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Performance monitoring is important

• Identify bottlenecks and latency issues

• Optimize network for peak efficiency

• Pinpoint congested paths

• Identify security threats

• Route traffic away from malicious paths
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Traditional performance monitoring: Active probing

probe
Send probe

2



Traditional performance monitoring: Active probing

probe
processing



Traditional performance monitoring: Active probing

probe
Gather info



Traditional performance monitoring: Active probing

• Probes add excessive traffic

• Performance of probes not necessarily representative

• Access network or end-host issues may dominate

high priority

low priority
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Passive monitoring – analyzing existing traffic

• No impact on the performance of a network

• Realistic view of network utilization and congestion
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A flow refers to a sequence of packets that belong to a 

communication session

Flow 1 Flow 2

Share common attributes:

src and dst IPs

src and dst ports

protocol type
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To measure network performance, each packet must be 

processed in conjunction with its predecessor in the 

same flow.



We can focus on TCP

• TCP packets contain crucial information (src & dst ports, SEQ#, ACK#, flags)

• Makes it possible to identify flows and compute metrics

• Provides context for the network behavior observed

• Widely used, accounts for the vast majority of network traffic
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Performance metrics

client server

time

delay

SEQ=5SEQ=8

reordered

TCP packet reorderingRound-trip delay
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Programmable data plane

Flexible parsing

Arrays

Simple arithmetic 

operations

Extract header fields⇒

⇒ Keep state across successive packets of the same flow

⇒ Compute time differences, tally counts

11



Data plane restrictions

• Limited amount of memory compared to the #concurrent flows

• Can only access memory a few times per packet

• Tasks share limited memory resources

• Limited bandwidth for communicating with control plane
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Previous work on measuring volume-based metrics
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Sketch-based algos

𝑥

+1

+1

+1

+1

ℎ1 𝑥

ℎ2 𝑥

ℎ3 𝑥

ℎ4 𝑥

Counter-based algos

id count

subset of traffic

Match packets 

from the same flow

Lack performance guarantees!

performance metrics 

for heavy flows



We also need new algorithms

• TCP packet reordering: overlook congestion on paths with no heavy 

flow

• Delay monitoring: no notion of heaviness
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Also not always enough to focus on heavy flows



Thesis outline
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§ 2: Unbiased delay measurement

§ 3: TCP packet reordering

§ 4: Analysis of Random Admission Policy



What is delay

client server

time

delay

packets
requests

responses

>5% of the round-trip 

delays exceeds 50ms?

Client & ISP
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Data-plane 

algorithm

Output

An approx ෠𝐹 𝑡  of 
ground truth delay 
CDF 𝐹 𝑡

Input

A stream of 
𝐼𝐷, ts, 𝑟𝑒𝑞/𝑟𝑒𝑠𝑝  

Problem statement
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Assumptions

• Each request has

• Unique ID

• ≤ 1 matching response

• Each matching pair of packets 𝑖, 𝑗

• 𝐼𝐷𝑖 = 𝐼𝐷𝑗

• Delay 𝑡𝑗 − 𝑡𝑖

delay 

𝑡𝑗 − 𝑡𝑖

orphaned 

request
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A simple algo - inserting requests

ID Timestamp

Hash-indexed array

𝑰𝑫𝒊, 𝒕𝒊, 𝒓𝒆𝒒

𝒉 𝑰𝑫𝒊

𝑰𝑫𝒌 𝒕𝒌

𝑰𝑫𝒊 𝒕𝒊

Chen, Kim, Aman, Chang, Lee & Rexford’20

Insert to an 

empty slot
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ID Timestamp

A simple algo - inserting requests

Chen, Kim, Aman, Chang, Lee & Rexford’20

Hash-indexed array

𝑰𝑫𝒋, 𝒕𝒋, 𝒓𝒆𝒒 𝒉 𝑰𝑫𝒋

Overwrite 

existing record

(evict and insert) 

𝑰𝑫𝒌 𝒕𝒌

𝑰𝑫𝒊 𝒕𝒊

𝑰𝑫𝒋 𝒕𝒋
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ID Timestamp

A simple algo - inserting requests

Chen, Kim, Aman, Chang, Lee & Rexford’20

Hash-indexed array

𝑰𝑫𝒊, 𝒕𝒊′, 𝒓𝒆𝒒

𝒉 𝑰𝑫𝒊

Delay 
samples

Match! 

Report 𝑡𝑖
′ − 𝑡𝑖

𝒕𝒊
′ − 𝒕𝒊

𝑰𝑫𝒋 𝒕𝒋

𝑰𝑫𝒊 𝒕𝒊
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A simple algo – generating CDF

Delay 
samples

𝒕𝟏

𝒕𝟐

𝒕𝟑

𝒕𝟒

𝒕𝟓

counter += 𝟏

0

Frequency

Delay

Frequency estimators (PDF) CDF

0 Delay

Cumulative 
probability

1
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Bias against large delays

Bi-directional campus trace, memory size M = 216
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𝒕𝒌𝑰𝑫𝒌

ID Timestamp

Survivorship bias against large delays

• Why hard to sample a higher delay?

• Request stays in memory longer

• Records in memory overwritten on hash collisions

• More vulnerable to evictions Hash-indexed array

𝑰𝑫𝒋, 𝒕𝒋, 𝒓𝒆𝒒 𝒉 𝑰𝑫𝒋

𝑰𝑫𝒊 𝒕𝒊
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Attempts to mitigate bias

• Favor existing entries in memory

• Orphaned requests fill up memory

• Few new samples

• Use time threshold

• Hard to tune threshold to use memory 

efficiently while generating good approx CDF

𝑰𝑫𝒌 𝒕𝒌

𝑰𝑫𝒋

𝑰𝑫𝒍

𝒕𝒋

𝒕𝒍

Hash-indexed array

𝑰𝑫𝒎, 𝒕𝒎, 𝒓𝒆𝒒 𝒉 𝑰𝑫𝒎

𝑰𝑫𝒊 𝒕𝒊

Expired!

Threshold 100ms

ID Timestamp
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counter += 𝟏

0

Frequency

Delay𝒕𝟏

Main idea – correction factor

representative

Should be larger

Correction factor

⟹

unbiased frequency

Overwrite on hash collisions + correct for bias

sampled w.p. 𝑞

count as 
1

𝑞
 samples

𝟏

𝒒
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Main idea – fridge- 𝑴, 𝒑

a hash-indexed array of size 𝑀 with entering probability 𝑝

𝟎

’time’ in 

fridge

Expected ‘lifetime’ 
𝑴

𝒑

Samples with 

large variance

Good samples

27



Computing correction factor

a sample that survives 𝒙 number of insertions between its 𝒓𝒆𝒒 and 𝒓𝒆𝒔𝒑

(1) Its request enters fridge (2) The 𝑥 insertions into 

the fridge do not collide 

with its record

𝒑 𝟏 −
𝒑

𝑴

𝒙

Independent events:

ℙ
collecting a sample that

survives 𝑥 insertions
=

⟹ Correction factor = 𝒑−𝟏 𝟏 −
𝒑

𝑴

−𝒙
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Single-fridge algo – generating reports

ID Timestamp
Insertion

count

Global 

insertion 

counter

Fridge- 𝑴, 𝒑

= 𝒙𝒋

𝑰𝑫𝒊 𝒕𝒊 𝒙𝒊

𝑰𝑫𝒋 𝒕𝒋 𝒙𝒋

𝑰𝑫𝒋, 𝒕𝒋, 𝒓𝒆𝒒

𝒉 𝑰𝑫𝒋

+𝟏
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ID Timestamp
Insertion

count

Single-fridge algo – generating reports

Fridge- 𝑴, 𝒑

= 𝒙𝒋

𝒉 𝑰𝑫𝒊

Delay 
samples

Correction factors

𝒕𝒊
′ − 𝒕𝒊 𝒑−𝟏 𝟏 −

𝒑

𝑴

− 𝒙𝒋−𝒙𝒊

𝑰𝑫𝒊, 𝒕𝒊′, 𝒓𝒆𝒔𝒑

Survives 𝑥𝑗 − 𝑥𝑖 insertions
Global 

insertion 

counter

𝑰𝑫𝒋 𝒕𝒋 𝒙𝒋

𝑰𝑫𝒊 𝒕𝒊 𝒙𝒊
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Single-fridge algo – combining reports

• 𝒇 𝒕 = # request/response pairs in the stream with delay 𝑡

   Frequency estimator ෠𝒇 𝒕 = σ correction factors of delay 𝑡

   ෠𝒇 𝒕  unbiased, variance known

• Obtain approximated CDF ෡𝑭 𝒕  from ෠𝒇 𝒕
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Distance metric:  𝐥𝐨𝐠𝟐
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝 𝐝𝐞𝐥𝐚𝐲 𝐚𝐭 %𝐭𝐢𝐥𝐞

𝐆𝐫𝐨𝐮𝐧𝐝 𝐭𝐫𝐮𝐭𝐡 𝐝𝐞𝐥𝐚𝐲 𝐚𝐭 %𝐭𝐢𝐥𝐞

Bi-directional campus trace, memory size 𝑀 = 216
32



෠𝒇𝟏 𝒕 ෠𝒇𝒌 𝒕 ෠𝒇𝑵 𝒕

Unbiased 

frequency 

estimators

Counter

ID TS IC

Fridge- 𝑴𝟏, 𝒑𝟏

D CF

Single-fridge algo

Counter

ID TS IC

Fridge- 𝑴𝒌, 𝒑𝒌

D CF

Single-fridge algo

Counter

ID TS IC

Fridge- 𝑴𝑵, 𝒑𝑵

D CF

Single-fridge algo

Multi-fridge algo

33



A reordered packet

𝒇, 𝒔𝟏, 𝒕𝟏

Flow ID

SEQ number

Timestamp

𝑺𝒇 = 𝒇, 𝒔𝒊, 𝒕𝒊 𝒊=𝟏

𝑵𝒇
Set of packets of flow 𝑓

𝒇, 𝒔𝟐, 𝒕𝟐 𝒇, 𝒔𝟑, 𝒕𝟑 𝒇, 𝒔𝟒, 𝒕𝟒

𝒕𝒊 < 𝒕𝒊+𝟏Sorted by time

𝑖-th packet of 𝑓 is out-of-order (reordered) if 𝒔𝒊 < 𝒔𝒊−𝟏
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TCP packet reordering

• Congestion cause TCP to lose 

packets and trigger retransmissions

• Symptom of a congestion problem

• Flaky equipment reorder packets

• TCP endpoints assumes packets 

loss, overreacts to perceived 

congestion

• Cause of a performance problem

TCP-induced Network-induced

No need to distinguish, want to detect both!

35



vantage 
point

destination
hosts

Which path is experiencing performance problems?
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Identifying out-of-order heavy flows

Flow ID SEQ# #reorderd Flow size

𝑓 5 1 5𝒇, 𝒔 = 𝟑, 𝒕 𝟑 < +𝟏 +𝟏𝟑
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Memory lower bound

Reordering only in black flow 𝑓

𝒔 = 𝟓 𝒔 = 𝟐 𝒔 = 𝟒 𝒔 = 𝟑 𝒔 = 𝟏

𝑓 low-rate, long-lived ⇒ Expensive to identify 𝑓 

Detecting flow 𝑓 needs memory linear in the total number of flows, 

even with randomness and approximation

Hard to match packets spanning a long period of time, with small memory!

38



Identifying out-of-order heavy prefixes

• Reordering is a property of a network path

• Routing decisions made at prefix level

A prefix 𝑔 is out-of-order heavy 

if more than 𝜀 fraction of its packets are our-of-order.

Problem statement

39

(1) Report out-of-order heavy prefixes with size at least 𝛽

(2) Avoid reporting prefixes with size at most 𝛼 (𝛼 < 𝛽)



Intricacies in traffic distribution

⇒ Infeasible to study all flows from a prefix and aggregate

1. Memory lower bound

2. If each prefix of interest has at least one heavily reordered large flow

⇒ Existing counter-based heavy-hitter algo could help

Not the case 

in reality!
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Color: 

prefix size

Left half: 

flow size distribution in a prefix

Right half: 

the fraction of reordered packets 

coming from flows of what size

A violin: 

a prefix of interest
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Color: 

prefix size

Left half: 

flow size distribution in a prefix

Right half: 

the fraction of reordered packets 

coming from flows of what size
Wide variation of flow sizes

orders-of-magnitude 

different

Largest flows in a heavily reordered prefix 

do not necessarily contain most of the out-

of-order packets
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Correlation comes to the rescue

The fraction of out-of-order packets in a prefix is positively correlated 

with that of a flow within the prefix.

𝒇𝟏

𝒇𝟐

𝒇𝟑

Flows 𝒇𝟏 and 𝒇𝟐 correlated in 

their out-of-orderness 

Correlation weak due to 

parallel paths 
/24 hosts

vantage 
point

43



A positive but weak correlation exists for all tested traces on all timescales
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Indication of weak correlation

PCC = 𝟎 PCC = 𝟏PCC ≈ 𝟎. 𝟑

Out-of-orderness of a flow is statistically 

identical to that of its prefix

⇒ observe one flow per prefix

Observing one flow provides 

no info about its prefix

⇒ observe almost all flows

Our algorithm
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Flow-sampling algorithm

Flow ID SEQ# #reorderd Flow size Timestamp

Hash-indexed array

Sample as many flows as possible, over a short period at a time
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Algo: buckets

Flow ID SEQ# #reorderd Flow size Timestamp

Hash-indexed array

bucket

Independent

buckets
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Algo: memory allocation

Flow ID SEQ# #reorderd Flow size Timestamp

Hash-indexed array

Prevent prefixes with a huge number of flows 

from dominating the data structure 

𝒇, 𝒔, 𝒕
𝒉 𝒈

⇐
Allocate memory at the 

prefix level 
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Algo: Conditional overwrite

Flow ID SEQ# #reorderd Flow size Timestamp

𝒇′ 𝒔′ 𝒐′ 𝒏′ 𝒕′

Fix one bucket

𝒇, 𝒔, 𝒕

Overwrite only if:

a) 𝑓′ is stale: 𝑡 − 𝑡′ > timeout 𝑇

b) The bucket has seen many packets from 𝑓′ : 𝑛′ > count 𝐶

c) 𝑓′ might belong to a prefix with heavy reordering: 𝑜′ > count 𝑅
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Algo: Report

Flow ID SEQ# #reorderd Flow size Timestamp

𝒇′ 𝒔′ 𝒐′ > 𝑹 𝒏′ 𝒕′

Fix one bucket

𝒇, 𝒔, 𝒕

𝒈′, 𝒏′, 𝒐′  

Prefix Prefix size #reorderd

𝒈′ 𝑵′ 𝑶′

Control-plane tally

Output 𝑔′ if 𝑁′ + 𝑛′ ≥  α
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Hash collisions are not so bad

ID SEQ# #OOO FS TS

Fix one bucket𝒇𝟏

𝒇𝟐

𝒇𝒏

Colliding with 𝑓2 does not decrease expected #checks 𝑓1 gets
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Hybrid Scheme

fID SEQ# #OOO FS TS

Flow sampling

fID SEQ# #OOO FS fID SEQ# #OOO FS

Only admit flows not monitored 

in the heavy-hitter data structure
Keep track of heaviness and reordering

Counter-based heavy-hitter data structure
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#flows#prefixes

The flow-sampling algorithm

achieves great accuracy with small memory.

The hybrid scheme 

improves the accuracy when given more memory.
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To conclude the applied part of the talk:

• Hardware implementations available for programmable switch

• Leveraging probabilistic techniques to work with constraints

• Measuring unbiased stats for ‘match-over-time’ queries

• Correcting for survivorship bias

• The use of correlation
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Random Admission Policy

55

ID cnt

Initialize 𝑚 

empty buckets

0

0

0
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ID cnt

5

10

3

𝒙 𝒙

𝒛

𝒚

Random Admission Policy
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ID cnt

5

10

3

𝒖 𝒙

𝒛

𝒚

min counter

w.p. 
1

𝑐𝑛𝑡𝑉𝑎𝑙+1
=

1

4

Random Admission Policy
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Eventually we want to understand the performance of PRECISION

1) Random admission, as in the RAP algo

2) Approximating the global minimum to reduce the #memory accesses

Data-plane friendly



Previous analysis of RAP

• Constant entering probability

• Previous results do not transfer to the actual RAP algo

• Over i.i.d. Zipfian input streams

• Restrictive due to time-locality

59

We consider arbitrarily ordered streams



Our result

60

Assumptions:

(1) 𝑘 heavy elements, each of frequence 𝑓

(2) 𝜀𝑘𝑓 distinct light elements, for some small 𝜀 < 1

Given 𝜀 < 10−7, RAP algorithm with 𝑘 buckets stores at least 0.65𝑘 heavy elements 

at the end of the stream, with probability at least 0.7.

Can relax these assumptions!
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Buckets with large counter values are likely to be storing heavy elements

Suffices to show: constant fraction of large counters at the end
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Challenges in analyzing RAP:

(1) Updating counters deterministically

(2) Overtaking counters randomly with varying probabilities

Case I: large total counter value

many steps where counters are incremented deterministically

a large fraction of counters are large



ID cnt
𝑥 𝑥 𝑥 𝑥 𝑥

the 𝑡-th occurrence of 𝑥 good

Average gap O 𝑘
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𝒙

Whether the counter value increases fast is related to 

how bunched up the occurrences are

Case II: many steps where the smallest counter 

              is storing a good occurrence

Even the smallest counter value would be large at EOS



Case III:

1. Not many steps where the smallest counter is storing a good occurrence

2. Total counter value not large

stream

good occurrences make up a constant fraction of the stream

stage 𝑗: the smallest counter value ∈ 2𝑗 , 2𝑗+1

Not many steps where counters are increased deterministically

∃ some stage, #counters storing 

good occurrences is increased by 

more than 2𝑘 “in expectation”

With some 

probability, 

contradiction
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