms stemming from applied communities who

work with hardware implementations. In practice, specialized hardware often comes

with unique constraints beyond the memory size that the theory community mostly

concerns about. Meanwhile, applied researcher come up with algorithms that em-

pirically work well within those constraints, without understanding their theoretical

guarantees. The discrepancy in the interests of the two communities are of course

well-warranted. However, we do argue that, at least from the perspective of the net-

97

works community, having theoretical understanding of what we are running makes

it easier to allocate the scarce hardware resources, and interpret the results we see.

This dissertation marks our attempts to design practical algorithms in monitoring

network performance, while providing forms of theoretical insight. It is our hope that

works with a similar flavor could eventually gain traction, as more people turn to

specialized hardware for performance gains.

98

Bibliography

[1] Imad Aad, Jean-Pierre Hubaux, and Edward W Knightly. Impact of denial of
service attacks on ad hoc networks. IEEE/ACM Transactions on Networking,
16(4):791–802, 2008.

[2] Fatih Abut. A distributed measurement architecture for inferring TCP round-
trip times through passive measurements. Turkish Journal of Electrical Engi-
neering & Computer Sciences, 27(3):2106–2120, 2019.

[3] K Auerbach. Limitations of ICMP echo for network measurement.
https://iwl.com/idocs/limitations-of-icmp-echo-for-network-measurement, 2004.

[4] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Design-
ing heavy-hitter detection algorithms for programmable switches. IEEE/ACM
Transactions on Networking, 28(3):1172–1185, 2020.

[5] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Randomized
admission policy for efficient top-k and frequency estimation. arXiv preprint
arXiv:1612.02962, 2016.

[6] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Randomized
admission policy for efficient top-k and frequency estimation. In IEEE INFO-
COM 2017-IEEE Conference on Computer Communications, pages 1–9. IEEE,
2017.

[7] Jon CR Bennett, Craig Partridge, and Nicholas Shectman. Packet reordering
is not pathological network behavior. IEEE/ACM Transactions on Networking,
7(6):789–798, 1999.

[8] Ethan Blanton and Mark Allman. On making TCP more robust to packet
reordering. ACM SIGCOMM Computer Communication Review, 32(1):20–30,
2002.

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM Conference, pages 99–110, 2013.

[10] Broadcom. Silicon innovations in programmable switch hardware, April 2020.

99

[11] CAIDA. The CAIDA UCSD anonymized Internet traces 2018 - December 20th.
https://www.caida.org/data/passive/passive_dataset.xml, 2018.

[12] CAIDA. The CAIDA UCSD anonymized Internet traces 2019 - January 17th.
https://www.caida.org/data/passive/passive_dataset.xml, 2019.

[13] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In International Colloquium on Automata, Languages, and
Programming, pages 693–703. Springer, 2002.

[14] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In International Colloquium on Automata, Languages, and
Programming, pages 693–703. Springer, 2002.

[15] Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jen-
nifer Rexford. Measuring TCP round-trip time in the data plane. In ACM
SIGCOMM Workshop on Secure Programmable Network Infrastructure, pages
35–41, 2020.

[16] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik,
Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac
Keslassy, Ariel Orda, and Tom Edsall. dRMT: Disaggregated programmable
switching. In ACM SIGCOMM Conference, pages 1–14, 2017.

[17] William G Cochran. The combination of estimates from different experiments.
Biometrics, 10(1):101–129, 1954.

[18] Graham Cormode and S. Muthukrishnan. An improved data stream summary:
The Count-Min Sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[19] Graham Cormode and Shan Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[20] Graham Cormode and Shan Muthukrishnan. What’s hot and what’s not: track-
ing most frequent items dynamically. ACM Transactions on Database Systems
(TODS), 30(1):249–278, 2005.

[21] Richard Cziva, Christopher Lorier, and Dimitrios P Pezaros. Ruru: High-speed,
flow-level latency measurement and visualization of live internet traffic. In ACM
SIGCOMM Posters and Demos, pages 46–47, 2017.

[22] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. MoonGen: A scriptable high-speed packet generator. In Proceedings
of the Internet Measurement Conference, pages 275–287, 2015.

100

https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml

[23] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data
plane performance diagnosis of TCP. In ACM SIGCOMM Symposium on SDN
Research (SOSR), pages 61–74, 2017.

[24] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. Pingmesh: A large-
scale system for data center network latency measurement and analysis. In ACM
SIGCOMM, volume 45, pages 139–152, 2015.

[25] Amir Herzberg and Haya Shulman. Stealth DoS attacks on secure channels. In
Network and Distributed System Symposium, 2010.

[26] Intel. Tofino: P4-programmable Ethernet switch ASIC that delivers better
performance at lower power. https://www.intel.com/content/www/us/en/

products/network-io/programmable-ethernet-switch/tofino-series.

html.

[27] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. QPipe: Quantiles
sketch fully in the data plane. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies (CoNEXT), pages 285–
291, 2019.

[28] Svante Janson. Tail bounds for sums of geometric and exponential variables.
Statistics & Probability Letters, 135:1–6, 2018.

[29] Anura Jayasumana, N Piratla, T Banka, A Bare, and R Whitner. Improved
packet reordering metrics, June 2008. RFC 5236.

[30] Hao Jiang and Constantinos Dovrolis. Passive estimation of TCP round-trip
times. ACM SIGCOMM Computer Communication Review, 32(3):75–88, 2002.

[31] Akshay Kamath, Eric Price, and David P. Woodruff. A simple proof of a new
set disjointness with applications to data streams. In Computational Complexity
Conference, July 2021.

[32] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in
streams. In IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 71–78, 2016.

[33] Michael Laor and Lior Gendel. The effect of packet reordering in a backbone
link on application throughput. IEEE Network, 16(5):28–36, 2002.

[34] Ka-Cheong Leung, Victor OK Li, and Daiqin Yang. An overview of packet re-
ordering in transmission control protocol (TCP): Problems, solutions, and chal-
lenges. IEEE Transactions on Parallel and Distributed Systems, 18(4):522–535,
2007.

101

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

[35] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer
Rexford. Memory-efficient performance monitoring on programmable switches
with lean algorithms. In Symposium on Algorithmic Principles of Computer
Systems, pages 31–44. SIAM, 2020.

[36] Charles Masson, Jee E Rim, and Homin K Lee. DDSketch: A fast and fully-
mergeable quantile sketch with relative-error guarantees. Proceedings of the
VLDB Endowment, 12(12):2195–2205, 2019.

[37] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In International Conference on
Database Theory, pages 398–412. Springer, 2005.

[38] Al Morton, Len Ciavattone, Gomathi Ramachandran, Stanislav Shalunov, and
Jerry Perser. Packet reordering metrics, November 2006. RFC 4737.

[39] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.
Language-directed hardware design for network performance monitoring. In
ACM SIGCOMM, pages 85–98, 2017.

[40] Vern Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transactions
on Networking, 7(3):277–292, June 1997.

[41] Pensando. AMD Pensando Infrastructure Accelerators. https://www.amd.com/
en/accelerators/pensando.

[42] Pensando. Smart Switches. https://www.amd.com/system/files/documents/
pensando-smartswitches.pdf, 2022.

[43] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. Continuous in-network
round-trip time monitoring. In ACM SIGCOMM, pages 473–485, 2022.

[44] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. Heavy-hitter detection entirely in the data plane.
In ACM SIGCOMM Symposium on SDN Research, pages 164–176, 2017.

[45] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. Lucid: A
language for control in the data plane. In ACM SIGCOMM Conference, pages
731–747, 2021.

[46] Peng Sun, Minlan Yu, Michael J Freedman, and Jennifer Rexford. Identifying
performance bottlenecks in cdns through tcp-level monitoring. In Proceedings of
the first ACM SIGCOMM workshop on Measurements up the stack, pages 49–54,
2011.

[47] Suricata. Suricata - eBPF and XDP. https://suricata.readthedocs.io/en/
latest/capture-hardware/ebpf-xdp.html, 2018.

102

https://www.amd.com/en/accelerators/pensando
https://www.amd.com/en/accelerators/pensando
https://www.amd.com/system/files/documents/pensando-smartswitches.pdf
https://www.amd.com/system/files/documents/pensando-smartswitches.pdf
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html

[48] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. NetBouncer: Active device and link failure
localization in data center networks. In USENIX Networked Systems Design and
Implementation, pages 599–614, 2019.

[49] The Linux Foundation. https://www.dpdk.org/.

[50] The P4 Language Consortium. P416 language specification. https://p4.org/

p4-spec/docs/P4-16-v1.1.0-spec.html, November 2018.

[51] Bryan Veal, Kang Li, and David Lowenthal. New methods for passive estimation
of TCP round-trip times. In International Workshop on Passive and Active
Network Measurement, pages 121–134. Springer, 2005.

[52] Verizon. IP latency statistics. https://enterprise.verizon.com/terms/

latency/, 2021. Accessed: 2021-10-29.

[53] Verizon. Service level agreements. http://www.verizonenterprise.com/

solutions/public_sector/state_local/contracts/calnet3/sla/, 2021.
Accessed: 2021-10-29.

[54] Yi Wang, Guohan Lu, and Xing Li. A study of Internet packet reordering. In
International Conference on Information Networking, pages 350–359. Springer,
2004.

[55] Xilinx. Adaptive infrastructure acceleration. https://www.xilinx.com/

applications/data-center/network-acceleration.html.

[56] Yufei Zheng, Xiaoqi Chen, Mark Braverman, and Jennifer Rexford. Unbiased
delay measurement in the data plane. In Symposium on Algorithmic Principles
of Computer Systems (APOCS), pages 15–30. SIAM, 2022.

[57] Yufei Zheng, Huacheng Yu, and Jennifer Rexford. Detecting tcp packet reorder-
ing in the data plane. arXiv preprint arXiv:2301.00058, 2022.

103

https://www.dpdk.org/
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://enterprise.verizon.com/terms/latency/
https://enterprise.verizon.com/terms/latency/
http://www.verizonenterprise.com/solutions/public_sector/state_local/contracts/calnet3/sla/
http://www.verizonenterprise.com/solutions/public_sector/state_local/contracts/calnet3/sla/
https://www.xilinx.com/applications/data-center/network-acceleration.html
https://www.xilinx.com/applications/data-center/network-acceleration.html

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Bibliographic Notes
	1 Introduction
	1.1 Network Performance Monitoring
	1.1.1 Active Probing vs. Passive Monitoring
	1.1.2 Performance Metrics
	1.1.2.1 Round-trip delay
	1.1.2.2 TCP packet reordering

	1.2 Performance Monitoring in the Data Plane
	1.3 Challenges in Designing Data-plane Algorithms for Performance Measurement
	1.4 Contributions

	2 Unbiased Delay Measurement in the Data Plane
	2.1 Passive Delay Monitoring Problem
	2.1.1 Simple delay monitoring.
	2.1.2 Bias against large delays.
	2.1.3 The delay distribution.

	2.2 Unbiased Delay Estimation
	2.2.1 Correcting for survivorship bias.
	2.2.2 Single fridge algorithm.
	2.2.2.1 Probability of survival.
	2.2.2.2 Approximated CDF.

	2.2.3 Tuning the entry probability (p).

	2.3 Expanding Beyond a Single Fridge
	2.3.1 Using many pipeline stages per fridge.
	2.3.2 Using multiple fridges.

	2.4 Evaluation
	2.4.1 Comparison with simple algorithm.
	2.4.2 Choosing the best entry probability.
	2.4.3 Beyond a single fridge.

	2.5 Hardware Implementation
	2.5.1 Implementing the fridge table
	2.5.2 Correcting the bias
	2.5.3 Prototype evaluation

	2.6 Related Work
	2.7 Conclusion

	3 Detecting TCP Packet Reordering in the Data Plane
	3.1 Problem Formulation: Identify Heavy Out-of-Order IP Prefixes
	3.1.1 Flow-level reordering statistics
	3.1.1.1 Definitions at the flow level
	3.1.1.2 A strawman solution for identifying out-of-order heavy flows
	3.1.1.3 Memory lower bound for identifying out-of-order heavy flows

	3.1.2 Prefix-level reordering statistics
	3.1.2.1 Problem statement
	3.1.2.2 Bypassing memory lower bound

	3.2 Traffic Characterization
	3.2.1 Heavy-tailed size and out-of-orderness
	3.2.2 Correlation among flows in a prefix
	3.2.3 Packet inter-arrival times within a flow

	3.3 Data-Plane Data Structures for Out-of-Order Monitoring
	3.3.1 Sample flows over short periods
	3.3.1.1 Flow sampling with array
	3.3.1.2 Performance guarantee
	3.3.1.3 Decrease the number of false positives

	3.3.2 Separate large flows
	3.3.3 Track heavy flows over long periods

	3.4 Evaluation
	3.4.1 Performance comparisons
	3.4.1.1 Metrics
	3.4.1.2 Performance evaluation
	3.4.1.3 Performance discrepancies of the flow-sampling algorithm under different workloads

	3.4.2 Hardware feasibility
	3.4.3 Parameter robustness

	3.5 Related work
	3.6 Conclusion

	4 An Analysis of Random Admission Policy
	4.1 Background
	4.2 Deriving the Performance Bound
	4.2.1 Preliminaries
	4.2.2 Case (I)
	4.2.3 Case (II)
	4.2.4 Case (III)
	4.2.5 Aggregating all cases

	4.3 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Future Directions
	5.3 Final Remarks

	Bibliography

