
Compact algorithms for
measuring network performance

Yufei Zheng

Examiners: Jennifer Rexford (adviser), Maria Apostolaki, and Mark Braverman

Readers: Huacheng Yu and David Hay

FPO August 22, 2024

Performance monitoring is important

• Identify bottlenecks and latency issues

• Optimize network for peak efficiency

• Pinpoint congested paths

• Identify security threats

• Route traffic away from malicious paths

1

Traditional performance monitoring: Active probing

probe
Send probe

2

Traditional performance monitoring: Active probing

probe
processing

Traditional performance monitoring: Active probing

probe
Gather info

Traditional performance monitoring: Active probing

• Probes add excessive traffic

• Performance of probes not necessarily representative

• Access network or end-host issues may dominate

high priority

low priority

5

6

Passive monitoring – analyzing existing traffic

• No impact on the performance of a network

• Realistic view of network utilization and congestion

7

A flow refers to a sequence of packets that belong to a

communication session

Flow 1 Flow 2

Share common attributes:

src and dst IPs

src and dst ports

protocol type

8

To measure network performance, each packet must be

processed in conjunction with its predecessor in the

same flow.

We can focus on TCP

• TCP packets contain crucial information (src & dst ports, SEQ#, ACK#, flags)

• Makes it possible to identify flows and compute metrics

• Provides context for the network behavior observed

• Widely used, accounts for the vast majority of network traffic

9

Performance metrics

client server

time

delay

SEQ=5SEQ=8

reordered

TCP packet reorderingRound-trip delay

10

Programmable data plane

Flexible parsing

Arrays

Simple arithmetic

operations

Extract header fields⇒

⇒ Keep state across successive packets of the same flow

⇒ Compute time differences, tally counts

11

Data plane restrictions

• Limited amount of memory compared to the #concurrent flows

• Can only access memory a few times per packet

• Tasks share limited memory resources

• Limited bandwidth for communicating with control plane

12

Previous work on measuring volume-based metrics

13

Sketch-based algos

𝑥

+1

+1

+1

+1

ℎ1 𝑥

ℎ2 𝑥

ℎ3 𝑥

ℎ4 𝑥

Counter-based algos

id count

subset of traffic

Match packets

from the same flow

Lack performance guarantees!

performance metrics

for heavy flows

We also need new algorithms

• TCP packet reordering: overlook congestion on paths with no heavy

flow

• Delay monitoring: no notion of heaviness

14

Also not always enough to focus on heavy flows

Thesis outline

15

§ 2: Unbiased delay measurement

§ 3: TCP packet reordering

§ 4: Analysis of Random Admission Policy

What is delay

client server

time

delay

packets
requests

responses

>5% of the round-trip

delays exceeds 50ms?

Client & ISP

16

Data-plane

algorithm

Output

An approx ෠𝐹 𝑡 of
ground truth delay
CDF 𝐹 𝑡

Input

A stream of
𝐼𝐷, ts, 𝑟𝑒𝑞/𝑟𝑒𝑠𝑝

Problem statement

17

Assumptions

• Each request has

• Unique ID

• ≤ 1 matching response

• Each matching pair of packets 𝑖, 𝑗

• 𝐼𝐷𝑖 = 𝐼𝐷𝑗

• Delay 𝑡𝑗 − 𝑡𝑖

delay

𝑡𝑗 − 𝑡𝑖

orphaned

request

18

A simple algo - inserting requests

ID Timestamp

Hash-indexed array

𝑰𝑫𝒊, 𝒕𝒊, 𝒓𝒆𝒒

𝒉 𝑰𝑫𝒊

𝑰𝑫𝒌 𝒕𝒌

𝑰𝑫𝒊 𝒕𝒊

Chen, Kim, Aman, Chang, Lee & Rexford’20

Insert to an

empty slot

19

ID Timestamp

A simple algo - inserting requests

Chen, Kim, Aman, Chang, Lee & Rexford’20

Hash-indexed array

𝑰𝑫𝒋, 𝒕𝒋, 𝒓𝒆𝒒 𝒉 𝑰𝑫𝒋

Overwrite

existing record

(evict and insert)

𝑰𝑫𝒌 𝒕𝒌

𝑰𝑫𝒊 𝒕𝒊

𝑰𝑫𝒋 𝒕𝒋

20

ID Timestamp

A simple algo - inserting requests

Chen, Kim, Aman, Chang, Lee & Rexford’20

Hash-indexed array

𝑰𝑫𝒊, 𝒕𝒊′, 𝒓𝒆𝒒

𝒉 𝑰𝑫𝒊

Delay
samples

Match!

Report 𝑡𝑖
′ − 𝑡𝑖

𝒕𝒊
′ − 𝒕𝒊

𝑰𝑫𝒋 𝒕𝒋

𝑰𝑫𝒊 𝒕𝒊

21

A simple algo – generating CDF

Delay
samples

𝒕𝟏

𝒕𝟐

𝒕𝟑

𝒕𝟒

𝒕𝟓

counter += 𝟏

0

Frequency

Delay

Frequency estimators (PDF) CDF

0 Delay

Cumulative
probability

1

22

Bias against large delays

Bi-directional campus trace, memory size M = 216
23

𝒕𝒌𝑰𝑫𝒌

ID Timestamp

Survivorship bias against large delays

• Why hard to sample a higher delay?

• Request stays in memory longer

• Records in memory overwritten on hash collisions

• More vulnerable to evictions Hash-indexed array

𝑰𝑫𝒋, 𝒕𝒋, 𝒓𝒆𝒒 𝒉 𝑰𝑫𝒋

𝑰𝑫𝒊 𝒕𝒊

24

Attempts to mitigate bias

• Favor existing entries in memory

• Orphaned requests fill up memory

• Few new samples

• Use time threshold

• Hard to tune threshold to use memory

efficiently while generating good approx CDF

𝑰𝑫𝒌 𝒕𝒌

𝑰𝑫𝒋

𝑰𝑫𝒍

𝒕𝒋

𝒕𝒍

Hash-indexed array

𝑰𝑫𝒎, 𝒕𝒎, 𝒓𝒆𝒒 𝒉 𝑰𝑫𝒎

𝑰𝑫𝒊 𝒕𝒊

Expired!

Threshold 100ms

ID Timestamp

25

counter += 𝟏

0

Frequency

Delay𝒕𝟏

Main idea – correction factor

representative

Should be larger

Correction factor

⟹

unbiased frequency

Overwrite on hash collisions + correct for bias

sampled w.p. 𝑞

count as
1

𝑞
 samples

𝟏

𝒒

26

Main idea – fridge- 𝑴, 𝒑

a hash-indexed array of size 𝑀 with entering probability 𝑝

𝟎

’time’ in

fridge

Expected ‘lifetime’
𝑴

𝒑

Samples with

large variance

Good samples

27

Computing correction factor

a sample that survives 𝒙 number of insertions between its 𝒓𝒆𝒒 and 𝒓𝒆𝒔𝒑

(1) Its request enters fridge (2) The 𝑥 insertions into

the fridge do not collide

with its record

𝒑 𝟏 −
𝒑

𝑴

𝒙

Independent events:

ℙ
collecting a sample that

survives 𝑥 insertions
=

⟹ Correction factor = 𝒑−𝟏 𝟏 −
𝒑

𝑴

−𝒙

28

Single-fridge algo – generating reports

ID Timestamp
Insertion

count

Global

insertion

counter

Fridge- 𝑴, 𝒑

= 𝒙𝒋

𝑰𝑫𝒊 𝒕𝒊 𝒙𝒊

𝑰𝑫𝒋 𝒕𝒋 𝒙𝒋

𝑰𝑫𝒋, 𝒕𝒋, 𝒓𝒆𝒒

𝒉 𝑰𝑫𝒋

+𝟏

29

ID Timestamp
Insertion

count

Single-fridge algo – generating reports

Fridge- 𝑴, 𝒑

= 𝒙𝒋

𝒉 𝑰𝑫𝒊

Delay
samples

Correction factors

𝒕𝒊
′ − 𝒕𝒊 𝒑−𝟏 𝟏 −

𝒑

𝑴

− 𝒙𝒋−𝒙𝒊

𝑰𝑫𝒊, 𝒕𝒊′, 𝒓𝒆𝒔𝒑

Survives 𝑥𝑗 − 𝑥𝑖 insertions
Global

insertion

counter

𝑰𝑫𝒋 𝒕𝒋 𝒙𝒋

𝑰𝑫𝒊 𝒕𝒊 𝒙𝒊

30

Single-fridge algo – combining reports

• 𝒇 𝒕 = # request/response pairs in the stream with delay 𝑡

 Frequency estimator ෠𝒇 𝒕 = σ correction factors of delay 𝑡

 ෠𝒇 𝒕 unbiased, variance known

• Obtain approximated CDF ෡𝑭 𝒕 from ෠𝒇 𝒕

31

Distance metric: 𝐥𝐨𝐠𝟐
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝 𝐝𝐞𝐥𝐚𝐲 𝐚𝐭 %𝐭𝐢𝐥𝐞

𝐆𝐫𝐨𝐮𝐧𝐝 𝐭𝐫𝐮𝐭𝐡 𝐝𝐞𝐥𝐚𝐲 𝐚𝐭 %𝐭𝐢𝐥𝐞

Bi-directional campus trace, memory size 𝑀 = 216
32

෠𝒇𝟏 𝒕 ෠𝒇𝒌 𝒕 ෠𝒇𝑵 𝒕

Unbiased

frequency

estimators

Counter

ID TS IC

Fridge- 𝑴𝟏, 𝒑𝟏

D CF

Single-fridge algo

Counter

ID TS IC

Fridge- 𝑴𝒌, 𝒑𝒌

D CF

Single-fridge algo

Counter

ID TS IC

Fridge- 𝑴𝑵, 𝒑𝑵

D CF

Single-fridge algo

Multi-fridge algo

33

A reordered packet

𝒇, 𝒔𝟏, 𝒕𝟏

Flow ID

SEQ number

Timestamp

𝑺𝒇 = 𝒇, 𝒔𝒊, 𝒕𝒊 𝒊=𝟏

𝑵𝒇
Set of packets of flow 𝑓

𝒇, 𝒔𝟐, 𝒕𝟐 𝒇, 𝒔𝟑, 𝒕𝟑 𝒇, 𝒔𝟒, 𝒕𝟒

𝒕𝒊 < 𝒕𝒊+𝟏Sorted by time

𝑖-th packet of 𝑓 is out-of-order (reordered) if 𝒔𝒊 < 𝒔𝒊−𝟏

34

TCP packet reordering

• Congestion cause TCP to lose

packets and trigger retransmissions

• Symptom of a congestion problem

• Flaky equipment reorder packets

• TCP endpoints assumes packets

loss, overreacts to perceived

congestion

• Cause of a performance problem

TCP-induced Network-induced

No need to distinguish, want to detect both!

35

vantage
point

destination
hosts

Which path is experiencing performance problems?

36

Identifying out-of-order heavy flows

Flow ID SEQ# #reorderd Flow size

𝑓 5 1 5𝒇, 𝒔 = 𝟑, 𝒕 𝟑 < +𝟏 +𝟏𝟑

37

Memory lower bound

Reordering only in black flow 𝑓

𝒔 = 𝟓 𝒔 = 𝟐 𝒔 = 𝟒 𝒔 = 𝟑 𝒔 = 𝟏

𝑓 low-rate, long-lived ⇒ Expensive to identify 𝑓

Detecting flow 𝑓 needs memory linear in the total number of flows,

even with randomness and approximation

Hard to match packets spanning a long period of time, with small memory!

38

Identifying out-of-order heavy prefixes

• Reordering is a property of a network path

• Routing decisions made at prefix level

A prefix 𝑔 is out-of-order heavy

if more than 𝜀 fraction of its packets are our-of-order.

Problem statement

39

(1) Report out-of-order heavy prefixes with size at least 𝛽

(2) Avoid reporting prefixes with size at most 𝛼 (𝛼 < 𝛽)

Intricacies in traffic distribution

⇒ Infeasible to study all flows from a prefix and aggregate

1. Memory lower bound

2. If each prefix of interest has at least one heavily reordered large flow

⇒ Existing counter-based heavy-hitter algo could help

Not the case

in reality!

40

Color:

prefix size

Left half:

flow size distribution in a prefix

Right half:

the fraction of reordered packets

coming from flows of what size

A violin:

a prefix of interest

41

Color:

prefix size

Left half:

flow size distribution in a prefix

Right half:

the fraction of reordered packets

coming from flows of what size
Wide variation of flow sizes

orders-of-magnitude

different

Largest flows in a heavily reordered prefix

do not necessarily contain most of the out-

of-order packets

42

Correlation comes to the rescue

The fraction of out-of-order packets in a prefix is positively correlated

with that of a flow within the prefix.

𝒇𝟏

𝒇𝟐

𝒇𝟑

Flows 𝒇𝟏 and 𝒇𝟐 correlated in

their out-of-orderness

Correlation weak due to

parallel paths
/24 hosts

vantage
point

43

A positive but weak correlation exists for all tested traces on all timescales

44

Indication of weak correlation

PCC = 𝟎 PCC = 𝟏PCC ≈ 𝟎. 𝟑

Out-of-orderness of a flow is statistically

identical to that of its prefix

⇒ observe one flow per prefix

Observing one flow provides

no info about its prefix

⇒ observe almost all flows

Our algorithm

45

Flow-sampling algorithm

Flow ID SEQ# #reorderd Flow size Timestamp

Hash-indexed array

Sample as many flows as possible, over a short period at a time

46

Algo: buckets

Flow ID SEQ# #reorderd Flow size Timestamp

Hash-indexed array

bucket

Independent

buckets

47

Algo: memory allocation

Flow ID SEQ# #reorderd Flow size Timestamp

Hash-indexed array

Prevent prefixes with a huge number of flows

from dominating the data structure

𝒇, 𝒔, 𝒕
𝒉 𝒈

⇐
Allocate memory at the

prefix level

48

Algo: Conditional overwrite

Flow ID SEQ# #reorderd Flow size Timestamp

𝒇′ 𝒔′ 𝒐′ 𝒏′ 𝒕′

Fix one bucket

𝒇, 𝒔, 𝒕

Overwrite only if:

a) 𝑓′ is stale: 𝑡 − 𝑡′ > timeout 𝑇

b) The bucket has seen many packets from 𝑓′ : 𝑛′ > count 𝐶

c) 𝑓′ might belong to a prefix with heavy reordering: 𝑜′ > count 𝑅

49

Algo: Report

Flow ID SEQ# #reorderd Flow size Timestamp

𝒇′ 𝒔′ 𝒐′ > 𝑹 𝒏′ 𝒕′

Fix one bucket

𝒇, 𝒔, 𝒕

𝒈′, 𝒏′, 𝒐′

Prefix Prefix size #reorderd

𝒈′ 𝑵′ 𝑶′

Control-plane tally

Output 𝑔′ if 𝑁′ + 𝑛′ ≥ α

50

Hash collisions are not so bad

ID SEQ# #OOO FS TS

Fix one bucket𝒇𝟏

𝒇𝟐

𝒇𝒏

Colliding with 𝑓2 does not decrease expected #checks 𝑓1 gets

51

Hybrid Scheme

fID SEQ# #OOO FS TS

Flow sampling

fID SEQ# #OOO FS fID SEQ# #OOO FS

Only admit flows not monitored

in the heavy-hitter data structure
Keep track of heaviness and reordering

Counter-based heavy-hitter data structure

52

#flows#prefixes

The flow-sampling algorithm

achieves great accuracy with small memory.

The hybrid scheme

improves the accuracy when given more memory.

53

To conclude the applied part of the talk:

• Hardware implementations available for programmable switch

• Leveraging probabilistic techniques to work with constraints

• Measuring unbiased stats for ‘match-over-time’ queries

• Correcting for survivorship bias

• The use of correlation

54

Random Admission Policy

55

ID cnt

Initialize 𝑚

empty buckets

0

0

0

56

ID cnt

5

10

3

𝒙 𝒙

𝒛

𝒚

Random Admission Policy

57

ID cnt

5

10

3

𝒖 𝒙

𝒛

𝒚

min counter

w.p.
1

𝑐𝑛𝑡𝑉𝑎𝑙+1
=

1

4

Random Admission Policy

58

Eventually we want to understand the performance of PRECISION

1) Random admission, as in the RAP algo

2) Approximating the global minimum to reduce the #memory accesses

Data-plane friendly

Previous analysis of RAP

• Constant entering probability

• Previous results do not transfer to the actual RAP algo

• Over i.i.d. Zipfian input streams

• Restrictive due to time-locality

59

We consider arbitrarily ordered streams

Our result

60

Assumptions:

(1) 𝑘 heavy elements, each of frequence 𝑓

(2) 𝜀𝑘𝑓 distinct light elements, for some small 𝜀 < 1

Given 𝜀 < 10−7, RAP algorithm with 𝑘 buckets stores at least 0.65𝑘 heavy elements

at the end of the stream, with probability at least 0.7.

Can relax these assumptions!

61

Buckets with large counter values are likely to be storing heavy elements

Suffices to show: constant fraction of large counters at the end

62

Challenges in analyzing RAP:

(1) Updating counters deterministically

(2) Overtaking counters randomly with varying probabilities

Case I: large total counter value

many steps where counters are incremented deterministically

a large fraction of counters are large

ID cnt
𝑥 𝑥 𝑥 𝑥 𝑥

the 𝑡-th occurrence of 𝑥 good

Average gap O 𝑘

63

𝒙

Whether the counter value increases fast is related to

how bunched up the occurrences are

Case II: many steps where the smallest counter

 is storing a good occurrence

Even the smallest counter value would be large at EOS

Case III:

1. Not many steps where the smallest counter is storing a good occurrence

2. Total counter value not large

stream

good occurrences make up a constant fraction of the stream

stage 𝑗: the smallest counter value ∈ 2𝑗 , 2𝑗+1

Not many steps where counters are increased deterministically

∃ some stage, #counters storing

good occurrences is increased by

more than 2𝑘 “in expectation”

With some

probability,

contradiction

64

	intro
	Slide 0: Compact algorithms for measuring network performance
	Slide 1: Performance monitoring is important
	Slide 2: Traditional performance monitoring: Active probing
	Slide 3: Traditional performance monitoring: Active probing
	Slide 4: Traditional performance monitoring: Active probing
	Slide 5: Traditional performance monitoring: Active probing
	Slide 6
	Slide 7
	Slide 8
	Slide 9: We can focus on TCP
	Slide 10: Performance metrics
	Slide 11: Programmable data plane
	Slide 12: Data plane restrictions
	Slide 13: Previous work on measuring volume-based metrics
	Slide 14: We also need new algorithms
	Slide 15: Thesis outline

	unbiased-rtt
	Slide 16: What is delay
	Slide 17: Problem statement
	Slide 18: Assumptions
	Slide 19: A simple algo - inserting requests
	Slide 20: A simple algo - inserting requests
	Slide 21: A simple algo - inserting requests
	Slide 22: A simple algo – generating CDF
	Slide 23: Bias against large delays
	Slide 24: Survivorship bias against large delays
	Slide 25: Attempts to mitigate bias
	Slide 26: Main idea – correction factor
	Slide 27: Main idea – fridge-M , p
	Slide 28: Computing correction factor
	Slide 29: Single-fridge algo – generating reports
	Slide 30: Single-fridge algo – generating reports
	Slide 31: Single-fridge algo – combining reports
	Slide 32
	Slide 33: Multi-fridge algo

	reordering
	Slide 34: A reordered packet
	Slide 35: TCP packet reordering
	Slide 36
	Slide 37: Identifying out-of-order heavy flows
	Slide 38: Memory lower bound
	Slide 39: Identifying out-of-order heavy prefixes
	Slide 40: Intricacies in traffic distribution
	Slide 41
	Slide 42
	Slide 43: Correlation comes to the rescue
	Slide 44
	Slide 45: Indication of weak correlation
	Slide 46: Flow-sampling algorithm
	Slide 47: Algo: buckets
	Slide 48: Algo: memory allocation
	Slide 49: Algo: Conditional overwrite
	Slide 50: Algo: Report
	Slide 51: Hash collisions are not so bad
	Slide 52: Hybrid Scheme
	Slide 53
	Slide 54: To conclude the applied part of the talk:

	rap
	Slide 55: Random Admission Policy
	Slide 56: Random Admission Policy
	Slide 57: Random Admission Policy
	Slide 58
	Slide 59: Previous analysis of RAP
	Slide 60: Our result
	Slide 61
	Slide 62
	Slide 63
	Slide 64

