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Abstract

Today’s networks must run a vast array of sophisticated applications that support

services we rely on. These applications provide increased security (e.g., firewalls),

better performance (e.g., congestion detection), and the ability to scale services (e.g.,

caching). The network devices that implement these applications need to operate at

high speeds (100+Gbps) and be flexible enough to adapt applications to changing

requirements. Programmable network devices have emerged as a way to customize

network functionality, while guaranteeing high-speed processing.

Writing applications for programmable devices, however, is notoriously difficult.

Switches have a restrictive architecture to ensure line-rate processing, and their pro-

gramming languages are very low-level. Programmers must understand how many

resources (e.g., memory) each piece of their program requires. Deploying these appli-

cations often requires tedious optimization of their layout, with programmers man-

ually writing, compiling, and testing an implementation, adjusting the design, and

repeating.

To better manage resource allocation, we present P4All, an extension of an exist-

ing programming language that allows programmers to define elastic data structures

that stretch automatically to optimally use available resources. These structures

are defined using symbolic values (that parameterize the size of the structure) and

objective functions (that quantify the affect of size on performance). An optimiza-

tion function specifies how to share resources amongst structures. We also create an

optimizer that automatically finds the best resource allocation.

There are many other choices programmers make beyond resource allocation, some

of which likely depend on the expected workload. To automate those decisions, we

present Parasol, a framework that allows programmers to define general, parame-

terized applications and automatically optimize their parameters. The parameters

can represent a variety of implementation decisions, and may be optimized for high-
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level objectives defined by the programmer. Optimization is tailored to particular

environments using a representative traffic trace.

We implement a diverse set of applications in P4All and Parasol to evaluate the op-

timizers, and we compile the resulting optimized programs to an actual programmable

switch. P4All and Parasol decouple programming languages from data-plane hard-

ware to lift the burden of reasoning about low-level details from programmers and

make it easier to develop applications.
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Chapter 1

Introduction

Computer networks are the foundation of today’s society. Most of our daily lives

involve interacting with services that rely on networks (video streaming, big data

analysis, cloud gaming, etc.), and we expect the network to securely and efficiently

carry out these services. These seemingly simple services that happen almost instan-

taneously are made possible by a complex web of devices that process user traffic,

and the performance of those services is completely dependent on underlying network

devices reliably processing traffic at very high speeds.

Early networks only needed to support communication between a small number

of hosts. However, in the decades following, the number of applications, beyond

just simple communication, reliant on networks exploded—networks were suddenly

responsible for applications that require transmitting massive amounts of data, and

near instantaneous feedback. In the following sections, we explore several categories

of modern applications, explain why traditional networks, designed for basic com-

munication, are not up to the task of supporting these new applications, and the

challenges that come with trying to modernize these traditional networks.
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1.1 Modern Network Applications

As mentioned above, so much of our society relies on applications supported by net-

works. Three categories of popular modern applications are:

• Network management. Applications utilizing networks are only possible if

the networks themselves are functioning properly. Network management appli-

cations ensure that the network is running smoothly, and they help network

operators identify and locate problems within a network. These applications

include telemetry to measure and collect statistics in a network, and auto-

matic adaptation in the network when possible (e.g., active queue management,

rerouting around congestion and/or failures, etc.).

• Services for distributed applications. As more and more users connected

to applications running inside data centers, distributed systems allowed those

applications to scale to many users, all accessing those applications simulta-

neously. The distributed architecture, however, created new challenges that

necessitated new functionality in the network, for coordination and improved

performance (e.g., caching, chain replication, Paxos, etc.).

• Middleboxes. Middleboxes are specialized devices inside the network that

add additional functionality, primarily for security and performance benefits.

Examples of services they provide are firewalls to block malicious traffic, load

balancing to mitigate congestion, network address translation (NAT), and VPN

termination.

These applications must scale to millions of users, who expect minimal delay

and nearly real-time responses. Running them inside the network, instead of at end

hosts (e.g., inside servers in a data center), can make those expectations a reality,

by improving response times, throughput and scalability, along with power consump-

tion [73]. Even just offloading parts of these applications to in-network devices can
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yield significant benefits, such as, for example, accelerating database queries [40, 72]

and neural network inference [60].

Modern applications are very complex, and are constantly changing and develop-

ing to meet the needs of users. As such, the network needs to also change to support

those developments, and network operators need to have the flexibility and control

to facilitate that change. In other words, networks need to be programmable. Unfor-

tunately, conventional network devices are not easily customizable, and are not able

to keep pace with application innovation.

1.2 Shortcomings of Traditional Networks

Networks are made up of a web of interconnected switches, which are specialized

devices meant to forward traffic to the appropriate destinations (e.g., servers, mobile

phones, laptops, etc.). Switches were made to be fixed-function—i.e., operators have

little control over the functionality of the switch beyond packet forwarding. These

switches worked well in early networks, because switches only needed to forward

packets; compute-intensive and advanced applications were typically implemented at

the end-host, leaving the most simple tasks for inside the network [59]. However, with

the advent of applications discussed in 1.1, and the scale and speed at which they

must perform, in-network computing is becoming more essential. In order to change

fixed-functions switches, though, operators cannot just write a program to change

how packets are processed. Changes typically have to be made in the hardware by

the switch vendor, which is a time-consuming, lengthy process that makes it nearly

impossible to deploy new applications in a timely manner.

Software switches, implemented on CPUs, provide more flexibility and control

than fixed-function switches. Packet-processing programs can be written with

general-purpose languages, and software switches have access to plenty of resources

18



and memory. However, processing packets in software is simply too slow; CPUs

cannot keep up with modern link speeds (100+Gbps).

Software-defined networking (SDN) was an initial attempt to bring more pro-

grammability into the network. SDN separates the data plane (simple packet-

forwarding switches) from the control plane (a centralized software program

managing the behavior of the network). The goal is for operators to be able to

program high-level policies in the control plane, which then get deployed in all of the

data-plane devices.

Alongside the introduction of the SDN paradigm was the development of Open-

Flow [51]. OpenFlow is a protocol to program flow tables in switches. When packets

enter a switch, they can match a particular entry in the table (according to some pre-

defined fields, as specified by the control plane), and operators can program specific

actions to take upon a match. OpenFlow was designed to exploit the design features

common among switches from various hardware vendors, so that a network of diverse

devices can be programmed through a single control plane. This, however, limits the

programmability of the switches to only a small set of features. While the control

plane is easily programmable through software, the data plane has lagged behind.

1.3 Programmable Network Devices

Programmable devices [20, 25, 39, 52, 55] were developed to address the limitations

of traditional, fixed-function and software switches. The advent of programmable

network devices has provided network operators the ability to customize the behavior

of switches, paving the way for sophisticated applications that run inside the network

itself, as described in 1.1. They allow operators to deploy new applications directly

on the actual hardware, instead of relying on general-purpose computers (which are

too slow) or depending on switch vendors to add desired features to the hardware.
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Figure 1.1: Protocol Independent Switch Architecture (PISA).

Most importantly, they provide programmability while also guaranteeing the speeds

necessary for modern networks. The switches utilize programmable ASICs, with a

specialized architecture designed to process user traffic at high speed.

1.3.1 Programmable Switch Architecture

Programmable switches, like the Intel Tofino [39], typically implement a Protocol

Independent Switch Architecture (PISA) (Figure 1.1). Such an architecture contains

a programmable packet parser, processing pipeline, and deparser. When a packet

enters the switch, the parser extracts information from the packet and populates

the Packet Header Vector (PHV). The PHV contains information from the packet’s

various fields, such as the source IP, TCP port, etc. that are relevant to the switch’s

task, whether it be routing, monitoring, or load balancing. The PHV also stores

additional per-packet data, or metadata. Metadata often holds temporary values or

intermediate results required by applications deployed on the switch. Finally, the

deparser reverses the function of the parser, using the PHV to reconstitute a packet

and send it on its way.

20



Between parser and deparser sits a feed-forward packet-processing pipeline. This

pipeline consists of a series of stages, and when a packet travels through the pipeline,

it is processed at each stage sequentially. A program may recirculate a packet by

sending it back to the beginning (to allow for additional processing), but too much

recirculation decreases throughput. Each stage contains a fixed set of resources, which

bounds the amount of computation it may perform before the packet moves on to the

next stage. The following is a summary of the resources in a PISA switch:

• Pipeline stages. The processing pipeline is composed of a fixed number (S) of

stages. All actions executed in a stage happen in parallel, so dependent actions

must be in separate stages.

• Packet header vector (PHV). The PHV that carries information from packet

fields and additional per-packet metadata through the pipeline has a fixed width

(P bits).

• Registers. A stage is associated withM bits of registers that serve as persistent

memory.

• Match-action rules. Each stage stores match-action rules in either TCAM or

SRAM (T bits). When a packet’s fields (stored in the PHV) match a rule, an

associated action is performed.

• ALUs. Actions are performed by ALUs associated with a stage. Each stage

has F stateful ALUs (that perform actions requiring registers) and L stateless

ALUs (that do not).

• Hash units. Each stage can perform N hashes at once.

• Recirculation bandwidth. A program may recirculate a packet by sending it

back to the beginning of the pipeline once it leaves the last stage. If too many

packets are recirculated, throughput is decreased.
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As an example of how an application maps to each of these components, assume

a program that counts the number of packets seen for distinct source IP addresses.

When a packet arrives at the switch, it will be parsed according to programmer-

defined rules, and part of the PHV will be used to store the source IP address from

the packet header. Match-action rules decide what action to perform on each packet—

if the switch has seen the IP address before, the packet will match a rule to increment

its corresponding counter. The registers are used to store the counts, as well as the

associated IP address. The ALUs are programmed to perform the appropriate actions

on registers—either retrieving a stored count or updating a counter. The programmer

can use hash units to calculate the index of the registers to access for a particular

packet. Lastly, the packet could be recirculated back to the beginning of the pipeline

for further processing, at the cost of reduced throughput.

1.3.2 Resource-Constrained Hardware

The power of programmable switches comes at a price: the hardware architecture is

notoriously restrictive. This ensures that applications running on the switch (e.g.,

load balancing, telemetry, etc.) can keep up with today’s link speeds and that process-

ing at the switch does not become a bottleneck, but it also means that programmers

often run up against the hardware limits of the switch. Even when switches only im-

plement simple functionality, resources, such as registers for tallying traffic statistics,

are at a premium. For example, in the simple counting example described in 1.3.1,

the switch does not have enough registers to store counts for every possible IP address

it may see.

As a result, programmers have employed several strategies to design applications

that can work within the restrictive hardware constraints, each of which has associated

advantages and disadvantages. Below are three commonly used strategies, which can

be employed by themselves or in combination with each other.
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• Sampling. Instead of measuring or recording every packet processed by a

switch, a program can instead sample a small subset of packets. In the IP

counting example in 1.3.1, the switch would only track a small percentage of

the total IP addresses it sees. While a sample of packets can be used to gather

statistics about user traffic, if the sampling rate is too low, the resulting mea-

surements will likely not be accurately representative.

• Approximation. Approximate, space-saving data structures are often used to

alleviate pressure on switch resources because they keep approximate statistics,

using just a fraction of the memory required for exact measurements. These

structures can provide highly accurate estimations, but they are sensitive to the

resources allocated to them—the less memory they use, the less accurate the

approximations will be.

• Switch + General-Purpose Compute. Instead of only relying on the

switch, applications can utilize general-purpose compute in conjunction with

programmable switches. As mentioned above, general-purpose compute is sig-

nificantly slower than a programmable switch. However, programs running a

switch can send a small number of packets to be processed in software with-

out significant service disruption. The switch, for example, can function as a

cache—the majority of traffic is processed in the data plane, and the rest is sent

for further processing in software. If the amount of traffic sent to software is

too large, though, the application can become prohibitively slow, which negates

the benefit of running an application in the switch.

Writing applications for resource-constrained hardware requires a programmer to

make a plethora of decisions. Data-plane programs can have various parameters

that may significantly affect the program accuracy and performance. For example, a

programmer may use sampling to measure the counts for a subset of the IP addresses
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seen by the switch. The programmer must decide on a sampling rate—too large, and

the switch resources will not be able to support it, but a too small rate will not yield

useful information. Similarly with an approximate data structure, the programmer

must allocate enough memory to get accurate enough estimations, but small enough

to fit within the resource limitations. Lastly, if the programmer takes advantage of

general-purpose compute, the switch must store enough of the IP counts, so as not

to overwhelm the CPU and reduce throughput, without exhausting switch resources.

Determining parameter values is by itself a difficult problem, but it is compounded

when multiple applications are sharing the same switch. For example, it may be useful

have a switch that forwards traffic, along with collecting measurements and running a

firewall, which drops malicious traffic. Writing these applications gets exponentially

more challenging when there are multiple structures, because allocated resources can

be a zero-sum game: giving resources to one structure leaves less for others. The

programmer then has to reason about how to divide resources among them and how

that will affect the performance of each structure individually, and the application as

a whole.

1.4 P4

Because of the unique architecture, general-purpose programming languages like C,

Java, or Python are unsuitable for programmable switches. Instead, switches require

a domain-specific language that better fits the capabilities of the hardware. To this

end, researchers have developed a language for these switches: P4 [10, 57].

P4 has quickly become a key language for programming network data planes.

Using P4, programmers can define their own packet headers and specify how the

data plane should parse and process them [10]. The P4 language helps manage

data-plane resources by providing a layer of abstraction above PISA. A P4 compiler
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maps these higher-level abstractions down to the PISA architecture and organizes the

computation into stages.

The P4 language has a number of constructs that correspond to the hardware

architecture. The following is a summary of the most commonly used constructs:

• Control flow. In a P4 program, the control block describes the processing to

be done on each packet. It contains a sequences of actions, and these actions

must fit within the number of pipeline stages on the target switch.

• Metadata. Programmers can define metadata fields to store data pertain-

ing to a packet. Metadata fields can serve as variables to store the result of

intermediate computations, and are part of the PHV.

• Register arrays + stateful actions. If a program requires persistent mem-

ory, programmers use register arrays to define a data structure (e.g., a hash

table), made up of registers in a stage. Additionally, stateful actions are used

to define what actions can be taken on a register (e.g., incrementing or decre-

menting the stored value, comparing the stored value to a metadata value, etc.).

• Tables. Programmers can use tables to outline what fields in a packet header

to match on, and the corresponding actions to perform upon a match. These

tables are implemented in TCAM on the switch hardware.

• Actions. Actions describe how packet header fields and metadata are manip-

ulated. These can include operations such as addition, subtraction, and bit

shifts, and are performed by ALUs.

• Hash externs. P4 provides support for externs, which can be any hardware-

specific construct. One of the most widely used externs are hash functions,

which are performed with a switch’s hash units.
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Using these constructs, programmers can customize the behavior of a pro-

grammable switch and implement sophisticated applications. In practice, however,

the architecture of programmable switches introduces challenges that P4 cannot

sufficiently address.

1.4.1 Programming Challenges

As discussed in section 1.3.1, programmable data planes have a restrictive architecture

with limited resources, to guarantee line-rate processing of traffic. The restrictive-

ness of the hardware is also very apparent in the language most commonly used to

program switches (P4)—it is very low-level, which forces programmers to specify the

hardware components required by an application. This unfortunately puts the bur-

den of reasoning about resource allocation on programmers. They have to understand

how each component of an application will get mapped to specific hardware resources

and decide how resources should be split among the various components for the best

performance, given a particular environment or workload.

Programs written for programmable switches have very strict requirements—they

must fit within the resources of the hardware, and they must run at line rate. To this

end, programmable switch compilers are responsible for guaranteeing that a program

meets these conditions. If they do not, the program will simply fail to compile, often

giving little to no guidance as to where the problem may be. This is in stark contrast

to other types of programming (e.g., programming for general-purpose compute),

where programmers can write applications that use any number of resources, which

don’t necessarily need to be known at compile time.

This programming paradigm results in a difficult and tedious process. While

writing an application, programmers must hard code the resource allocation and

parameter values (described in 1.3.2) into their program. They then must check if

the allocation is valid given the hardware layout by compiling the program (which
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Data Structure Used in

Key-value store/ hash table Precision [5], Sonata [29], Network-Wide HH [31], Carpe [32],
Sketchvisor [37], LinearRoad [40], NetChain [41], Net-
Cache [42], FlowRadar [48], HashPipe [66], Elastic Sketch [83]

Hash-based matrix (Sketch) AROMA [4], Sketchvisor [37], Sketchlearn [38], NetCache [42],
Nitrosketch [49], UnivMon [50], Sharma et al. [63], Fair Queue-
ing [64], Elastic Sketch [83]

Bloom filter [9] NetCache [42], FlowRadar [48], SilkRoad [53], Sharma et
al. [63]

Multi-value table BeauCoup [17], Blink [36]

Sliding window sketch PINT [6], ConQuest [18]

Ring buffer NetLock [84], Netseer [87]

Table 1.1: PISA data structures.

may take hours or even days [28]). Unfortunately, the first version of an application

is rarely the best one. Consequently, applications often require many revisions and

sometimes weeks’ worth of tweaking parameter values and testing to obtain a variant

of the initial program that compiles, fits within hardware constraints, and performs

well.

As a result, code is not often reuseable: a hash table to measure counts of IP

addresses, that fits just fine on a switch alongside a table for IP forwarding, is suddenly

too large when a firewall is added. To squeeze the hash table in, programmers may

have to rewrite the internals of the table, manually adjusting the number or sizes of

the hash entries. Beyond the overhead of recompiling programs to see if they fit on

the hardware, there is also a significant overhead in just rewriting the program for

a specific context. P4 is extremely restrictive, as it does not allow any loops, so to

increase the size of a hash table or add an additional table, the programmer would

have to manually add all of the code, instead of just incrementing the number of loop

iterations.

The lack of reusability is a widespread problem; it’s very common for the same

data structures to be used in a variety of applications. As an example, Table 1.1 lists
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six popular data structures and a selection of applications in which they appear. In-

stead of being able to reuse existing code for a hash table, for example, programmers

will likely have to manually adjust that same data structure for each individual ap-

plication. P4 as a language cannot support the flexibility required for programmable

data planes, and as a result, it shifts the burden of making low-level decisions onto

programmers. These difficulties are not specific to P4; they appear in other languages

made for the data plane ([27, 65, 68]).

1.5 Decoupling Language and Hardware

Conventional methods of programming switches do not sufficiently meet the needs of

programmers, and they often significantly lengthen the time to develop and deploy

new applications to programmable switches. The core problem with programmable

switches is that the programming language is too tightly coupled to the switch hard-

ware. While domain-specific languages are necessary for such specialized hardware,

they need to have a high enough level of abstraction so that the language is actually

practical, and doesn’t require weeks or months of rewriting programs just to get them

to compile to the hardware.

To more easily and effectively program switches, we need an abstraction that

separates the code from the hardware. This will make programs more modular and

reusable, as well as break the cyclical development process, in which programmers

continuously write, test, and rewrite their code until it compiles and performs well.

There are two main features necessary to achieve this separation:

1. Elasticity. Programmers should not have to explicitly define in their code how

their program is laid out in the hardware, or how to divide limited resources

amongst program components. Instead, the programming language should for

allow for parameterized programs, where any features of a program can be ex-
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pressed as parameters. In other words, programs should be elastic—parameter

values can stretch or shrink according to the particular application, without the

programmer needing to rewrite anything.

2. Automated optimization. Although the programmer should not have to

reason about which parameter values are feasible with the hardware or about

resource allocation among program components, those things still need to be

known at compile time. If that responsibility no longer lies with the program-

mer, there needs to be a system that automates what programmers are currently

doing by hand. This system should automatically set program parameters, and

those parameter values should be optimized to give the best accuracy and per-

formance, as defined by the programmer.

1.6 Contributions

This dissertation focuses on developing practical abstractions to simplify the pro-

cess of programming data-plane applications. We design these abstractions by (1)

adding new language constructs that allow programs to be generalized to various en-

vironments, and (2) building optimization systems that adjust programs for specific

contexts, lifting that burden from the programmer. The new language constructs

allow applications to be parameterized, so program features typically rewritten man-

ually for different environments (e.g., resource allocation) can be easily adjusted by

setting a parameter value. The optimization system further simplifies the process by

automatically finding the best parameter values for programmer-defined performance

goals and particular traffic distributions. We demonstrate that our abstractions can

express a wide range of applications, and our optimization produces programs that

are at least as performant as hand-optimized programs.
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1.6.1 Elastic Language Abstraction

As discussed in 1.4.1, data-plane programming typically involves a tedious trial-and-

error process because of the restrictiveness of both the language and the hardware.

This manual process of tweaking the internal details of data structures, and checking

whether the resulting structures satisfy global constraints, is inherently non-modular:

programmers tasked with implementing separate applications cannot do so indepen-

dently. Indeed, while the same data structures appear again and again (see Table 1.1

for a selection), their parameters must be tuned to satisfy varying resource constraints

and accuracy goals, making it difficult to reuse these structures for different hardware

targets or applications.

We extend data-plane programming languages with the ability to write elastic

programs. An elastic program is one whose various algorithmic decisions (e.g., sam-

pling rate, data structure size, etc.) can be expressed as parameters that can change

according to desired accuracy and available resources. Elastic structures can “shrink”

to accommodate other structures sharing the same resources, or they can “stretch”

arbitrarily to fill available space.

Using the IP address counting application as an example, if this is the only pro-

gram running on the switch, it can utilize all of the available memory on the switch.

If the programmer decides to add a second application, perhaps a stateful firewall,

the elastic IP address counting structure can shrink, to free up memory for the fire-

wall. The structures do not need to be rewritten for each context; only the parameter

values need to change.

To realize this concept of elasticity, we implement backward-compatible extensions

to P4 in the P4All system, and to Lucid [68] in the Parasol system. Lucid is a high-

level, event-based data-plane programming language. In particular, we utilize the

following features:
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• Symbolic values. Symbolic values function as placeholders that may take on

any value of the given type. Once declared, a symbolic is used in the same way as

a compile-time constant. For the IP address counting example, symbolic values

could include the size of the structure used to store counts for each address, and

a timeout threshold to evict expired entries.

• Bounded loops. While programmable switch hardware cannot support loops if

the number of iterations are not known at compile time, they can support loops

bounded by symbolic values, which work as compile-time constants. Because

parameter values are not necessarily known by the programmer while they are

writing an application, loops bounded by symbolics allow programmers to define

actions that should be repeated over elastic structures.

• Objective functions. There are many different possible values for each param-

eter in a particular program, and the values can directly affect the performance

and accuracy of a program. While we design a system to automatically set

those parameters (1.6.2), we still need some way for the programmer to define

performance or accuracy for their specific program. Objective functions provide

a principled way for the programmer to control the setting of parameter values.

If the programmer is counting the number of times particular IP addresses are

seen, their objective function may be the accuracy of the counts stored in the

switch, with the goal of maximizing the achievable accuracy.

We evaluate our language components by developing a number of reusable, elastic

structures and building several elastic applications using these structures. We show

that both P4All and Parasol are expressive enough to implement programs with

a wide variety of parameter types (e.g., memory layout, data structure selection,

threshold values, etc.) and objectives (e.g., accuracy, recirculation overhead, collision

rate, etc.).
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1.6.2 Automated Optimization of Parameters

When writing elastic programs, programmers use symbolic values as placeholders.

While programmers do not have to decide what concrete values those symbolics will

eventually take, those values still need to be known at compile time, because of the

restrictive hardware architecture—if a program does not adhere to the constraints, it

cannot be compiled to the hardware. As such, we need a system to automatically set

parameter values, according to a programmer-defined objective.

We implement two distinct systems for optimizing parameters. In P4All, we

generate and solve an integer-linear program (ILP), whose constraints represent the

resource constraints on the switch, and the variables correspond to the symbolic values

in the application code. Objective functions in P4All are closed-form equations that

express application performance or accuracy as a function of the symbolic values,

and the optimal parameter values are those that either minimize or maximize the

objective function.

Closed-form objective functions provide provable guarantees on worst-case perfor-

mance, but they are often difficult to derive in practice. The relationship of symbolic

values to performance is not always clear, particularly in complex applications that

may have multiple data structures interacting with each other. For these cases, we

need an alternative method of describing objective functions and optimizing applica-

tion performance.

In contrast to P4All, we implement a system in Parasol that uses an iterative

search algorithm to automatically optimize parameters. In each iteration, a search

algorithm selects a concrete value for each symbolic value, and the resulting program

is then simulated on a provided traffic trace, which allows a more tailored optimiza-

tions than would be possible from relying solely on static, workload-independent

quantities such as switch resource usage. Parasol objectives come in two parts. The

first part measures arbitrary aspects of a program executing in simulation mode over
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an example traffic trace. The second part computes an arbitrary, user-defined score

based on those measurements. Both parts are implemented in Python rather than

the more limited languages of switch data planes. At the end of the optimization

process, the Parasol system returns parameter values that yield the best score, as

measured during simulations.

We evaluate both strategies by developing a number of data-plane programs with

various parameters and objective functions. We compile the resulting programs to a

real target (the Intel Tofino) to verify that the optimizers produce valid program code.

Our experiments find that all applications could be optimized in under two hours,

and the solutions produced by the optimizers not only complied with the resource

constraints of the hardware, but were comparable in performance to hand-optimized

P4 code.
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Chapter 2

Writing Data-Plane Applications

In this chapter, we provide examples of data structures commonly used for pro-

grammable switch applications. We also introduce the constructs of P4, and show an

example implementation of an approximate data structure (a count-min sketch) to

illustrate the challenges of data-plane programming.

2.1 Approximate Data Structures

Approximate, space-saving data structures are commonly used in resource-

constrained environments, such as data-plane programming, because they are

designed to keep accurate approximate statistics using a small amount of memory. In

this section, we explore two structures: the count-min sketch [22] and Precision [5].

A count-min sketch (CMS [22]) is a probabilistic data structure that uses multiple

hash functions to keep approximate frequencies for a stream of items. Intuitively, the

CMS is a two-dimensional array of w columns and r rows. For each packet (x) that

enters the switch, its flow ID (fx) is hashed using r different hash functions ({hi}),

one for each row. The output of the hash function determines which column in a

row is incremented for fx, so the output of the functions ranges from (1 . . . w). For

example, in the second row of the CMS, hash function h2 determines that column
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(h2(fx)) is incremented. To approximate the number of times flow fx has been seen,

one computes the minimum of the values stored in columns hi(fx) for all r rows.

The CMS can only keep approximate counts, instead of exact, because of hash

collisions. Suppose the sketch has ten columns, but it is tracking the frequencies

of a hundred flows. Multiple flows will get hashed to the same column, causing an

overestimation. We can reduce the number of collisions, and consequently increase

the accuracy of the estimations, by increasing the number of columns.

We can also improve the confidence of the estimations by adding more rows to

the sketch. Flows that collide in one row are unlikely to collide in every other row,

because each row uses a different hash function.

Precision [5] is another type of data structure designed for efficient heavy hitter

detection (i.e., identification of large flows). Similar to the CMS, Precision is two

dimensional array with r rows and w columns. There are r independent hash functions

that are used to compute an index for each row. Unlike the CMS, Precision stores

both a key (e.g., flow ID) and a counter for each key, and the count for a particular

flow ID is only stored in a single row.

When a packet enters the switch, we first check if the flow is already stored in the

Precision structure, by computing the hash functions and checking the keys at the

corresponding indexes. If the flow is already in the structure, we can increment it

count. If the flow is not in the structure, we have to decide if it should be inserted, and

if so, where it should be added. The Precision algorithm chooses to probabilistically

evict the entry with the smallest count and insert a new flow in its place. Items with

larger counts are less likely to get evicted, allowing Precision to accurately identify

heavy hitters.

The probabilistic insertion serves two purposes:

1. In a network, there are typically many small flows, and a smaller number of

large flows. If new flows are always inserted, large flows are likely to get evicted
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often by small flows, making it difficult to maintain accurate counts. Heavy

hitters are more likely to stay in the structure if we only probabilistically add

a fraction of new flows.

2. Adding a new entry requires a recirculation—the packet must go back to the

beginning of the processing pipeline and traverse it again. If too many packets

are recirculated, throughput begins to degrade. Probabilistic insertion ensures

that throughput is not significantly affected.

The performance of Precision, like the CMS, improves as the structure grows

larger. As more memory is allocated the structure, it can track frequencies of more

flows. This reduces the number of collisions and evictions, and improves the accuracy

of the counters.

The performance of these data structures is dependent on their resource usage—

the more memory allocated to them, the more accurate their statistics. Their im-

plementation, then, is seemingly quite simple. Programmers should allocate all of

the switch resources to whichever structure they use. Unfortunately, most switch

applications are much more complex than just implementing a single data structure.

Switches are responsible for a variety of tasks, including both forwarding and collect-

ing statistics. One application cannot take up all of the hardware resources, because

it then leaves no room for other applications. Even if the switch only needed to per-

form a single application, many of them require multiple data structures. In the next

section, we detail an example of an application that is implemented with two distinct

structures.

2.2 Multi-Structure Applications

We provide a motivating example application that one might wish to deploy on a

programmable data plane: a load-balancing cache designed to accelerate response
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Figure 2.1: Data-plane cache.

times for web services, inspired by NetCache [42]. The structure of the cache is

illustrated in Figure 2.1. The cache reduces load on storage servers by directly serving

requests for the most popular keys, and forwarding only cache misses to the servers.

The cache operates by storing key/value pairs in a hash table on a switch. When

a request arrives, the switch first checks to see if the key is in the table; if it is, the

switch simply retrieves the value and sends it back to the requester. Otherwise, the

switch forwards the request to the appropriate storage server. When the response

arrives, the switch forwards it to the client and optionally caches the entry.

To maximize efficiency, and to best utilize the limited available memory, the cache

should serve requests for the most popular keys. Because popularity may change over

time, the switch dynamically updates its cache to remove less popular keys in favor of

more popular ones. To enable this, the switch tracks statistics about the popularity of

keys not stored in the cache using a second data structure: a compact, approximate

counter (e.g., a count-min sketch (CMS)).

The resource allocation for the data-plane cache is not straightforward. Both

the hash table used for the key-value store and the CMS perform better with more

resources—the hash table can cache more keys, and the CMS has more accurate

counts. However, allocating resources is a zero-sum game. Because they are so
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limited, giving resources to one structure means taking it away from another. There

is an inherent tension, then, of needing to give structures just enough resources to

perform well, but not so much that other structures suffer.

The performance impact of resource allocation is even less clear—is it better to

store more keys in the key-value store, or more accurately identify popular keys

in the CMS? Allocating the resources of a programmable switch is like solving a

jigsaw puzzle, trying to get every structure to fit onto the switch in a configuration

that yields the best performance. This puzzle can become even more complex than

resource allocation. In the data-plane cache, we must decide if a key-value store and

CMS are even the right data structures. One could imagine implementing a cache

with Precision instead, storing keys and values, along with their counts.

All of these decisions must be made by the programmer, by hand, because data-

plane programming languages are so low-level. In the next section, we walk through

an example implementation of a CMS in P4, and show that the language creates these

challenges for programmers by requiring them to encode resource allocation into their

application code.

2.3 Programming Approximate Structures

To illustrate the constructs of P4 and the shortcomings of the language, we show a

fragment of a P4 program that implements a CMS (Figure 2.2, included at the end of

this chapter). The primary actions for a CMS are (1) executing the hash functions,

(2) incrementing the counts stored in the sketch, and (3) computing the minimum

value across sketch rows. Each of these actions require resources: metadata for stor-

ing the result of hash functions and the counts in the sketch (to later compute the

minimum), register arrays for storing information, and ALUs to execute the actions.

Each resource used must be explicitly declared in the code.
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We first declare the metadata used by the CMS to store a count at a particular

index (i.e., a hash of a flow ID).

struct custom_metadata_t {

bit<32> index0 ;

bit<32> count0 ;

. . .

bit<32> index3 ;

bit<32> count3 ; }

We then declare the low-level data structures (registers) that actually make up the

CMS—four rows (r = 4) of columns (w = 2048) that can each store values represented

by 32 bits.

register<bit<32>>(2048 ) counter0 ;

. . .

register<bit<32>>(2048 ) counter3 ;

We also declare the actions for hashing/incrementing at each row and for updating

the metadata designed to store the global minimum.

action GetAndIncrStoredValue0 ( ) { . . . }

. . .

action GetAndIncrStoredValue3 ( ) { . . . }

action Min_0 ( ) {meta . min = meta . count0 ;}

. . .

action Min_3 ( ) { . . . }

The hashing action is a complex action containing several atomic actions: (1) an

action to hash the key to an index into a register array, (2) an action to increment

the count found at the index, and (3) an action to write the result to metadata for use

later in finding the global minimum. Such multi-part actions can demand a number

of resources, including several ALUs and hashing units.
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In the apply fragment of control block in the P4 program, the program first

executes all the hash actions, computing and storing counts for each hash function,

and then compares those counts to each other, looking for the minimal one.

apply {

meta . min = 0xffffffff ; /*initialize global min*/

/* Compute hash indexes and retrieve stored counters */

GetAndIncrStoredValue0 ( ) ;

. . .

GetAndIncrStoredValue3 ( ) ;

/* Compute minimum */

i f ( meta . count0 < meta . min ) { Min_0 ( ) ;}

. . .

i f ( meta . count3 < meta . min ) { Min_3 ( ) ;}

} }

Upon reviewing this code, some of the deficiencies of P4 are immediately apparent.

First, there is a great deal of repeated code: Repeated data-structure definitions,

action definitions, and invocations of those action definitions in the apply segment

of the program. Good programming languages make it possible to avoid repeated

code by allowing programmers to craft reusable abstractions. Avoiding repetition in

programming has many good properties, including the fact that when errors occur or

when changes need to be made, they only need to be fixed/made in one place. This

not only saves time but helps avoid subsequent errors. Effective abstractions also help

programmers change the number or nature of the repetitions easily. Unfortunately,

P4 is missing such abstractions.

One might also notice that the programmer had to choose an appropriate size

for the data structure (2048 columns and 4 rows). Because picking a resource allo-

cation that adheres to resource constraints is so difficult, the process of determining

data structure sizes is a tedious one, involving a lengthy cycle of guessing a resource

allocation, and compiling and rewriting the code.
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These decisions and challenges exist because of the nature of data-plane program-

ming. In order to be able to process large amounts of traffic and guarantee that

processing executes at line-rate, the switch architecture, unlike general-purpose hard-

ware, is designed in such a way that requires programmers to reason about resource

utilization and other low-level details. In the next chapter, we detail a system that

raises the level of abstraction for data-plane programming by separating resource

allocation from program code.
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1 struct custom_metadata_t {
2 bit<32> cachedKey ;
3 bit<32> cachedTime ;
4 bit<32> cachedValue ;
5 bit<32> min ;
6 bit<32> index0 ;
7 bit<32> count0 ;
8 . . .
9 bit<32> index3 ;
10 bit<32> count3 ; }
11 control Ingress ( . . . ) {
12 /* A register array for cache hash table */

13 register<bit<32>>(1024 ) keyValue ;
14 /* A register array for each CMS row */

15 register<bit<32>>(2048 ) counter0 ;
16 . . .
17 register<bit<32>>(2048 ) counter3 ;
18
19 /* An action to check if key in cache and if

entry expired */

20 action CheckCachedKey ( ) { . . . }
21
22 /* Actions to update each CMS row */

23 action GetAndIncrStoredValue0 ( ) { . . . }
24 . . .
25 action GetAndIncrStoredValue3 ( ) { . . . }
26 /* An action to set the minimum */

27 action Min_0 ( ) {meta . min = meta . count0 ;}
28 . . .
29 action Min_3 ( ) { . . . }
30 /* Execute the following on each packet */

31 apply {
32 /* Check if key in cache, and add to cache

if expired */

33 CheckCachedKey ( ) ;
34
35 meta . min = 0xffffffff ; /*initialize global

min*/

36 /* Compute hash indexes and retrieve

stored counters */

37 GetAndIncrStoredValue0 ( ) ;
38 . . .
39 GetAndIncrStoredValue3 ( ) ;
40 /* Compute minimum */

41 i f ( meta . count0 < meta . min ) { Min_0 ( ) ;}
42 . . .
43 i f ( meta . count3 < meta . min ) { Min_3 ( ) ;}
44 } }

Figure 2.2: Cache in P4.
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Chapter 3

P4All: Modular Switch

Programming Under Resource

Constraints

This chapter focuses on the extension of P4 with the ability to write elastic programs.

An elastic program is a single, compact program that can “stretch” to make use of

available hardware resources or “contract” to squeeze in beside other applications.

Elastic programs can be constructed from any number of elastic components that

each stretch arbitrarily to fill available space. An elastic data-plane cache program,

for example, may be constructed from an elastic count-min sketch and an elastic key-

value store. The programmer can control the relative stretch of these modules by

specifying an objective function that the optimizer should maximize. For example,

the caching application could maximize the cache “hit rate” by prioritizing memory

allocation for the key-value store (to store more of the “hot” keys) while ensuring

that enough remains for the CMS to produce sufficiently accurate estimates of key

popularity. In addition to memory, programs could simultaneously maximize the use

of other switch resources such as available processing units and pipeline stages.
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To implement these elastic programs, we present P4All, a backward-compatible

extension of the P4 language with several additional features: (1) symbolic values, (2)

symbolic arrays, (3) bounded loops with iteration counts governed by symbolic values,

and (4) local objective functions for data structures. Symbolic values make the sizes

of arrays and other state flexible, allowing them to stretch as needed. Loops indexed

by symbolic values make it possible to construct operations over elastic data struc-

tures. Objective functions provide a principled way for the programmer to describe

the relative gain/loss from growing/shrinking individual data structures. Global opti-

mization criteria make it possible to weight the relative importance of each structure

or application residing on a shared device.

We have implemented an optimizer for P4All that operates in two main phases.

First, it computes an upper bound on the number of possible iterations of loops, so it

can produce a simpler optimization problem over unrolled, loop-free code. This upper

bound is computed by conservatively analyzing the dependency structure of the loop

bodies and their resource utilization. Next, the optimizer unrolls the loops to those

bounds and generates a constraint system that optimizes the resource utilization of

the loop-free code for a particular target. We use the Intel Tofino chip as our target.

We evaluate our system by developing a number of reusable, elastic structures and

building several elastic applications using these structures. Our experiments show

that the P4All optimizer runs in a matter of minutes (or less) and produces P4

programs that are competitive with hand-optimized code.

3.1 Language Extension

A key challenge with data-plane programming that differentiates it from general-

purpose languages is the manifestation of hardware constraints in application code.

Programmers are responsible for understanding the hardware and how application
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components will get mapped to physical resources. In this section, we detail the

extensions we make to an existing data-plane programming language (P4) to raise

the level of abstraction and decouple the language from the hardware.

P4All improves upon P4 by making it possible to construct and manipulate elastic

data structures. These data structures may be developed modularly and combined,

off-the-shelf, to build efficient new applications. In this section, we illustrate language

features by building an elastic data-plane cache, with a CMS to track key popularity

and a key-value store to cache popular keys. We include code fragments for a data-

plane cache implemented in P4All at the end of this chapter, in Figure 3.7.

3.1.1 Symbolic Values

The first language extension we make is the addition of symbolic values that allow

users to write elastic, parameterized programs. Symbolic values control the “stretch”

of the structure. In the case of the cache there are three such parameters: (1) the

number of rows in the sketch (i.e., the number of hash functions), (2) the number of

columns (i.e., the range of the hash), and (3) the number of entries in the key-value

store. Such parameters are defined as symbolic values :

symbolic rows ;

symbolic cols ;

symbolic cacheEntries ;

Symbolic integers like rows, cols, and cacheEntries should be thought of as

“some integer”—they are placeholders that are determined (and optimized for) at

compile time. In other words, as in other general-purpose, solver-aided languages like

Boogie [46], Sketch [67], or Rosette [74], the programmer leaves the choice of value

up to the P4All optimizer.

Often, programmers know constraints that are unknown to the optimizer. For in-

stance, programmer experience might suggest that count-min sketches with more than
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four hash functions offer diminishing returns. We extend P4 with assume statements

in P4All, to allow users to explicitly specify bounds on symbolic values.

Such constraints may be written as follows:

assume 0 < rows && rows <= 4 ;

An assume statement is related to the familiar assert statement found in languages

like C. However, an assert statement fails (causing program termination) when its

underlying condition evaluates to false. An assume statement, in contrast, always

succeeds, but adds constraints to the system, guaranteeing the execution can depend

upon the conditions assumed.

3.1.2 Bounded Loops and Symbolic Arrays

Programming with P4 is often a tedious process in part because of the repeated code—

definitions for data structures and actions on those structures are often repeated

multiple times, depending on the size of the structure. For example, each row in a

CMS is implemented as a separate register array, and the action to execute a hash

function and increment a value stored in the sketch must be declared for every row,

despite the actions being almost identical.

To reduce this repetition, we introduce bounded loops and symbolic arrays as

extensions to P4. These loops and arrays are bounded by symbolic values, and are

unrolled before compiling to hardware.

As an example, we can define a CMS using symbolic arrays:

register<bit<32>>(cols ) [ rows ] cms ;

In this declaration, we have a symbolic array cms, which contains rows instances of

the register array type. Each register array holds cols instances of 32-bit values.

One can also define metadata as symbolic arrays. For instance, for each row of

the CMS, we need metadata to record an index and count for that row. To do so,
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we define symbolic arrays of metadata, where each element of each array is a 32-bit

field. The arrays each contain rows items.

bit<32>[rows ] index ;

bit<32>[rows ] count ;

Because elastic data structures can stretch or contract to fit available resources,

operations over those data structures must do more or less work in a corresponding

fashion. To accommodate such variation, P4All extends P4 with loops whose iteration

count may be controlled by symbolic values.

The CMS of our running example consists of two operations. The first operation

hashes the input rows times, incrementing the result found in the CMS at that loca-

tion, and storing the result in the metadata. The second iterates over this metadata

to compute the overall minimum found at all hash locations. In P4All, each operation

is implemented using bounded loops and is encapsulated in its own control block. The

code below illustrates these operations.

/* Actions used in control segments */

action incr ( ) [ int i ] { . . . }

action min ( ) [ int i ] { . . . }

/* Hash and increment */

control hash_inc ( . . . ) {

apply {

for (i < rows ) {

incr ( ) [ i ] ; } } }

/* Find global minimum */

control find_min ( . . . ) {

apply {

for (i < rows ) {

i f ( meta . count [ i ] < meta . min ) {

min ( ) [ i ] ; } } } }
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Each action used in bounded loop has an additional parameter ([int i]) that is the

index of the loop. These simple symbolic iterations (for i < rows) iterate from zero

up to the symbolic bound (rows), incrementing the index by one each time. The

overarching data-plane cache application can now call each control block.

control Cache ( . . . ) {

apply {

hash_inc . apply ( . . . ) ;

find_min . apply ( . . . ) ;

. . . } }

3.2 Objective Functions

Elastic parameters in data-plane programs are valid for a range of values, and although

they allow for more generalized programs, their values still need to be known at

compile time, because of the nature of switch hardware. However, the programmer

should not have to reason about parameter values themselves, so we build a system

to automatically set them.

Parameter values affect application performance, so they should be set such that

they yield the best possible performance. We cannot infer performance just from the

application code, so we rely on user-supplied objective functions that define perfor-

mance goals of a particular application. In P4All, we provide ways for programmers

to write an objective function in the program, as part of the code.

P4All utilizes an integer-linear program (ILP) for optimization, where constraints

of ILP are constraints of hardware, and variables correspond to symbolic values that

control hardware resource usage. As such, the objectives are closed-form formulas

that describe performance in terms of symbolic values, and can be plugged into the

ILP solver. The solver finds concrete instances of each symbolic value such that the

objective function is either minimized or maximized.
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We extend P4 with the ability to write these formulas, and specify whether they

should be minimized or maximized. The P4All backend, written in Python, uses

Gurobi [30] as an ILP solver, so objective functions are written in Python syntax.

In the data-plane cache example, we can use the hit rate (that is, the ratio of cache

hits to cache accesses) as the performance goal for the key-value store. Suppose the

key-value store has k items. The probability of a request to the ith most popular

item is 1
iα

[12]. In this case, α is a workload-dependent parameter that captures the

amount of skew in the distribution. Then, for k items, the probability of a cache hit

is the sum of the probabilities for each item in the key-value store:
∑k

i=1
1
iα
. Hence,

in P4All, for α = 1, we might define the following objective function:

objective kvObj {

function : sum ( map ( lambda y : 1 . 0/y,range ( 1,cacheEntries+1 ) ) ) }

Similarly, we can define the CMS error, ϵ, in terms of the number of columns,

w, in the sketch. We can set w = 3(1/ϵ)1/α [23], where α is a workload-dependent

parameter. The number of rows in the CMS does not affect ϵ, so we may choose

to leave it out of the objective function. However, we can incorporate constraints

to guarantee a minimum number of rows, because the number of rows is used to

determine a bound on the confidence of the estimations. For α = 1, this objective

function is 3.0/cols.

objective cmsObj {

function : 3 . 0/cols ; }

In the data-plane cache, both the hit rate of the key-value store and the error rate

of the CMS will affect the overall application performance, and the programmer must

decide if either data structure should receive a higher proportion of the resources. If

the CMS is prioritized, it can more accurately identify heavy hitters. However, the

key-value store may not have sufficient space to store the frequently requested items.
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Module Symbolic values Intuition Objective Function

Key-value
store/ hash
table

Number of rows k NetCache [42]: Maximize
cache hits

maximize
∑k

i=1
1
iα

Hash-based
matrix
(Sketch)

Num rows d, num
columns w

NetCache [42] (CMS):
Minimize heavy hitter
detection error

minimize ϵ = ( 3
w )α

Bloom
filter [9]

Num bits m, num hash
functions k

NetCache [42]: Minimize
false positives. Expected
number of items in stream
n

minimize (1− e−
kn
m )k

Multi-value
table

Number of rows k BeauCoup [17]: Minimize
collisions. BeauCoup pa-
rameter set B; Probabil-
ity to insert to table p
= f(α,B); Expected num-
ber of items in stream n

minimize ( 1k )
n·p

Sliding
window
sketch

Num rows d, num
columns w, num epochs
t

ConQuest [18]: Maximize
epochs and minimize error

maximize t(1− ( 3
w )α)

Ring buffer Buffer length b Netseer [87]: Maximize
buffer capacity

maximize b

Table 3.1: Symbolic values and objective functions for Zipfian distributed traffic with
(constant) parameter α.

Conversely, if the CMS is too small, it cannot accurately measure which keys are

popular and should be stored in the cache.

To capture the balance between data structures, a programmer can combine the

objectives of each data structure into a weighted sum. For the cache application,

this means creating an objective function that slightly prioritizes the hit rate of the

key-value store over the error of the CMS:

maximize 0 . 8∗kvObj−0 . 2∗cmsObj

Table 3.1 presents the symbolic values and possible objective functions for differ-

ent data structures in P4All. Each structure has symbolic values and an objective

function derived from the purpose of the structure, which may vary across applica-

tions. The programmer can define the objective function of each structure based on

the specific needs of the system. Existing analyses of common data structures can

assist in defining these functions. For example, for the Bloom filter, the probabil-
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ity for false positives in Zipfian-distributed traffic has been analyzed by Cohen and

Matias [21].

Some objective functions (e.g., CMS) may only include a single symbolic variable,

while others are a function of multiple variables (e.g., Bloom filter in Figure 3.1).

Because our optimizer uses Gurobi in the backend to solve optimization problems, it

is bound by Gurobi’s constraints. In particular, Gurobi cannot solve complex, non-

linear objectives that are functions of multiple variables directly. As a consequence,

we tackle these objectives in two steps. First, we transform objectives in multiple

variables (say, x and y) into objectives in a single variable (say x), by choosing a set

of possible values of y to consider. We create a different Gurobi instance for each

value of y, solve all the instances independently (a highly parallelizable task) and

find the global optimum afterwards. Second, we use Gurobi to implement piecewise

linear approximations of the non-linear functions. Both of these steps benefit from

some user input, and we have extended P4All to accommodate such input (described

below).

To reduce objectives with multiple variables to a single variable, we allow users to

provide a set of points at which to consider evaluating certain symbolic values. Doing

so provides users some control over the number of Gurobi instances generated and

hence the compilation costs of solving complex optimization problems. Such sets can

be generated via “range notation” (optionally including a stride, not shown here).

For example, a possible objective function for a Bloom filter depends on the number

of bits in the filter as well as the number of hash functions used. To eliminate the

second variable from the subsequent optimization objective, a programmer can define

the symbolic variable hashes as follows.

symbolic hashes [ 1 . . 10 ]

On processing such a declaration, the optimizer generates ten separate optimization

problems, one for each potential value of the hash functions. The optimizer chooses
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the solution from the instance that generated the optimal objective, and it outputs

the program layout and the concrete values for the number of hashes and number of

bits in the filter.

To reduce non-linear functions to linear ones, piecewise linear approximations are

used. By default, the optimizer will use the simplest such approximation: a single

line. Doing so results in fast compile times, but can lead to suboptimal solutions.

To improve the quality of solution, we allow programmers to specify the number of

linear pieces using a “step” annotation on their objective function. For instance, the

objective function for cache hit rate (lines 35-37 of Figure 3.7) can be appended with

a “step” of 100, indicating that a linear component is created between every 100th

value.

objective kvsObj {

function : sum ( map ( lambda y : 1 . 0/y,range ( 1,cacheEntries+1 ) ) ) ;

step : 100 ; }

Increasing the number of linear components in the approximation can increase the

cost of solving these optimization problems. By providing programmers with op-

tional control, we support a “pay-as-you-go” model that allows programmers to trade

compile time for precision if they so choose.

In practice, we have found that non-linear optimization functions that use division

can generate low-quality solutions, perhaps due to rounding errors (at least for the

solver, Gurobi, that we use). Hence, we scale such functions up, which results in the

following optimization function.

scale ( sum ( map ( lambda y : 1 . 0/y,range ( 1,cacheEntries+1 ) ) ) )
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3.3 Optimizer

Inputs to the P4All optimizer include a P4All program and a specification of the

target’s resources. The optimizer outputs a P4 program with a concrete assignment

for each symbolic value, and a mapping of P4 program elements to stages in the

target’s pipeline. The output program is a valid instance of the input when the

concrete values chosen to replace symbolic ones satisfy the user constraints (i.e.,

assume statements) as well as the constraints of the PISA model that is targeted.

In addition, loops are unrolled as indicated given the chosen concrete values. The

output program is an optimal instance, when in addition to being valid, it optimizes

the given objective function.

The P4All optimizer first analyzes the control and data dependencies between

actions in the program to compute an upper bound on the number of times each loop

can be unrolled without exhausting the target’s resources (3.3.1). For example, a for-

loop with a dependency across successive iterations cannot run more times than the

number of pipeline stages (S) as dependent actions must be in separate stages. The

unrolled program also cannot require more ALUs than exist on the target ((F+L)∗S),

where F is the number of stateful ALUs, and L is the number of stateless ALUs.

Next, the optimizer generates an integer linear program (ILP) with variables and

constraints that govern the quantity and placement of actions, registers, and metadata

relative to the target constraints (3.3.2). The upper bound ensures this ILP is “large

enough” to consider all possible placements of program elements that can maximize

the use of resources. However, the ILP is more accurate than the coarse unrolling

approximation we use. Hence, it may generate a solution that excludes some of

the unrolled iterations—some of the later iterations may ultimately not “fit” in the

data plane or may not optimize the user’s preferred objective function when other

constraints are accounted for. The resulting ILP solution is a layout of the program

on the target, including the stage placement and memory allocation, and optimal
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concrete assignments for the symbolic values. Throughout this section, we use the

CMS, as part of the data-plane cache program in Figure 3.7, as a running example.

For the sake of the example, we assume that the target has three pipeline stages

(S = 3), 2048b memory per stage (M = 2048), two stateful and two stateless ALUs

per stage (F = L = 2), and 4096 bits of PHV (P = 4096).

3.3.1 Upper Bounds for Loop Unrolling

In its first stage, the P4All optimizer finds upper bounds for symbolic values bounding

the input program’s loops. To find an upper bound for a symbolic value v governing

the number of iterations of some loop, the optimizer first identifies all of the loops

bounded by v. It then generates a graph Gv that captures the dependencies between

the actions in each iteration of each loop and between successive iterations. It uses

the information represented in Gv and the target’s resource constraints to compute

the upper bound.

3.3.1.1 Determining Dependencies

When a loop is unrolledK times, it is replaced byK repetitions of the code in its body

such that in repetition i, each action a in the original body of the loop is renamed to

ai. The optimizer constructs the dependency graph Gv based on the actions in the

unrolled bodies of for-loops bounded by v. Each node n in the dependency graph Gv

represents a set An of actions that access the same register and thus must be placed

in the same stage.

Dependency graphs can have (1) precedence edges, which are one-way, directed

edges, and (2) exclusion edges, which are bidirectional. There is a precedence edge

from node n1 to node n2 (indicated with the notation n1 −→ n2) if there is a data or

control dependency from any of the actions represented by n1 to any of the actions

represented by n2. The presence of the edge n1 −→ n2 forces all actions associated
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incr_1

incr_2

incr_3

min_1

min_2

min_3

Figure 3.1: An example dependency graph used for computing upper bounds for loop
unrolling.

with n1 to be placed in a stage that strictly precedes the stage where actions of n2

are placed. In contrast, an exclusion edge (n1 ←→ n2) indicates the actions of n1

must be placed in a separate stage from the actions of n2 but n1 need not precede

n2. In general, when actions are commutative, but cannot share a stage, they will be

separated by exclusion edges. For instance, if actions a1 and and a2 both add one to

the same metadata field, they cannot be placed in the same stage, but they commute:

a1 may precede a2 or a2 may precede a1.

Figure 3.1 shows the dependency graph for rows from our CMS example. Only the

incr actions access register arrays, and they all access different arrays. Thus, each

node represents only one action. There is a precedence edge from incr i to min i as

the former writes to the same metadata variable read by the latter. Thus, incr imust

be placed in a stage preceding min i. There are exclusion edges between each pair

of min i and min j because they are commutative but write to the same metadata

fields: min i sets the metadata variable tracking the global minimum meta.min to

the minimum of its current value and the ith row of the CMS (meta.count[i]).
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3.3.1.2 Computing the Upper Bound

To compute an upper bound for loops guarded by v, our optimizer unrolls for-loops

bounded by v for increasing values of K, generating a graph Gv until one of the

following two criteria are satisfied:

1. the length of the longest simple path in Gv exceeds the total number of stages

S, or

2. the total number of ALUs required to implement actions across all nodes in Gv

exceeds the total number of ALUs on the target (i.e., (F + L) ∗ S).

Once either of the above criteria are satisfied, the optimizer can use the current value

of K, i.e., the number of times the loops have been unrolled, as an upper bound for

v. This is because any simple path in Gv represents a sequence of actions that must

be laid out in disjoint stages. Hence, a simple path longer than the total number of

stages cannot be implemented on the switch (i.e., criteria 1). Likewise, the switch has

only (F +L)∗S ALUs and a computation that requires more cannot be implemented

(i.e., criteria 2).

Figure 3.1 presents an analysis of a CMS loop bounded by rows. Notice that the

length of the longest simple path in Grows will exceed the number of stages (S = 3)

when three iterations of the loop have been unrolled. On the other hand, when only

two iterations of the loop are unrolled, the longest simple path has length 3 and will

fit. Thus, the optimizer computes 2 as the upper bound for this loop.

3.3.1.3 Nested Loops

To manage nested loops, we apply the algorithm described above to each loop, making

the most conservative assumption about the other loops. For instance, suppose the

program has a loop with nesting depth 2 in which the outer loop bounded by vout

and the inner loop is bounded by vin. Assume also the valid range of values for both
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vin and vout is (1,∞]. The optimizer sets vin to one, unrolls the inner loop, and

computes an upper bound for vout as described above. Next, the optimizer sets vout

to one, unrolls the outer loop, and proceeds to compute the upper bound for vin as

described above. In theory, heavily nested loops could lead to an explosion in the

complexity of our algorithm, but in practice, we have not found nested loops common

or problematic. Only the SketchLearn [38] application requires nested loops and the

nesting depth is just 2, which is easily handled by our system.

3.3.2 Optimizing Resource Constraints

After unrolling loops, the optimizer has a loop-free program it can use to generate

an integer linear program (ILP) to optimize. Table 3.2 summarizes the ILP variables

and constraints. Below, we use the notation #k to refer to the ILP constraint or

variable labeled k in Table 3.2.

Action Variables. To control placement of actions, the optimizer generates a

set of ILP variables named xai,s (#1). The variable xai,s is 1 when the action ai

appears in stage s of the pipeline and is 0 otherwise. For instance, in the count-min

sketch, there are two actions (incr and min). If we unroll a loop containing those

actions twice and there are three stages in the pipeline, we generate the following

action variable set.

{xai,s | a ∈ {incr, min}, 1 ≤ i ≤ 2, 0 ≤ s < S}

Register Variables. In a PISA switch, any register accessed by an action must

be placed within the same stage. Thus placement (and size) of register arrays interact

with placement of actions. For each register array r and pipeline stage s, the ILP

variablemr,s contains the amount of memory used to represent r in stage s (#2). This

value will be zero in any stage that does not contain r and its associated actions. For
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Variables
Actions #1 {xai,s | 0 ≤ s < S}
Registers #2 {mri,s | 0 ≤ s < S}
Match-Action Tables #3 {tmti,s | 0 ≤ s < S}
Metadata #4 {di | i ≤ Uv}

Constraints
Dependencies

Same-Stage #5 xai,s = xbi,ss < S
Exclusion #6 xai,s ≤ 1− xbi,s

s < S
Precedence #7 xbi,y ≤ 1− xai,z

y, z < S, y ≤ z
Conditional #8

∑
0≤s<S xai,s =

∑
0≤s<S xbi,s

0 ≤ i ≤ Uv

Resources
Memory #9

∑
i mri,s · wri ≤M ∀s < S

#10 mri,s ≤ xai,s ·M 0 ≤ s < S
#11 mri,s · w0 = m0,s · wri

∀s < S, r ≥ 1
TCAM #12

∑
i tmti,s · twti ≤ T ∀s < S

Stateful ALUs #13
∑

i Hf (ai) · xai,s ≤ F
∀0 ≤ s < S

Stateless ALUs #14
∑

i Hl(ai) · xai,s ≤ L
∀0 ≤ s < S

PHV #15
∑

i di · bitsd ≤ P − Pfixed

#16 di =
∑

0≤s<S xai,s

if accesses(a,d)
Hash Functions #17

∑
i hhai,s ≤ N ∀s < S

Others
At Most Once #18

∑
0≤s<S xai,s ≤ 1

Inelastic Actions #19
∑

0≤s<S xane,s = 1

Table 3.2: ILP summary.

instance, to allocate the cms registers, the optimizer uses:

{mcmsi,s | 1 ≤ i ≤ 2, 0 ≤ s < S}

Match-Action Table Variables. These variables represent the resources used

by match-action tables. Similar to register variables, the variable tmti,s represents

the amount of TCAM used by table ti in stage s (#3). Note that in our current ILP,

we assume that all tables, ones with and without ternary matches, use TCAM.

Metadata Variables. The amount of metadata needed is also governed by

symbolic values. If Uv is the upper bound on the symbolic value that governs the size
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of a metadata array, then the optimizer generates a set of metadata variables di for

1 ≤ i ≤ Uv (#4). Each such variable will have value 1 in the ILP solution if that

chunk of metadata is required and constraints described later will bound the total

metadata to ensure it does not exceed the target size limits. In our running example,

the bound Uv corresponds to the number of iterations of the loop that finds the global

minimum value in the CMS.

Dependency Constraints. If a set of actions use the same register, they must

be placed on the same stage. To do so, the optimizer adds a same-stage constraint

(#5). Similarly, if an action has a data or control dependency on another action, the

two must be placed in separate stages. If there is an exclusion edge between actions ai

and bi, the optimizer creates a constraint to prevent these actions from being placed

in the same stage (#6). If there is a precedence edge between actions ai and bi, the

optimizer creates a constraint forcing ai to be placed in a stage before bi (#7).

Conditional Constraints. In some cases, as it happens in our CMS example,

multiple loops are governed by the same symbolic values. Hence, iterations of one

loop (and the corresponding actions/metadata) exist if and only if the corresponding

iterations of the other loop exist. Moreover, if any action within a loop iteration

cannot fit in the data plane, then the entire loop iteration should not be instantiated

at all. Conditional constraints (#8) enforce these invariants.

Resource Constraints. We generate ILP constraints for each of the resources

listed in 1.3.1. Our ILP constraints reflect the memory limit per stage (#9) and the

fact that memory and corresponding actions must be co-located (#10). The optimizer

also generates constraints to ensure that each register array in an array of register

arrays has the same size (#11). Moreover, the ILP includes a constraint to guarantee

that the TCAM tables in a stage fit within a stage’s resources (#12).

To enforce limits on the number of stateful and stateless ALUs used in each stage,

we assume that the target provides two functions Hf (ai) and Hl(ai) as part of the
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target specification. These functions specify the number of stateful and stateless

ALUs, respectively, required to implement a given action ai on the target. Given

that information, the optimizer generates constraints to ensure that the total number

of ALUs used by actions in the same stage do not exceed the available ALUs in a

stage (#13, #14).

To track the use of PHV, constraint #15 ensures di is 1 whenever the action ai

(which accesses data di) is used in loop iteration i. To limit the total number of PHV

bits, constraint #16 sums the size in bits (bitsd) of the metadata d associated with

iteration i and enforces it to be within the PHV bits available to symbolic program

components (P−Pfixed , where Pfixed is the amount of metadata not present in symbolic

arrays). Finally, each stage in the PISA pipeline can perform a limited number of hash

functions. To capture that, the optimizer generates constraint #17, which ensures

that the number of actions including a hash function h in each stage does not exceed

the available number of available hashing units N .

Other Constraints. The optimizer generates a constraint so that each action

ai is placed at most once (#18). Moreover, the optimizer ensures that each inelastic

action ane (i.e., an action not encapsulated in a loop bounded by a symbolic value)

must be placed in the pipeline (#19). Finally, any assume statements appearing in

the P4All program are included in the ILP.

3.3.3 Limitations

Our current ILP formulation assumes each register array and match-action table can

be placed in at most one stage. However, a PISA target could conceivably spread

a single array or table across multiple pipeline stages. To accommodate multi-stage

arrays or tables, we can relax the ILP constraint on placing actions in at most one

stage (#18).
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Moreover, some optimizers further optimize the use of the PHV. For example,

after a metadata field has been accessed, the PHV segment storing that field could be

overwritten in later stages if the metadata were never accessed again. Our prototype

does not yet capture PHV field reuse.

P4All optimizes with mostly static criteria. We do not consider any dynamic com-

ponents, unless a programmer incorporates a workload-dependent parameter in their

objective function. P4All also does not support symbolic-width fields or parameter-

ized packet recirculation. We leave these features, as well as PHV reuse, for future

work.

3.4 Evaluation

To evaluate P4All, we implement a prototype optimizer, written in Python.

Target specification. We create a target specification for the Intel Tofino switch,

based on product documentation. The specification captures the parameters in 1.3.1

and theHf andHl functions that specify the number of ALUs required to implement a

given action. Since the Tofino design is proprietary, our specification unquestionably

omits some low-level constraints not described in the documentation; with knowl-

edge of such constraints, we could augment our target specification and optimization

framework to handle them.

Compute upper bounds for symbolic values. To compute upper bounds and

unroll loops, our prototype must analyze P4 dependencies. To facilitate this, we use

the Lark toolkit [45] for parsing. We have also written a Python program that finds

dependencies between actions and tables and outputs the information in a format our

ILP can ingest. At the moment, we only produce precedence edges. As a result, we

do not process exclusion edges, treating all edges as precedence edges.
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Generate and solve ILP. Our prototype generates the ILP with variables and

constraints in Figure 3.2, as well as the objective function. We then invoke the Gurobi

Optimizer [30] to compute a concrete assignment for each symbolic value. We then

use these values to generate the unrolled P4 code.

P4 compiler. After the optimizer converts the P4All program into a P4 program,

we invoke the (black box) Tofino compiler to compile the P4 program for execution

on the underlying Tofino switch. If our experiments initially fail to compile to the

Tofino switch because of proprietary constraints, we adjust our target specification

and add assume statements to further constrain the resource usage. Ideally, the

P4All optimizer would be embedded within a target-specific compiler to automatically

incorporate the proprietary constraints, without our needing to infer them.

3.4.1 Language Evaluation

When evaluating the language extension of P4All, we specifically investigate its ability

to reduce code repetition as compared to P4. We implement a variety of applications

in both P4 and P4All, and compare the resulting lines of code (Table 3.3).

We see reduction in lines of code with P4All because of symbolic loops that elim-

inate repeated code. The lines of code were reduced by 27% on average, for the

applications in which the lines of code were affected. For applications that do not

use any loops, P4All did not reduce the lines of code. The symbolic values in these

applications often represented the number of registers in an array. In the hash table,

for example, the application uses a single register array, whose size is dictated by a

symbolic. There is a single set of actions for the array, that remains the same regard-

less of the array size, so no loops are needed. In these cases, the greater benefit of

P4All is not the elimination of repetition, but rather the automated optimization of

the symbolic values.
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Applications
P4 P4All

Lines of Code Lines of Code

IPv4 Forwarding + Stateful Firewall (SFW [70]) 282 282

BeauCoup [17] 541 541

Precision [5] 366 273

NetChain [41] 242 242

Elastic Switch.p4 804 804

Key-value store (KV) 127 127

Count-min sketch (CMS [22]) 207 179

Data-plane cache (KV+CMS [42]) 216 170

Non-Elastic Switch.p4 + CMS 875 847

SketchLearn [38] 445 445

ConQuest [18] 869 869

Bloom filter [9] 179 70

CMS + Bloom 318 203

Table 3.3: P4All applications, showing the lines of code in the P4 and P4All implementa-
tions.

We also note that some applications saw a greater reduction than others, due to

the use of C-like macros in the P4 code. For these applications (e.g., BeauCoup and

ConQuest), while P4All led to a slight reduction in the lines of code in the body of

the program, the addition of objective functions negated the effect. While macros

make the program more compact, they make debugging more difficult. Additionally,

changes to a program still require edits in multiple places, while P4All aims to make

programs more robust by reducing the places a user must make edits.

3.4.2 Optimizer Evaluation

Table 3.4 reports the sizes of the constraint systems, and the compile times, for bench-

mark applications when compiled against our Tofino resource specification. We choose

applications with a variety of features, including elastic TCAM tables (switch.p4),

multivariate objectives (Bloom filter), elastic and non-elastic components (IPv4 for-
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Applications
Compile ILP

Time (sec) (Var, Constr)

Linear Objective

IPv4 Forwarding + Stateful Firewall (SFW [70]) 0.4 (192, 1026)

BeauCoup [17] 0.1 (672,7511)

Precision [5] 25.7 (1316, 18969)

NetChain [41] 27.9 (252, 3278)

Elastic Switch.p4 0.2 (1080, 21581)

Non-Linear Objective

Key-value store (KV) 15.4 (168, 857)

Count-min sketch (CMS [22]) 1.8 (396, 1994)

Data-plane cache (KV+CMS [42]) 27.9 (586, 2815)

Non-Elastic Switch.p4 17.5 (1498, 23575)

SketchLearn [38] 2.4 (768, 880)

ConQuest [17] 5.8 (612, 3734)

Multivariate Objective

Bloom filter [9] 513.6 (longest) (240, 308)
170.0 (avg) (132, 191)

CMS + Bloom 67.3 (longest) (658, 2266)
38.1 (avg) (550, 2149)

Table 3.4: P4All applications, showing the lines of code in the P4All implementation.
For structures with multiple instances, the last two columns give statistics for the single
instance with the longest compile time and the average of all instances.

warding and stateful firewall), and multiple elastic components (data-plane cache,

CMS and Bloom filter). In our experiments, we found that the choice of objective

function greatly impacts performance. For example, a non-convex objective func-

tion results in a mixed integer program (MIP) instead of an ILP, which significantly

increases solving time. On the other hand, our applications with linear objective func-

tions (e.g., switch.p4, BeauCoup) typically had smaller compile times. Additionally,

increasing the step size for an objective (i.e., reducing the number of values provided

to the ILP) decreases compile time.
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Figure 3.2: Bloom filter false positive vs. # hash functions.

For the data structures we evaluated with objective functions with multiple vari-

ables (e.g., Bloom filter), our optimizer created multiple instances of the optimization

problem. We report the average compile time and the average number of ILP variables

and constraints for each instance, along with the statistics for the largest instance.

Our prototype optimizer is not parallelized, but could easily be in the future, allowing

us to solve many (possibly all) instances at the same time. Compile times of each

ILP instance for the Bloom filter application range from roughly one second to 8.5

minutes.

In Figure 3.2, we show the objective (false positive rate) from the instances of

optimization for a Bloom filter. In each instance, the optimizer increases the number

of hashes used. The objective decreases for each instance, but sees diminishing returns

after the first instance.

Compile time increases as we increase the number of symbolic values in a P4All

program. We evaluate ILP performance by observing the solving time as we increase

the number of symbolic values. Compilation for a single elastic sketch completed in

about 10 seconds, while compilation for four sketches took over 30 minutes.

The number of constraints also affects compile time. The Bloom filter had the

fewest ILP constraints, as it had no dependent components, and it alone had the
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Figure 3.3: Number of ILP variables and constraints for CMS as stages increase.

largest compilation time. The reason for this is that the smaller number of constraints

may lead to a more difficult optimization problem.

When we increase the available resources on the target, we generate a larger

optimization problem, with more variables and constraints. Figure 3.3 shows the

change in the number of constraints and variables as we increase the number of

available stages on the target. Most of the resources and other constraints (e.g.,

TCAM size, hash units, at most once, etc.) are linearly proportional to the stages.

The dependency constraints are the only constraints that do not increase linearly

with the stages. For a single P4All action, we create an ILP variable for each stage.

However, the variables for CMS are not linearly proportional to the stages because

as we increase stages, the upper bound on the actions also increases, resulting in

more variables. Similarly, the ILP completion time increases super linearly with the

number of stages (Table 3.5).

Some applications may have both symbolic and non-symbolic components. In

our evaluations, we found that this did not significantly impact compile time. When

we combined an elastic CMS (with symbolic values) and switch.p4 (with fixed-size

TCAM tables), the compile time was 17 seconds. Our optimizer requires that all

66



Num Stages ILP Time (s)

Tofino 1.8

1.25xTofino 4.5

1.67xTofino 53.1

2xTofino 216.0

Table 3.5: ILP completion time for CMS as stages increase.

non-symbolic portions of the program get placed on the switch, or the program will

fail to compile.

Hand-written vs P4All-generated P4 To investigate whether P4All-generated

P4 was competitive with hand-written P4, we examined a few P4 programs written by

hand by other programmers and compared those programs with the P4 code generated

from P4All. When we compare the number of registers used by the manually-written

BeauCoup and the P4All-generated BeauCoup, we find they are exactly the same.

ConQuest is made up of sketches, so we use the same objective function for the

CMS described in 3.2: 3.0/cols, where cols is the number of columns in each sketch.

With that function, our optimizer tries to allocate as many registers as possible, and

allocates all available space to sketches, as more registers means lower error.

Examining the ConQuest paper in more depth, however, shows that the accuracy

gains are minimal after a certain point (2048 columns). To account for this, we simply

add a bound to the symbolic value for the number of columns, and as a result, the

compiled code uses exactly 2048 columns as in the original. This experiment illus-

trates the power of P4All beautifully. On one hand, our first optimization function is

highly effective—it uses up all available resources. On the other hand, when new in-

formation arrives, like the fact that empirically, there are diminishing returns beyond

a certain point, we need only adjust bounds on symbolic values to reflect our new

understanding of the performance. None of the implementation details need change.
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Figure 3.4: CMS error rate as memory increases.

While this analysis is admittedly ad hoc, our findings here suggest that P4All does

not put programmers at a disadvantage when it comes to producing resource-efficient

P4.

3.4.2.1 Elasticity

In this section, we investigate the elasticity of P4All. More specifically, we assess its

ability to adjust data structures as we vary the resources available. Figure 3.4 shows

how the error rate of a CMS decreases as we increase the available registers in each

stage, because the P4All optimizer allocates more resources to the sketch. Figure 3.5

shows how the sizes of a KV and CMS change for different objective functions. We

use the objective functions for KVS hit rate and CMS error rate as described in

Figure 3.1. The first objective function 0.8 ∗ (kvObj)− 0.2 ∗ (cmsObj) gives a higher

weight to the KV hit rate, while the second 0.2 ∗ (kvObj) − 0.8 ∗ (cmsObj) gives a

higher weight to the CMS error rate. When we prioritize the hit rate, the key-value

store gets a significantly higher proportion of resources than when we prioritize the

CMS error. P4All can adapt and adjust these elastic structures to a programmer’s

specific requirements.
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Figure 3.5: CMS and KVS sizes for different objectives.

3.4.3 Case Study

In a conversation with a major cloud provider, the researchers expressed interest

in hosting a multiple applications on the same network device, which must include

forwarding logic. We designed P4All for exactly such scenarios—elastic structures

allow new applications to fit onto a shared device. We consider a simple case study

oriented around this problem.

To do so, we started with the IPv4 forwarding code from switch.p4, but the size

of the match-action table is defined symbolically in P4All. We then added a CMS

for heavy hitter detection. Figure 3.6a illustrates the layout: The forwarding tables

utilize all of the TCAM resources, and the CMS uses registers.

Next, to demonstrate the flexibility and modularity of our framework, we add

access control lists (ACLs), which use match-action tables, and squeeze in a stateful

firewall, using Bloom filters, similar to the firewall in the P4 tutorials [70]. Using P4,

the programmer would manually resize the CMS and forwarding tables so the new

applications could fit on the switch, but by using P4All, we do not have to change our

existing code at all. To write ACLs with elastic TCAM tables, we modify the code

in switch.p4 to include symbolic values for table sizes. Our optimizer automatically

resizes the elastic structures to fit on the switch, resulting in the layout in Figure 3.6b.
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(a) Switch layout with forwarding tables and a CMS.
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(b) Switch layout with forwarding tables, ACL tables, CMS, and Bloom filter used in stateful
firewall.

Figure 3.6: Switch program layouts.

The forwarding tables and ACLs now share the match-action table resources, and the

registers in the Bloom filter fit alongside the CMS.

3.5 Related Work

Languages for network programming. There has been a large body of work on

programming languages for software defined networks [3, 26, 61, 78] targeted towards

OpenFlow [51], a predecessor to P4 [10, 57]. OpenFlow only allows for a fixed set

of actions and not control over registers in the data plane, and so these abstractions

are not sufficient for P4. While P4 makes it possible to create applications over a

variety of hardware targets, it does not make it easy. Domino [65] and Chipmunk [28]

use a high-level C-like language to aid in programming switches. P4All also aims to

simplify this process, but we enhance P4 with elastic data structures. Domino and

Chipmunk optimize the data-plane layout for static, fixed-sized data structures, and

P4All optimizes the data structure itself to make the most effective use of resources.

Using synthesis for compiling to PISA. The Domino compiler extracts

“codelets”, groups of statements that must execute in the same stage. It then uses

SKETCH [67] program synthesis to map a codelet to ALUs (atoms in the paper’s
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terminology) in each stage. If any codelet violates target constraints, the program

is rejected. To improve Domino, Chipmunk [28] uses syntax-guided synthesis to

perform an exhaustive search of all mappings of the program to the target. Thus,

it can find mappings that are sometimes missed by Domino. Lyra [27], extends

this notion to a one-big-pipeline abstraction, allowing the composition of multiple

algorithms to be placed across several heterogeneous ASICs. Nevertheless, Domino,

Chipmunk and Lyra map programs with fixed-size data structures, while P4All

enables elastic data structures.

Compiling to RMT. Jose et al. [43] use ILPs and greedy algorithms to compile

programs for RMT [11] and FlexPipe [56] architectures. These ILPs are part of an

all-or-nothing compiler which attempts to place actions on a switch based on the

dependencies and the sizes of match-action tables. In contrast, the P4All optimizer

allows for elastic structures, which can stretch or compress according to a target’s

available resources.

Programmable Optimization. P2GO [80] uses profile-guided optimization

(i.e., a sample traffic trace, not a static objective function) to reduce the resources

required in a P4 program. P2GO can effectively prune components that are not used

in a given environment; however, if unexpected traffic turns up later, P2GO may have

pruned needed functionality.

3.6 Conclusions

In this chapter, we introduce the concept of elastic data structures that can expand

to use the resources on a hardware target. Elastic switch programs are more mod-

ular than their inelastic counterparts, as elastic pieces can adjust depending on the

resource needs of other components on the switch. They also are portable, as they

can be recompiled for different targets.
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P4All is a backwards-compatible extension of P4 that includes symbolic values,

arrays, loops and objective functions. We have developed P4All code for a number

of reusable modules and several applications from the recent literature. We also

implement and evaluate an optimizer for P4All, demonstrating that compile times are

reasonable and that auto-generated programs make efficient use of switch resources.

We believe that P4All and our reusable modules will make it easier to implement and

deploy a range of future data-plane applications.

While P4All effectively adds modularity to data-plane programming languages,

writing applications for programmable switches usually involves more decisions than

just resource allocation or data structure size. Applications may have a plethora of

other parameters—timeout threshold, sampling rate, frequency of probes, to name a

few. Capturing the relationship of all of these parameters with the application per-

formance in a closed-form function is often extremely difficult, or nearly impossible.

Performance may also be heavily impacted by the traffic workload, beyond what we

can represent as a single constant in a P4All objective function. To this end, we need

a framework capable of expressing and optimizing for more general parameters, not

just data structure size, with practical objective functions.
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1 /* Count-min sketch module */

2 symbolic rows ;
3 symbolic cols ;
4 symbolic cacheEntries ;
5 assume cols > 0 ;
6 assume 0 < rows && rows <= 4 ;
7 struct custom_metadata_t {
8 bit<32> min ;
9 bit<32>[rows ] index ;
10 bit<32>[rows ] count ; }
11 register<bit<32>>(cols ) [ rows ] cms ;
12 register<bit<32>>(cacheEntries ) cache ;
13 action incr ( ) [ int i ] { . . . }
14 action min ( ) [ int i ] { . . . }
15 control hash_inc ( . . . ) {
16 apply {
17 for (i < rows ) { incr ( ) [ i ] ; } } }
18 control find_min ( . . . ) {
19 apply {
20 for (i < rows ) {
21 i f ( meta . count [ i ] < meta . min ) {
22 min ( ) [ i ] ; } } } }
23 objective cmsObj {
24 function : 3 . 0/cols ;
25 }
26
27 /* Key-value module */

28 symbolic k ; /* number of items */

29 assume k > 0 ;
30 control kv ( . . . ) { . . . . }
31 /* Cache module */

32 control Cache ( . . . ) {
33 apply {
34 hash_inc . apply ( ) ;
35 find_min . apply ( ) ;
36 kv . apply ( ) ; } }
37 objective kvObj {
38 function : sum ( map ( lambda y : 1 . 0/y,range (

1,cacheEntries+1 ) ) ) ;
39 }
40 maximize 0 . 8∗kvObj−0 . 2∗cmsObj

Figure 3.7: Data-plane cache in P4All.
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Chapter 4

Parasol: Automated Optimization

of Parameterized Data-Plane

Programs

P4All focuses on optimizing on-switch resources, including memory footprint, number

of stages, or ALU usage. However, there are numerous other low-level decisions

programmers must make, each of which will affect program performance. In the

data-plane caching application, the allocation of memory to the key-value store and

the key popularity counter is just one aspect of the program. We must also consider

questions such as:

• When should we replace cached keys?

• How should we represent the counter—using a CMS, or something else?

• Is a popularity counter even the best eviction algorithm for the cache to use?

Perhaps it would be better to use Precision [5], a hash table that probabilistically

replaces cached keys upon collision, in place of a key-value store and CMS.
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Parameter Description

Cm Number of columns / hashes in multi-hash table (MHT).
Rm Number of rows (cells per hash) in multi-hash table.
Cc Number of columns / hashes in count-min sketch (CMS).
Rc Number of rows in CMS.
Tt Timeout threshold for cache.
Tr Replacement threshold.
P Use Precision in place of MHT + CMS.

Table 4.1: Parameters of the data-plane cache.

Clearly, there are many ways to implement a cache. If we imagine a program that

describes all the implementations of a cache that a programmer can imagine, then

each of the design questions corresponds to a parameter in that program. Table 4.1

provides a non-exhaustive list of the parameters in a cache.

P4All requires objectives to be defined as a function of a program’s parameters.

Unfortunately, writing a closed-form function, that includes all of the parameters,

to represent the hit rate for a data-plane cache is an arduous task. Hit rate is not

easy to predict from the values of the parameters, let alone model analytically. The

performance of the cache depends on a number of factors. A key is evicted from the

cache when there is a hash collision, so the hit rate is influenced by the probability of

collisions. However, not all collisions result in a key being replaced. If the key tracker

is a CMS, the choice to insert an uncached key after a collision depends on the stored

count for that key, and thus, the hit rate also depends on the accuracy of the counts

in the CMS.

The interaction of all these factors is not straightforward—they depend on the

workload distribution. Theoretical models would then have to make assumptions

about that distribution [22]. Even if the programmer goes through the considerable

effort of working out a closed-form objective function for a cache, it can only express

a theoretical miss rate; the actual rate may be drastically different in practice [16].
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The importance of optimizing for the expected workload can be illustrated by

comparing cache performance across workloads and configurations. The hit rate of

a cache depends on which keys are in the cache, which is determined not only by

how large the data structures are but also the choice of that data structure (CMS

vs. Precision) and the timeout threshold. Certain parameters can have a large range

of potential values (e.g., timeout could range from milliseconds to seconds to even

longer). The subset of that range that performs well in practice can be quite small—

a too-small timeout means that moderately popular keys will get frequently evicted

and re-added, while a too-large timeout can result in less popular keys staying in

the cache for far too long. P4All does not allow us to express parameters such as

timeouts, making it easy to pick suboptimal values.

We develop Parasol as a more flexible framework, in which parameters can rep-

resent almost any aspect of the program, and objective functions express high-level

performance goals as simple Python programs.

4.1 Parasol

Parasol is a novel, general framework for synthesizing data-plane programs, consisting

of two parts (as in P4All): a sketching language and an optimizer. The sketching

language is an extension of Lucid [68], a high-level, event-based data-plane program-

ming language. We choose Lucid, as opposed to P4, because Lucid has a number of

components (e.g., a module system) that allow for more flexibility. Parasol program-

mers write program sketches [67], which are Lucid programs with symbolic values.

These symbolic values are similar to those in P4All, and they represent the parame-

ters of the program; each is an undefined value that will be filled in by the optimizer.

Parameters in Parasol are highly flexible; they can control just about any aspect of

the implementation.
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The optimizer uses an iterative search algorithm to automatically optimize the pa-

rameters according to a user-defined performance objective. These objectives come

in two parts. The first part measures arbitrary aspects of a program executing in

simulation mode over an example traffic trace. The second part computes an arbi-

trary, user-defined score based on those measurements. Both parts are implemented

in Python rather than the more limited languages of switch data planes. Hence,

users can express essentially unlimited optimization criteria—the main constraint is

the fidelity of the simulation environment to reality. The optimizer simulates the

program’s behavior on traffic traces drawn from a particular network, allowing more

tailored optimizations than would be possible from relying solely on static, workload-

independent quantities such as switch memory resources and architecture.

In summary, Parasol is a new data-plane sketching language and optimization

framework with the following features:

• Flexible objectives: Parasol’s optimization algorithm can optimize for a wide

variety of high-level metrics such as hit rate or measurement accuracy.

• Flexible programs: The parameters of a Parasol program may control many

properties, including probe generation frequency, algorithmic choices, memory

layout, data-structure selection, or threshold values.

• Flexible environments: Parasol programmers may tailor their optimization

to particular network environments by providing representative traffic traces.

We evaluate Parasol by fully implementing and optimizing ten different data-

plane programs, with various parameters and objective functions. Our experiments

found that the Parasol optimizer completed a simulation iteration in approximately

eight minutes on average (with an average trace size of two million packets), and all

applications could be optimized with a time budget of two hours (i.e., with fifteen

iterations on average). The solutions produced by the optimizer not only complied
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with hardware resource constraints, but were comparable in performance to hand-

optimized P4 code.

4.2 Lucid Background

The first component of Parasol is a sketching language (similar to P4All), written in

Lucid, that allows users to write parameterized programs. Lucid uses C-like syntax to

provide an event-based view of the network, in which incoming packets are represented

as events. When a packet arrives at the switch, the event’s handler is executed.

Handlers run directly on switch hardware, and may read and modify header values

and register arrays, as well as drop, create, and forward packets. Lucid provides two

backends: a simulation-based interpreter and a compiler to P4.

As discussed in 1.4.1, challenges of data-plane programming are not specific to P4;

they appear Lucid as well. While Lucid raises the level of abstraction of P4, it is still

very tightly coupled with the underlying hardware. Programmers must understand

how each component will get mapped to corresponding resources, and they must

hardcode parameter values accordingly.

To introduce Lucid and its challenges, we show an implementation of a data-plane

cache in Lucid. The code is included at the end of this chapter in Figure 4.4.

Similar to P4, we first define the data structures used in the application: a register

array for the key-value store, and register arrays for the key popularity tracker (e.g.,

a CMS).

/* A register array for cache hash table */

global Array . t<32> keyValue = Array . create ( 1024 ) ;

/* A register array for each CMS row */

global Array . t<32> counter0 = Array . create ( 2048 ) ;

. . .

global Array . t<32> counter3 = Array . create ( 2048 ) ;
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When a request appears at the switch, it triggers the request event, which cor-

responds to the apply block in P4 code. The lines of code within the request event

perform the same hashing and minimum computation actions as in the P4 code (lines

31-44 in Figure 2.2). Instead of metadata, we use integer and boolean variables to

store intermediate values.

event request ( int key ) {

int cachedKey = // Retrieve key stored in cache

bool found = ( key == cachedKey ) ; // Check if request matches cached

key

i f ( found ) {generate response ( ) ; } // Respond to request if key is

cached

else { // Track key popularity with a CMS

/* Compute hash indexes for each row */

int cms_idx0 = hash ( . . . ) ;

. . .

int cms_idx3 = hash ( . . . ) ;

/* Retrieve and increment stored counter values in each row */

int count0 = GetAndIncrStoredValue ( counter0, cms_idx0 ) ;

. . .

int count3 = GetAndIncrStoredValue ( counter3, cms_idx0=3 ) ;

/* Calculate min across stored counter values */

int min = 0xffffffff ; // Initialize global min

i f ( count0 < min ) { min = count0 ; }

. . .

i f ( count3 < min ) { min = count3 ; } } }

We chose Lucid as the basis of our tool for two reasons. First, as a high-level

language, it provides useful abstractions for representing the numerous decisions pro-

grammers must make during implementation. Second, Lucid provides an interpreter

that can simulate a program’s behavior without compiling it. The interpreter runs a
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network-wide simulation, and can be run on different input traces, allowing the same

program to be optimized for different traffic profiles with no additional user effort.

4.3 Language Extension

To implement Parasol, we add three new features to Lucid. First, we add symbolic

values (à la P4All symbolic values in 3.1.1) to represent the parameters of a program

that should be optimized. Second, we add a way to select between two different data

structures based on a symbolic value. Finally, we add a foreign function interface

that allows the user to take arbitrary measurements of the network during simula-

tion. Figure 4.5, included at the end of this chapter, shows a pared-down example

implementation of a data-plane cache that we use to demonstrate these extensions.

Parts of the program that do not relate to Parasol’s extensions have been omitted.

Symbolic values. Symbolic values in Parasol function as placeholders that may

take on any value of the given type. Each is later replaced with a concrete value,

supplied during the compilation/optimization process. Once declared, a symbolic is

used in the same way as a compile-time constant. Parasol symbolic values are more

general than those in P4All, and can take on any type that is supported by Lucid,

but they are most commonly integers or booleans. Parasol symbolics can represent

any configurable parameter in a program—data structure size, heavy hitter threshold,

timeout value, sampling rate, etc. The data-plane cache in Figure 4.5 contains six

symbolic values (see Table 4.1 for a list of parameters).

symbolic s ize rows ;

symbolic int cols ;

symbolic int cacheEntries ;

symbolic bool useCms ;

symbolic int timeoutThresh ;

symbolic int replacementThresh ;
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We note that the size type is used to specify the size of integers in bits. If a symbolic

value is used in a bounded loop (described in 3.1.2), it must be of type size.

The boolean parameter represents the selection of a data structure—if true, the

cache will use a CMS to track key popularity, otherwise it will use an alternative

structure, such as Precision [5]. If a CMS is used, replacementThresh determines

the threshold for adding new keys to the cache, and timeoutThresh determines when

keys in the cache are considered expired.

As in P4All, programmers can describe bounds on any symbolic value (in JSON

format):

"bounds" : {

"rows" : [1,4],

"cols" : [32, 2048] ,

"cacheEntries" : [32, 1024] ,

"timeoutThresh ": [500000 ,50000000] ,

"replacementThresh" : [5000 , 100000]

}

We can define a CMS in Parasol with a symbolic array of register arrays, similar

to P4All:

Array . t<32>[rows ] cms = [Array . create ( cols ) for i<rows ] ;

In Parasol, we can use a bounded loop in the event handler to define actions that

are repeated over each row of the CMS:

event request ( int key ) {

int min = 0xffffffff ; // Initialize global min

for (i < rows ) {

/* Compute hash index */

int cms_idx = hash ( . . . ) ;

/* Retrieve and increment stored counter value */

int count = GetAndIncrStoredValue ( cms [ i ] , cms_idx ) ;

/* Calculate min across stored counter values */

81



i f ( count < min )

{ min = count ;}

. . . } }

Selecting data structures. In order to write a program that may implement

one of two different structures, those structures need to implement the same interface,

so they can be used interchangeably in a program. Lucid provides a standard module

system for representing data structures. Each module contains definitions for zero or

more types, functions, and events. In Figure 4.5, the CMS and Precision modules

both contain definitions for a type t—the type CMS.t represents a count-min-sketch

structure, while the type Precision.t represents a Precision data structure. They

also contain functions for initializing those structures, and functions for deciding when

to add a particular key to the cache.

module CMS : {

type t = . . . ;

fun t create ( s ize rows, int cols ) = { . . . }

fun int getCount ( int key ) { . . . }

un bool decideIfAdding ( int key ) { . . . } }

module Precision : {

type t = . . . ;

fun t create ( s ize rows, int cols ) = { . . . }

fun int getCount ( int key ) { . . . }

fun bool decideIfAdding ( int key ) { . . . } }

Although CMS and Precision are the actual modules, they are not referenced

anywhere else in the program. Instead, the rest of the program uses the KeyTracker

module, which is an alias for either CMS or Precision, depending on the symbolic

value useCms.

module KeyTracker=CMS i f useCms else Precision ;

global KeyTracker . t tracker = KeyTracker . create ( rows,cols ) ;
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The program may then simply call the function KeyTracker.create to initialize the

tracker1, and similarly use the function KeyTracker.DecideIfAddingKey to deter-

mine if a key should be added to the cache.

Parasol’s extension to the Lucid type checker makes sure CMS and Precision con-

tain exactly the same declarations (i.e., implement the same interface), which allows

the program to use KeyTracker safely while remaining oblivious to implementation-

level differences between CMS and Precision. If the modules differed, the programmer

could instead create wrapper modules to ensure they present the same interface.

4.3.1 Objective Functions

Foreign function interface. Parasol implements a simulation-based optimization,

in which an optimization system chooses values for each parameter, simulates the ap-

plication over a sample traffic trace, and measures the resulting performance. Hence,

our final extension to Lucid is a foreign function interface that lets a programmer

instrument their code with calls to external measurement functions that are executed

by the Parasol simulator, but removed from the final compiled program. In Figure 4.5,

the extern logHits (defined in Figure 4.1) is a function implemented in Python by

the programmer, which counts the number of cache hits and misses while the Parasol

simulator is running. Each time a cache lookup is performed, logHits is called to

record whether the lookup was a hit or a miss. After completing a simulation, the

Parasol optimizer uses these measurements evaluate the program’s performance.

Objective and measurement functions are often simple. For our data-plane cache,

the goal is to maximize the hit rate. The functions for measuring and computing miss

rate can be defined in just seven lines of Python (Figure 4.1).

The measurement function logHits is called from the Parasol program once per

request, as in Figure 4.5. The objective function is called by the optimization algo-

1The tracker variable is annotated as global to indicate that it is a persistent structure stored
in register arrays.
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1 h i t s = 0
2 misse s = 0
3 def l o gH i t s ( found ) :
4 i f found : h i t s += 1
5 else : mi s se s +=1
6 def ob j e c t i v e ( ) :
7 return misses /( h i t s+misses )

Figure 4.1: Measurement and objective
functions in Python for the data-plane
cache.

rithm at the end of simulation. The global variables hits and misses are maintained

in a single instance of the Python interpreter, so their values persist throughout the

execution of the program.

Parasol permits only extern functions that have no return value, but does not

impose any requirements on what can be passed as a parameter to these functions.

Since externs also cannot modify any Lucid program state, this means they can be

safely elided during compilation.

The objective can be calculated using any part of the operating environment.

Examples of these objective functions include the distribution of flows across paths in

a load-balancing application, the rate of collisions in a hash table, and the comparison

of a CDF created from run-time measurements to a ground truth CDF. The optimizer

treats the objective function as a black box; any metric used by the function is

acceptable.

Comparing with ideal implementations. A particularly useful type of mea-

surement is to compare the runtime behavior of a data structure against an idealized

implementation. As an example, a data-plane application can produce round-trip

time (RTT) samples by matching SYN packets with corresponding SYN-ACKs [19,

62]. When the switch sees a SYN packet, it stores its timestamp in memory, and

can compute the RTT when it sees the corresponding SYN-ACK packet. However,

if the structure is full, the switch cannot store new SYN packets; as a result, the
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Figure 4.2: Overview of the Parasol optimization framework.

application can only provide a portion of RTT measurements. During simulation, a

measurement function could maintain a Python data structure which does not run out

of memory, and compare its results to those of the Parasol structure—this provides

an easy-to-compute ground truth for how well the Parasol program could perform.

4.4 Optimizer

The second component of Parasol is a framework for automatically optimizing the

parameter values of a program sketch; a high-level overview of this framework is

provided in Figure 4.2. The programmer provides four inputs: (1) a program sketch

(with symbolic values), (2) a traffic trace, (3) one or more measurement functions,

and (4) an objective function. The Parasol optimizer then finds effective values for

the parameters of the program using an iterative search algorithm. In each iteration,

the search algorithm selects a concrete value for each symbolic value. The resulting

program is then simulated on the provided traffic trace using the Lucid interpreter.

During simulation, measurements are taken via calls to the measurement func-

tions, using Parasol’s foreign function interface. At the end of simulation, the ob-

jective function uses these measurements to score the concrete program. The search

algorithm then uses the historical series of those scores to select new concrete values
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for the next iteration. This process repeats for a set time budget. At the end, the

optimizer returns the highest-ranked concrete program that successfully compiles to

the underlying hardware.

4.4.1 Simulation

We use a modified version of the Lucid interpreter to model the behavior of Parasol

programs on a traffic trace. The interpreter simulates the passing of messages between

one or more switches in a network, running the appropriate Lucid code when each is

received. The simulation includes important switch features such as recirculation and

timestamps. To enable execution of Parasol programs, we augmented the interpreter

to handle symbolic values and foreign functions.

Although the Lucid interpreter models many important aspects of a network, it is

not perfect. For example, it provides only a limited model of transmission delay, so

properties such as packet reordering are difficult to measure accurately. However, its

limitations are not fundamental; the interpreter could certainly be extended further

to accommodate an even wider variety of potential applications.

4.4.2 Search Algorithm

The final component of the Parasol optimizer is the search algorithm itself. The

goal of the search algorithm is to find parameter values that minimize the objective

function. However, the space of possible solutions can be intractably large. Doing an

exhaustive search is inefficient, and a näıve strategy may never discover a compiling

solution.

As a strawman solution, Parasol could require users to define the search space by

providing bounds on all variables. However, this will almost certainly include a large

number of non-compiling solutions, as even experts would have trouble determining

the correct bounds. As an example, reasonable bounds on cache with a CMS as the
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key tracker might be 1-5 cache tables and CMS rows, and cache entries and CMS

columns that are less than the amount of memory in a stage. These bounds produce

a solution space of 4225 configurations, only 16% of which compiled to our target

switch.

Alternatively, Parasol could use a heuristic to test if each configuration will compile

before it is simulated. If the configuration does not compile, Parasol can assign it

a maximum cost. While this avoids simulating non-compiling configurations, it also

reduces the effectiveness of the search strategies, as it does not give any indication of

a direction in which to search. One could imagine simulating anyway, in the hopes

that it will lead us to a compiling configuration, but this is unlikely—programs using

an impossible amount of memory, for example, are likely to perform impossibly well.

In practice, we address this issue by splitting the search algorithm into two phases:

preprocessing and simulation. In the first phase, Parasol automatically prunes non-

compiling solutions from the search space, without requiring user-defined bounds.

In the second phase, Parasol searches the space of remaining solutions with a user-

configurable search algorithm.

Preprocessing. In a nutshell, the goal of the preprocessing phase is to ensure

our solutions are making maximal use of the resources on the switch, without using

so many that the program fails to compile. Accordingly, during this phase we only

consider symbolic values which affect resource allocation. The resources we consider

are memory, pipeline stages, hash units, array accesses, and ALU usage (1.3.1. We

assume that the program is monotonic with respect to resources—that is, increasing

the value of any symbolic value should not decrease the amount of resources used.

In our experience, this is a safe assumption; we note that all of the applications we

evaluated satisfied this property.

The optimizer begins by setting all symbolic values to either a default or user-

provided starting value. We then pick a symbolic, and determine an upper bound for
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it by iteratively increasing only that symbolic’s value until we run out of resources.

Thanks to monotonicity, the largest value that fits provides an upper bound for the

symbolic.

We then pick another symbolic and repeat this process; however, this time we find

one upper bound for each possible value of the first symbolic. We do the same for the

next symbolic, and the next, each time finding an upper bound for all valid combi-

nations of previously-processed symbolics. When we finish, we will have enumerated

the entire useful search space (i.e., every compiling solution).

This process, however, grows multiplicatively with the number of parameters. To

make it more tractable, we use domain knowledge to set a reasonable default starting

value that allows Parasol to discover the entire useful search space, without having

to compile every solution in that search space. Values that represent memory used

per stage are initially set to the max memory available in a stage, and values that

contribute to other resources start at 4. We choose 4 as a starting value because we

found it generalized well to all of our applications, providing a significant reduction

in preprocessing time when compared to a starting value of 1. For example, the

preprocessing time for caching structure with a Precision key tracker improved from

almost 2 hours to only 25 minutes.

Simulation. In the second phase of the search algorithm, we perform a config-

urable search through the pruned space of solutions we created in phase one. We

choose a configuration from phase one, select values for any non-resource symbolics,

and execute the resulting program in the Lucid interpreter. We then score the config-

uration based on its output, and use a search strategy to select the next configuration

to evaluate based on the history of scores.

The Parasol optimizer does not rely on any particular search strategy; rather, it is

able to accommodate a variety of search algorithms. Programmers can take advantage

of this to improve the search process. Given the knowledge of a particular application
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and its parameters, the programmer may know which strategies will be most efficient,

and can choose those instead of the strategies we provide. We provide four built-in

search functions for programmers to use—exhaustive search, Nelder-Mead simplex

method, simulated annealing, and Bayesian optimization—but Parasol also supports

any programmer-defined search of the solution space, and is compatible with any

technique written in Python (e.g., stochastic gradient descent, genetic algorithms,

etc.). We choose these strategies because (with the exception of exhaustive) they

use the history of scores to efficiently navigate the search space. They also provide

a range from simple (exhaustive, Nelder-Mead simplex) to more complex (Bayesian).

Programmers are free to choose the search algorithm that provides their preferred

balance between search time and optimality of the final result. We evaluate the

effectiveness of each of these strategies and analyze how the choice of strategy affects

the optimizer in 4.6.

4.5 Design Tradeoffs

Accelerating preprocessing. The first phase of optimization requires analysis of

the resource usage of a program to determine if it will compile. The simplest way to

do this would be to actually compile the program; however, compilation can be very

slow (the ConQuest [18] application took over 13 minutes), and most applications

require compiling many configurations (ConQuest has a compiling search space of 25

configurations). Instead, we have tested a range of heuristics, with varying trade-offs

between performance and accuracy.

All three of our heuristics operate by attempting to assign each action in the Lucid

program to a stage of the switch’s pipeline. The primary distinction between the

heuristics is the types of resources they account for during placement. Our simplest

heuristic, dataflow graph, only accounts for dependencies between actions (two actions
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Heuristic Avg compile time Reduction

Dataflow graph 51s –

Greedy layout 51s 13%

Lucid-P4 1.5min 13%

Full compilation 1.5min 16%

Table 4.2: The performance of preprocessing heuristics for a single configuration, averaged
over each evaluated application. The greedy layout provides the best balance between
performance and accuracy.

cannot be in the same stage if one depends on the output of the other). Our next

heuristic, greedy layout, additionally considers the layout of memory, hash units,

array accesses, and ALU usage (for example, we cannot have multiple concurrent

accesses to the same array). Our final heuristic is to run a partial compilation—

rather than fully compiling to the switch, we instead compile Lucid to P4. This is

much faster than a full compilation, and additionally considers resource limits on

physical tables in the pipeline (such as match column width, maximum table size,

and number of actions per stage). We note that heuristics can only underestimate,

never overestimate, resource usage. In other words, the solutions that do not compile

with a heuristic will also never compile to the target device.

The only constraints that we encountered which were not modeled by the Lucid

compiler are packet header vector (PHV) clustering constraints—each packet header

or metadata variable in a program must be placed into a specific PHV cluster, and

each cluster has a fixed number of ALUs in each pipeline stage. In our experience,

it was possible to run afoul of PHV constraints in sufficiently complicated programs,

but these violations were unaffected by choice of parameter values. Our preliminary

implementations of 6/10 applications failed to compile with any configuration due

to PHV constraints, but once we adjusted the programs to accommodate for the

constraints, we did not run into PHV constraint violations for any configurations.
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A summary of the performance of our heuristics appears in Table 4.2. We list the

average compile time for each of our evaluated applications and the average reduction

in search space size, using the dataflow graph heuristic as the baseline. In practice,

we have found that the greedy layout heuristic provides the best trade-off between

performance and accuracy. We cope with the potential inaccuracy of the heuristic by

including a safeguard to ensure that Parasol returns a compiling solution. Specifically,

we actually compile the highest-ranked configuration at the end of our optimization

loop. Should compilation fail, Parasol tries the next-highest-ranked, and so on, until

one compiles. If none of the tested solutions compile, the system will repeat the

optimization process, excluding solutions that did not compile.

We found that in practice, this rarely happens. After manually fixing any PHV

errors, the optimal solutions for nine out of the ten applications fit within the target

resources. One of the applications (CMS) resulted in “optimal” configurations that

did not compile. However, the Parasol optimizer found a compiling solution that had

similar performance.

Unrepresentative traces. Since the Parasol optimization framework is

simulation-based, it relies on a representative traffic trace. If the actual traffic in the

network deviates from the patterns in the trace, the performance of the application

may not match the simulated performance. However, because Parasol preserves the

semantics of the data-plane program, it will never produce unexpected or invalid

behavior—its performance may simply be poorer than anticipated.

To mitigate poor performance, programmers can use multiple traffic traces to

optimize their application, and use a weighted combination of performance on the

traces as the objective function. We show an example with our data-plane cache in

4.6.3.1, by optimizing with workloads of different distributions. Alternatively, if the

distribution depends on time of day, the programmer can use traces from peak times,

where applications are likely most sensitive to poor performance.
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Beyond poor performance, an unrepresentative trace can leave an application

vulnerable to attacks when the training trace only contains benign traffic. To use

Parasol for tuning a security system, one needs traces containing the kinds of attacks

the application seeks to detect or prevent. Fortunately, Parasol users need not acquire

and label such traces themselves, as the network security community already goes to

great lengths to produce and share traces for the evaluation of their own security

systems [8]. These traces come from a variety of sources, including cyber defense

exercises [14] and security-oriented testbeds or simulators [15, 77].

4.6 Evaluation

Our evaluation of Parasol addresses its two components:

• Language. Can Parasol express a wide variety of parameters, objective func-

tions, and data-plane applications?

• Optimizer. How well do optimized Parasol programs perform, and how quickly

does Parasol find good parameters?

To answer these questions, we used Parasol to implement and optimize a suite of

ten data-plane applications with respect to representative traffic traces. We chose

applications that encompass a wide array of structures (including commonly used

structures like sketches and hash tables) and contain a diverse set of parameters and

objective functions. Our application and optimizer code is publicly available. 2

In the remainder of this section, we discuss each Parasol component individually,

and finish with two in-depth case studies. We used three types of traces in our

evaluation—the University of Wisconsin Data Center Measurement trace [7], a trace

from core Internet routers [13], and synthetic traces for the cache application. Unless

2https://github.com/mhogan26/Parasol

92



Classes of parameters in application P4All?

mem. data struct.
Application alloc. threshold choice timing Objective (LoC) Params Obj.
Count-min sketch (CMS)

√
Mean estimate Error (20)

√ √

Multi-hash table (MHT)
√

Collision ratio (11)
√ √

Data plane cache (KV [42, 71])
√ √ √ √

Miss rate (23) ✗ ✗

RTT monitor (RTT [19])
√ √

Read success rate (118) ✗ ✗

Unbiased RTT (Fridge [86])
√ √

Max percentile error (88) ✗
√

Starflow [69]
√

Eviction ratio (17)
√

✗

Conquest [18]
√

F-score (101)
√

✗

Load balancing (LB [75])
√ √

Error vs. optimal (38) ✗ ✗

Precision [5]
√

Avg. error for top flows (28)
√

✗

Stateful Firewall (SFW [68])
√ √ √

Packet overhead (70) ✗ ✗

Table 4.3: Applications optimized with Parasol, showing which classes of parameters/ob-
jective functions were used, and which of them could be expressed in P4All.

otherwise stated, we split a single input trace into a training trace and testing trace

(see Figure 4.4 for trace sizes).

4.6.1 Language Evaluation

To evaluate the expressiveness of Parasol, we implemented applications with multiple

classes of parameters and diverse objectives. The right two columns of Table 4.3

show the high-level benefit of Parasol over P4All: whereas Parasol allowed us to

fully express the optimization goal of each application (parameters and objective

function), P4All could only express the full optimization goals of 2/10 applications.

In the rest of this section, we discuss the ability of Parasol to represent a diversity of

both parameters (its “program flex”), and objective functions.

Program flex. As Table 4.3 shows, the Parasol programs we implemented had

four general classes of parameters: memory allocation, decision thresholds, choice

of data structure, and operation timing. These classes encompassed a diverse range

of parameters, including data structure size and the probability of an item being

added to a structure. Parasol’s flexible approach allowed it to handle all of them.

In comparison, P4All could only support parameters from 6/10 of our implemented

applications (CMS, MHT, Starflow, Conquest, Precision) as it is impossible to express

threshold, timing, or data structure choice parameters in P4All.
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Even for the examples that could potentially be optimized by P4All, it is easy to

imagine slightly more complex variants that would require incompatible parameters.

For example, our CMS is a simple implementation with no concept of time intervals—

it never resets. Most applications, however, will want to count over intervals, which

requires a mechanism to periodically reset or age counters, and a parameter that

controls the length of the interval. The addition of that one simple parameter makes

the “deployable” variant of CMS incompatible with P4All.

Objective functions. The objective functions for our applications measured

a wide variety of high-level properties (Figure 4.3). These functions were generally

short and simple: on average, each function was approximately 50 lines of Python

code. The only requirement for Parasol objective functions is that they be expressible

in Python. They can include any, all, or none of the parameters in the application,

along with any measurements taken during the simulation.

In contrast, P4All requires programmers to supply a closed-form objective func-

tion, which specifies exactly how the parameters relate to the final cost. In practice,

this can be very difficult, particularly for applications that do not have theoretical

guidelines or proven error bounds. This is common, even in research, where many

data-plane applications are evaluated empirically, without finding provable theoreti-

cal guarantees [18, 69]. Furthermore, many systems are composed of multiple com-

ponents or data structures; writing a closed-form function for those systems requires

not just understanding each component individually, but codifying precisely how they

interact.

In our evaluation, we considered an objective function to be expressible in P4All

only if we could find a derivation in existing literature. We consider deriving a closed-

form objective function to be beyond the scope of an application developer (and also

this paper) as it requires significant theoretical work. We required that functions

include all the parameters of the applications, but did not require those parameters to
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be expressible in P4All. Although functions needed not be for a single component, we

note that none of our applications with multiple structures (KV, Starflow, Conquest)

had a closed-form function.

With these criteria, we were only able to express three out of our ten objective

functions in P4All. Even so, there is a caveat: functions from the literature typically

quantify worst-case performance. These objective functions oftentimes do not provide

a realistic idea of how the application performs in practice. In contrast, Parasol

objective functions measure actual performance on a sample trace, and are therefore

able to optimize for a much broader range of criteria, even when a closed-form error

function exists [16, 54, 88]. We compare Parasol against a closed-form objective for

the unbiased RTT (Fridge) application in detail in §4.6.3.2.

We note that while were able to express a simple version of the data-plane cache in

P4All, we cannot implement the cache with all of the parameters listed in Table 4.1.

Additionally, the P4All objective function is a weighted sum of the theoretical hit rate

and error rate of the key-value store and CMS, respectively, but it does not capture

the relationship between the data structures—the accuracy of the CMS will affect the

hit rate of the cache, because it can more effectively identify popular keys. Hence,

we cannot fully express the data-plane caching application in P4All.

In general, P4All works well if programmers want to bound worst-case performance

for an application. However, that is not often the case in practice; programmers

typically develop applications empirically, without deriving error bounds. Parasol

takes the ideas of P4All and tailors them to a more practical scenario, which can be

applied to nearly any data-plane application, regardless of if error bounds exist.

4.6.2 Optimizer Evaluation

When evaluating the Parasol optimizer, we investigate how well optimized Parasol

programs perform, and how quickly Parasol finds good parameters for those programs.
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We also detail two case studies (using the data-plane cache and Fridge [86] data

structures) that illustrate the practical benefits of using Parasol.

4.6.2.1 Optimization Quality

We evaluate the quality of Parasol’s solutions, compared to both hand-optimized

systems and an oracle optimizer (described below) and analyze the factors that impact

it. All experiments in this section are based on a two-hour time limit for the dynamic

search phase of the Parasol optimizer.

First, we compare the results of optimization with Parasol to optimization with an

“oracle”. Whereas the Parasol optimizer chooses parameters on a training data set,

separate from the testing data, the oracle optimizer chooses parameters by exhaus-

tively searching the testing data set, i.e., it always chooses the optimal parameters.

Parasol found configurations that performed as well as the oracle for 6/10 applica-

tions (CMS, MHT, RTT, Starflow, Precision, and SFW). For 3/10 applications (KV,

Fridge, ConQuest), the relative difference between the objective score of Parasol’s

and the oracle’s configuration was under 12% (i.e., |Objectiveoracle−ObjectiveParasol|
Objectiveoracle

). For

the remaining application, the load balancer (LB), Parasol’s solution was, in relative

terms, 82% worse than the oracle. However, in absolute terms the difference was

small: the oracle’s configuration performed 1.7% worse than a perfect load balancer,

while Parasol’s configuration performed 3.1% worse than a perfect load balancer.

The Parasol preprocessor. To measure the effect that Parasol’s preprocessor

had on the solution quality, we compared application performance when optimized

with and without preprocessing, using the same two-hour time budget for Parasol’s

search phase. When the preprocessor was disabled, we bounded the search space

by setting the same initial bounds for all memory allocation variables—20 register

arrays (e.g., cache tables) and the max amount of SRAM per stage for registers (e.g.,

cache entries per table). In our judgement, this represented a reasonable bound—high
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enough to include all compiling solutions for each application without unnecessarily

inflating the search space. Additionally, without the preprocessor, we assigned a

predetermined max cost to solutions that did not compile (e.g., 100% cache miss

rate), to avoid simulating them.

Preprocessing consistently improved application performance, especially for ap-

plications that had a large search space or used multiple structures that compete for

resources (Starflow, KV, ConQuest, SFW). In fact, when the cache used CMS as the

key tracker, Parasol consistently did not find a compiling solution in the time budget

without preprocessing.

• For ConQuest, enabling the preprocessor improved recall from 75% to 87%.

• For Starflow, the preprocessor improved eviction ratio from 35% to 15%.

• For the stateful firewall, the preprocessor improved recirculation and retrans-

mission overhead from 16 kbps to 0.01 kbps.

Applications that had a small search space (CMS, MHT, Fridge, LB) did not

perform significantly better when preprocessing was enabled. However, even for such

applications, preprocessing still has an important benefit: it automatically bounds

the search space for the programmer, without the need for them to manually “guess”

reasonable bounds.

The Parasol searcher. We found that the effectiveness of Parasol’s search phase

depended on two factors: the search strategy and the quality of the input trace. Para-

sol provides four built-in strategies: exhaustive search, Bayesian, simulated annealing,

and Nelder-Mead simplex. We note that all of these strategies (except exhaustive)

have hyperparameters that control the learning process. We chose hyperparameter

values manually such that strategies produce solutions as good as or near the oracle

solutions. We found that we could re-use these values for all applications without

negatively affecting solution quality.
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Figure 4.3: Average error for top 128 flows in the Precision application for different
configurations. A darker color represents a lower error. The optimal configuration achieved
an error of 0.01%, and nearly 40% of the solution space produced an error of less than 1%.

Search strategy. For some applications, the choice of search strategy does not

matter because a large portion of the compiling solution space is near-optimal. For

example, in the Precision application, over half of the search space after preprocess-

ing contained solutions that produced an average error of less than 10% (Figure 4.3),

compared to the optimal of less than 1%. In such cases, the search methods mostly

converged to the same configuration or to configurations that had very similar per-

formance.

For more complex applications, we found that no single search strategy domi-

nated. Because of this, we found that the best strategy was to run multiple strategies

in parallel for each application, and choose the best result from among them. Con-

versely, for applications with a small search space (after preprocessing), we simply

used exhaustive search. We consider a search space to be small if the exhaustive

search completed within the two-hour time budget.

Training trace. Across all applications, we found that traces with approximately

1 million packets were sufficiently large for Parasol to find high quality (i.e., near

optimal) configurations. Training trace size mattered more for some applications

than others. One large class of applications where training trace size mattered was

applications that use hash tables. Here, traces had to be large enough to cause hash
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collisions; otherwise the differences between configurations are small and it is difficult

(or impossible) for Parasol’s search algorithm to find the best one. For example,

the Starflow configurations found by the simplex and Bayesian strategies resulted in

similar eviction ratios (12% and 5%, respectively) in a small trace of 5000 packets,

but had very different errors (46%, 26%) with a larger trace of 5 million packets.

It was often important that the training trace was representative of the testing

trace. For some applications, the search phase was only effective when a trace con-

tained certain network events. For example, the ConQuest data structure detects mi-

crobursts, and only begins monitoring when one occurs. A trace with no microbursts

would produce no meaningful objective, regardless of the configuration.

Some applications, however, were less sensitive to differences between training

traces and target workloads. When testing Starflow on a wide-area network (WAN)

trace, we found that Parasol was able to find near-optimal solutions using training

traces from either a WAN or a datacenter.

4.6.2.2 Comparison to hand-optimized configurations

We compared the performance of Parasol configurations to that of hand-tuned con-

figurations for our three most complex applications: Fridge, ConQuest, and Starflow.

The hand-tuned configurations come from the applications’ original evaluations [18,

69, 86]. Our goal is to determine whether Parasol can essentially reproduce these

results, by finding configurations that perform comparably on a similar workload.

Fridge (Unbiased RTT). The Fridge [86] data structure is used to collect RTT

samples in the data plane by storing requests and matching them with the corre-

sponding response, without sampling bias against large RTTs. Each request is added

to the data structure with probability p, and once a request is in the structure, it can

be removed either upon receipt of the response, or if a new response overwrites it due

to a hash collision.
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The value of p is the primary parameter to be optimized. If p is too small, requests

are less likely to be added to the structure, and the program will not produce enough

RTT samples. Conversely, if p is too large, requests are more likely to be overwritten

before their responses arrive.

In general, the objective function that Fridge seeks to minimize is the difference

between the distribution of sampled RTTs and the distribution of all RTTs. We

implemented the same error function in Parasol as was used in the original evaluation

of Fridge [86]: maximum percentile error, or the maximum error of the sampled

distribution for percentiles ∈ [5%, 95%].

In the hand-tuned program, the authors achieved an error of 25%, and our opti-

mized program, found using Bayesian search, achieved a maximum delay estimation

error of 28%. The Fridge authors found that they could achieve nearly the same error

with a wide range of p values. In our workloads, Parasol also found that p had a

negligible effect on error as long as it is greater than 2−12 (0.0002). Going outside of

that bound for the chosen fridge size increased the error to over 100%.

ConQuest. ConQuest [18] aims to identify flows that are making a significant

contribution to queue build-up, during some time window T . It maintains several

sketches as “snapshots” of the queue length for T . During a time window, the program

cleans one sketch, writes to one sketch, and reads a flow’s queue length estimates from

the rest.

ConQuest has three parameters that can impact its performance: the number of

sketches and the rows and columns in each sketch. These parameters are challenging

to tune because the choice of one affects the others. If the number of columns is too

large, it reduces the number of rows that will fit on the target, and the sketch may

not be fully cleaned before rotating. Conversely, too many rows requires less columns

and smaller sketches. As a sketch gets smaller, it becomes less accurate.

100



The objective of ConQuest is to identify the packets responsible for queue build-up

as accurately as possible. For comparison with the original evaluation, we quantify

accuracy using the F-score3, which depends on both precision and recall.

The original evaluation of ConQuest found that it could achieve both precision

and recall greater than 90%, i.e., an F-score >90%. Parasol found a comparable

configuration with an F-score of 92% (precision of 97% and recall of 87%). The

Parasol optimizer used the Bayesian search strategy.

The choice of metric used for cost affects the configuration chosen by the optimizer.

F-score incorporates both precision and recall. A configuration with lower precision

has more false positives, and a lower recall means more false negatives. Some appli-

cations may be more tolerant to false negatives, and others may prefer false positives.

We can tailor the objective function based on an application’s preference.

To minimize false positives, we can optimize for precision. This will result in a

larger sketch, that keeps more accurate counts for each flow. On the other hand, we

can optimize for recall to minimize false negatives. This produces a configuration

with a smaller sketch, which will result in more flows being identified as significant

contributors. In other words, more true positives, at the cost of more false positives

as well.

Starflow. Starflow [69] is a telemetry system that partitions query processing

between the data plane and software. The switch selects and groups per-packet

records, which are sent to software for flow-level analytics (e.g., classifying traffic,

identifying microbursts). Packet records are stored within buffers on the switch, and

are evicted to software when their buffer is filled, no buffer is available, or there is a

collision. There are two kinds of buffers, whose sizes must be configured at compile

time: a “narrow” buffer which tracks many small flows, and a “wide” buffer for

tracking a few large flows.

3Specifically, the cost is 1 minus the F-score
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App Preprocess Train trace Test trace
time size, time size, time

CMS 16s 500k, 25s 10M, 12min
MHT 15s 1M, 47s 10M, 7min
KV, Precision 25min 1M, 6min 5M, 25min
KV, CMS 2hrs 1M, 2min 5M, 7min
RTT 23s 1M, 1min 3M, 3min
Fridge 3s 1M, 1min 3M, 2min
Starflow 1.5hr 900k, 1min 5M, 27min
ConQuest 15s 10M, 9min 10M, 10min
LB 2s 500k, 16s 3M, 2min
Precision 32min 1M, 6min 18M, 1.7hrs
SFW 30s 4M, 3min 11M, 7min

Table 4.4: Runtime of Parasol components per application. Preprocess time is the total
time to preprocess with the greedy layout heuristic, train/test trace size is the size of the
trace in packets, and train/test trace time is the average time to simulate the trace once.

The most important performance metric for Starflow is its eviction ratio: the

ratio of flushed cache records to packets. A lower eviction ratio is preferable because

it means that more packets are being covered by each record that the server must

process, saving both bandwidth and processing time at server.

The original, hand-optimized P4 code achieved an eviction ratio between 7.1% and

25%, depending on the size of the cache and the workload. The Parasol optimizer

achieved an eviction ratio of 15%, well within the performance range of the original

program. In other words, 15 out of every 100 packets are recirculated to evict a

record from the cache. The best compiling configuration was found after 7 (out of

85) iterations (1.5 min) of simulated annealing. We found that both the sizes of the

narrow and wide buffers impacted the eviction ratio. Our optimizer found, for our

representative traffic trace, that a narrow cache smaller than 1024 slots and a wide

cache smaller than 8192 slots resulted in an eviction ratio greater than 40%, with

fixed wide and narrow caches, respectively.
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4.6.2.3 Optimizer Speed

The runtime of the Parasol optimizer is application-dependent (shown in Table 4.4),

and has two major components: preprocessing time and search time. Preprocessing

time scales with the complexity of the input program and number of parameters, and

took between 7 seconds and 1.5 hours. Search time scales primarily with the size

of the input trace, and was limited to 2 hours, though many applications required

less than that. A single iteration of the training trace took between 16 seconds to 9

minutes, depending on the application.

Overall, the Parasol optimizer took no more than 3.5 hours to find near-optimal

settings for any of our applications. This compares favorably to compiling, testing,

and tuning applications by hand: just compiling one configuration of a program to

a reconfigurable architecture like the Tofino can take hours [28] for both research

or industrial compilers, because it is a fundamentally hard task [76]. As mentioned

above, we found three main factors that influenced the overall runtime: application

complexity, training set size, and search strategy.

Application complexity. The optimizer preprocesses each Parasol program as

a heuristic to check if it will compile to hardware. The preprocessing time depends

on the complexity of the program, both in terms of length and number of parameters.

Programs with more parameters (e.g., Starflow) took longer than programs with few

parameters (e.g., LB). Table 4.4 lists total preprocessing time for each application.

Complex programs also take longer to simulate. The CMS simulation took about

a minute for a 1 million packet trace, while a trace of the same size with Precision took

three minutes. Precision is more complex because it contains logic for recirculating

packets, while the CMS does not recirculate packets. The recirculation not only adds

complexity to Precision, it also requires the program to process more packets, as

recirculated packets must be processed again.
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Training set size. The runtime of Parasol’s search phase increases roughly

linearly with the size of the input training trace, because the search algorithm executes

each chosen configuration on the trace. Reducing the size of the provided trace can

speed up optimization, but many applications require large traces. For example,

evaluating the performance of a program that measures heavy hitters (e.g., Precision)

requires enough traffic that the trace contains heavy flows.

Search strategy. Search strategies took different amounts of time to converge,

depending on the application. We compare search strategies, using the load bal-

ancing and Starflow applications, by tracking the best evaluated configuration after

each iteration. All three methods found similarly performing configurations for the

load balancer, but the overall search time was much different: Bayesian search took

approximately 19 minutes, while simulated annealing and simplex search took only

2 minutes. Similarly, for the Starflow application Bayesian and simulated annealing

strategies reached a configurations with similar performance (in 13 and 10 minutes,

respectively) while simplex did not find a configuration that produced the best colli-

sion rate within the time budget.

4.6.3 Case Studies

4.6.3.1 Data-plane caching

To better understand how Parasol handles workload dependence and some of the chal-

lenges in tuning data-plane applications, we study a conceptually simple in-network

cache. We optimize the cache for three different workloads: a highly skewed zipfian

(top 10 keys had 58% of requests), moderately skewed zipfian (top 10 keys had 15% of

requests), and uniform (top 10 keys had .06% of requests). Training traces contained

1 million requests, and test traces contained 5 million requests. We limit the cache

size to 10K entries.
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We compared three versions of the cache: a variant that uses a count-min sketch

to track key popularities (NetCache [42]); one that uses Precision [5] to prioritize

popular keys; and a very basic hash-addressed array that evicts on collision to avoid

the need for packet recirculation.

Distribution CMS Precision Hash Table

High skew 0.10 0.07 0.10
Moderate skew 0.69 0.64 0.70
Uniform 0.73 0.73 0.73

Table 4.5: Cache performance with respect to miss rates.

First, as Table 4.5 shows, all three caches reduce the workload of the backend that

they serve. As expected, the caches perform better in more skewed workloads, and

the more sophisticated CMS and Precision caches outperform the simple hash table.

In particular, the Precision cache is over 30% more effective than the other caches, in

the high skew workload.

Distribution CMS Precision Hash Table

High skew 0.5750 0.5375 0.5500
Moderate skew 1.0175 0.8225 0.8500
Uniform 1.0475 0.8675 0.8650

Table 4.6: Cache performance with respect to network workload.

Now consider a network operator with a different objective. Instead of minimizing

miss rate, they wish to minimize total network traffic. Assuming the client and server

are connected via one hop across the caching switch, a cache miss costs 2X as much

as a cache hit, and a recirculated packet costs 0.5X as much as a cache hit. Thus,

the objective function is 2 ∗m+ h+ 0.5 ∗ r, where m, h, and r are the percentage of

misses, hits, and recirculated packets in a trial. The cache provides benefit whenever

the metric is less than 1.

Table 4.6 compares the caches with respect to this alternative metric. Somewhat

surprisingly, the simple hash table performs better than the more sophisticated CMS
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variant, and is competitive with Precision (even beating it for the uniform workload).

It is because the hash table variant does not need to recirculate packets, unlike the

others.

We also compare the results of optimizing the cache with both the P4All and

Parasol frameworks. We use a weighted sum of the theoretical hit rate of the key-value

store and the error rate of the CMS (described in 3.2: 0.8∗ (kvObj)−0.2∗ (cmsObj).

This objective function produces almost the same memory allocation that we get

with Parasol. Memory allocation, however, is only a piece of the puzzle. The cache

performance is impacted by the threshold we use to decide if an item should be

inserted into the cache. P4All cannot optimize for the threshold, because it is a non-

resource parameter, meaning its value does not affect the resource allocation. If we

pick a suboptimal threshold, hit rate suffers. In the moderately skewed workload, the

Parasol optimizer chose a threshold of 300 (i.e., if the switch has seen at least 300

requests for an uncached item, that item should be added to the cache), which results

in a miss rate of 66% with the testing trace. If we instead choose a larger threshold

of 5000, miss rate increases to 68%. For the test trace of 5 million packets, that

would result in an extra 100k packets being forwarded to a storage server, when they

otherwise could have been handled by the switch if we set the threshold optimally.

This case study highlights how tricky it can be to tune even a conceptually simple

data-plane application. The optimizations that at first seem most effective (or are

most intuitive) are not necessarily best in every network, or from every perspective.

Figuring out what’s right for one’s network can be challenging, but Parasol simplifies

this process by lifting the burden of reasoning about how parameter choices can affect

performance off of the programmer.
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4.6.3.2 Fridge

Sometimes, operators tune their programs with heuristics derived from closed-form

equations based on worst-case error bounds. Such heuristics have two problems.

First, they are challenging to derive and verify, hence only available for certain data

structures whose properties have been theoretically analyzed. Second, closed-form

equations do not always give an accurate picture of application performance in prac-

tice, because actual traffic distributions can vary significantly from the worst case [16]

and, for tractability, closed-form equations often ignore factors that matter in prac-

tice.

To illustrate this, we compare the performance of the Fridge RTT monitor as

optimized by Parasol to a version optimized according to a closed-form equation.

Given a Fridge size M (the number of entries), the authors derive the following

formula to set p: M
p
= number of requests between the request and response with the

maximum delay, where p is the probability of storing a new request in the structure.

For our evaluation workload, with a Fridge sized at M = 217 (the maximum size

for our implementation on the Tofino), the theoretical formula calculated p = 2−1,

which resulted in a maximum percentile error of 31%. As expected, this was not

the optimal configuration for this workload. Optimizing with Parasol improved the

relative performance by 10%; Parasol recommended p = 2−5, which resulted in an

error of 28%.

In Service-Level Agreements (SLAs) with ISPs, delay requirements are often spec-

ified as a target distribution, or a maximum delay for a certain percentile. It is then

essential for ISPs to be able to accurately measure the delay distributions in their

networks. The theoretical formula provides only a worst-case error bound, though,

and it is not tailored to the more specific needs of users. Parasol, on the other hand,

can easily optimize for users’ target SLAs; programmers need only adjust the objec-

tive function. As such, the gap between Parasol and the theoretical formula was even
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more substantial at specific percentiles—for RTT samples in the 50th percentile, the

configuration from the theoretical formula produced an error of 15%, while Parasol

achieved an error of only 8%.

Although closed-form equations based on worst-case analysis are important for

theoretical rigor, this short case study demonstrates that using them for tuning leaves

significant performance on the table. Parasol allows network operators to reclaim that

potential performance by automatically tuning data structures for different operat-

ing environments and performance objectives, while at the same time freeing pro-

grammers from the burden of deriving tuning heuristics from worst-case performance

bounds.

4.7 Related Work

Researchers have developed a number of tools for writing data-plane programs.

Domino [65], Chipmunk [28], ClickINC [82], Lucid [68], Lyra [27], and O4 [2] provide

new, high-level languages for expressing data-plane programs, each providing abstrac-

tions and a compiler targeting one or more architectures. These compilers include

optimizations or synthesis techniques to ensure that programs compile. However,

if a program cannot fit on a target, it will not compile. In the case of ClickINC,

the compiler will attempt to place the program on a different device if it cannot be

compiled on a switch. They also do not provide environment-specific optimizations,

as compilers do not have access to traces.

There also exist tools for optimizing prewritten data-plane programs. P2GO [80]

uses a traffic trace to minimize the resources used by a P4 program by reducing

dependencies that do not appear in practice, shrinking tables, and offloading parts of

the program to a controller. Cetus [47] uses static analysis to eliminate dependencies

between tables by duplicating variables and to merge tables. Although P2GO and
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Cetus fit programs into limited resources, they either do not provide environment

optimizations or risk changing program semantics. Additionally, Pipeleon [81] seeks to

optimize the performance of programs deployed on SmartNICs by analyzing runtime

performance. In constrast, Parasol focuses on resource-constrained programmable

devices that cannot be updated at runtime without recompilation.

A third type of tool optimizes by leveraging user domain knowledge. P5 [1] uses

a high-level description of the network’s policy to remove spurious dependencies and

unused features. SketchGuide [88] allows users to declare flexibly-sized structures

and optimize them with a user-provided objective function. By taking policy into

account, these tools can provide more detailed optimizations than would otherwise

be possible. Although they provide a detailed optimization, these tools ask a lot of

their users; P5 requires a high-level policy description, and SketchGuide requires a

closed-form objective function to determine how their memory allocations relate to

program performance.

An area of work related to Parasol’s optimizer is network simulation. Simula-

tors are designed for many objectives, including high fidelity [58], interactive opera-

tion [44], automatic traffic generation [85], and scalable performance [79]. All of these

tools complement Parasol, and future work will likely involve integrating these tools

to improve Parasol.

4.8 Conclusion

The process of writing and deploying a data-plane application that works well is an

arduous one, requiring the programmer to undergo a grueling process of compiling,

testing, and tweaking to find the best configurations. Parasol is a new and flexible

framework for writing parameterized data-plane programs, and synthesizing effective

settings for those parameters. Parameters in Parasol can represent a wide variety of
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high-level implementation decisions, and the Parasol optimizer can target a variety

of high-level behavioral goals. The optimization process is orders of magnitude faster

than modern iterative testing strategies, and incorporates a representative traffic

trace to tailor its solution to a particular environment. We evaluated Parasol on a

variety of applications, and found that its solutions were near optimal and performed

comparably to hand-optimized configurations.
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1 /* A register array for cache hash table */

2 global Array . t<32> keyValue = Array . create ( 1024 ) ;
3 /* A register array for each CMS row */

4 global Array . t<32> counter0 = Array . create ( 2048 ) ;
5 . . .
6 global Array . t<32> counter3 = Array . create ( 2048 ) ;
7
8 /* Execute the following on each packet */

9 event request ( int key ) {
10 int cachedKey = // Hash key and return

11 int cachedTime = // what’s stored at that

12 int cachedValue = // index in the hashtable

13
14 /* Check if key in cache and if entry expired */

15 bool found = ( key == cachedKey ) ;
16 int timeDiff = Sys . time ( ) − cachedTime ;
17 bool expired = timeDiff > timeout ;
18
19 i f ( found ) { generate response ( cachedValue ) ; }
20 else i f ( expired ) { AddKeyToCache ( key ) ; }
21 else {
22 /* Compute hash indexes for each row */

23 int cms_idx0 = hash ( . . . ) ;
24 . . .
25 int cms_idx3 = hash ( . . . ) ;
26
27 /* Retrieve and increment stored counter values in each row */

28 int count0 = GetAndIncrStoredValue ( counter0, cms_idx0 ) ;
29 . . .
30 int count3 = GetAndIncrStoredValue ( counter3, cms_idx3 ) ;
31
32 /* Calculate min across stored counter values */

33 int min = 0xffffffff ; // Initialize global min

34 i f ( count0 < min )
35 { min = count0 ; }
36 . . .
37 i f ( count3 < min )
38 { min = count3 ; }
39
40 i f ( min > threshold )
41 { AddKeyToCache ( key ) ; } } }

Figure 4.4: Data-plane cache in Lucid.
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1 symbolic s ize rows ;
2 symbolic int cols ;
3 symbolic int cacheEntries

4 symbolic int timeoutThresh ;
5 symbolic int replacementThresh ;
6 symbolic bool useCms ;
7
8 module CMS : {
9 type t = . . . ;
10 fun t create ( s ize rows, int cols ) {
11 Array . t<32>[rows ] cms = [Array . create ( cols ) for i<rows ] ;
12 . . . }
13 fun int getCount ( int key ) {
14 int min = 0xffffffff ; // Initialize global min

15 for (i < rows ) {
16 int cms_idx = hash ( . . . ) ; // Compute hash index

17 /* Retrieve and increment stored counter value */

18 int count = GetAndIncrStoredValue ( cms [ i ] , cms_idx ) ;
19 /* Calculate min across stored counter values */

20 i f ( count < min ) { min = count ; }
21 } return min ; }
22 }
23 fun bool decideIfAdding ( int key ) {
24 return ( getCount ( key ) > replacementThresh ) ; } }
25 module Precision : {
26 type t = . . . ;
27 fun t create ( s ize rows, int cols ) = { . . . } ;
28 fun int getCount ( int key ) { . . . }
29 fun bool decideIfAdding ( int key ) { . . . } }
30
31 module KeyTracker=CMS i f useCms else Precision ;
32 global KeyTracker . t tracker = KeyTracker . create ( rows,cols ) ;
33 global Array . t<32> cache = Array . create ( cacheEntries ) ;
34
35 extern logHits (bool found ) ;
36
37 event request ( int key ) {
38 int cachedKey = // Hash key and return

39 int cachedTime = // what’s stored at that

40 int cachedValue = // index in the hashtable

41
42 bool found = ( key == cachedKey ) ;
43 int timeDiff = Sys . time ( ) − cachedTime ;
44 bool expired = timeDiff > timeoutThresh ;
45
46 logHits ( found ) ;
47 i f ( found ) { generate response ( cachedValue ) ; }
48 else i f ( expired ) { AddKeyToCache ( key ) ; }
49 else {
50 bool add = KeyTracker . decideIfAdding ( key ) ;
51 i f ( add ) { AddKeyToCache ( key ) ; } } }

Figure 4.5: A data-plane cache in Parasol. Parts of the code not containing novel elements
have been truncated or omitted entirely.
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Chapter 5

Conclusion

Modern networks need to be able to support the complex applications, like network

management and distributed services, that we rely on every day. Because traditional

networks were designed primarily for communication between a small number of hosts,

they are not capable of keeping up with our ever-changing needs and demand for high-

speed processing. Programmable network devices have emerged as a way to bring

increased capability and flexibility into traditional networks. These switches can be

programmed to run a vast array of applications, which are guaranteed to execute at

line-rate.

Programming these devices, however, can be prohibitively difficult. They guaran-

tee line-rate execution because they have strict hardware limitations, and program-

mers often invest significant effort just to get their applications to fit within the

resource constraints. Getting a program to fit is not enough—it must also perform

well. Ensuring high performance requires balancing resource allocation across mul-

tiple applications, giving each enough resources, but not so much that the program

violates constraints. This results in a tedious trial-and-error development process, be-

cause data-plane programming languages (P4) are too low-level. Programmers must
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understand how their code gets mapped to hardware, and manually rewrite code to

adjust the resource allocation.

This dissertation takes steps towards alleviating these challenges. We focus on de-

coupling the language from the hardware resources, by raising the level of abstraction

for the languages, and building systems to automatically manage resource allocation.

In this chapter, we provide a summary of contributions, along with future directions

and final remarks.

5.1 Summary of Contributions

This dissertation focuses on decoupling data-plane programming languages from data-

plane hardware. We build practical abstractions that allow for generalized data struc-

tures, that do not need to be rewritten for new applications. We automatically adapt

those structures for specific contexts, with minimal programmer effort.

P4All (chapter 3) introduces elastic data structures, whose implementation is

separated from the underlying hardware resource constraints. Elastic structures are

defined by symbolic values, which function as placeholders for the size of the struc-

ture, and we extend the P4 language with these symbolic values. To automati-

cally adapt these structures to whatever resources are available on the target, we

develop an optimization framework to automatically set symbolic values according

to a programmer-defined performance objective. This framework finds the optimal

layout (i.e., concrete values for each symbolic that optimize performance) by gen-

erating and solving an integer-linear program, where the constraints correspond to

hardware resources and variables represent symbolic values. We implement the P4All

optimizer in Python, and demonstrate that it can generate, in a matter of minutes,

valid code that compiles to the Intel Tofino switch. We create a library of commonly

used structures in P4All and find that the optimizer produces solutions comparable to
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hand-optimized P4 code. P4All simplifies the process of data-plane programming by

bringing more modularity and reusability to P4 and raising the level of abstraction.

Parasol (chapter 4) extends the concept of elasticity to encompass any parame-

ter of a data-plane application, not just structure size. Parasol programmers write

applications with symbolically-defined parameters (e.g., structure size, timer values,

thresholds, etc.) in the Lucid programming language. Programmers also supply an

empirical objective function, written in Python, that expresses application perfor-

mance as measurements taken during simulation. Parasol then uses a simulation-

based optimization framework, in which it selects a configuration, simulates the ap-

plication with a programmer-supplied traffic trace (using the Lucid interpreter), and

measures the resulting performance. The output of the optimization process is a con-

figuration which yields optimal performance, while adhering to hardware constraints.

We evaluate the Parasol language by implementing ten diverse applications, each

with differing parameters and objective functions. We measure the effectiveness and

efficiency of the optimizer by comparing its output to optimal configurations found

through exhaustive search, and we find that the optimizer is able to find near-optimal

configurations for each of our applications within a two-hour time budget. We also

compare Parasol and P4All, and show that Parasol is able to express a much wider

range of applications. Even when we have both Parasol and P4All objective functions

for the same application (e.g., the Fridge data structure), the P4All objectives are less

effective because they do not fully utilize workload properties. Parasol brings flexi-

bility to data-plane programming through applications with generalized parameters,

that can be optimized according to any criteria.
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5.2 Future Directions

We can extend the concepts presented throughout this dissertation into new direc-

tions, that further promote a simplified development process for network applications.

5.2.1 Self-Measuring Data Structures

The Parasol optimizer uses user-provided traffic traces to tailor applications to par-

ticular environments. While this works well for consistent workloads, the traffic in a

real network may deviate from the expected distribution. A deviation in performance

or distribution may indicate that a structure is not well adapted to its environment

or worse, that there is an attack on the network. In initial work in this space, ex-

perimental results show that the performance of an application can vary significantly

based on the workload distribution. In other words, applications are less efficient for

unexpected workloads. As such, these applications would significantly benefit from

identifying, in real-time, deviations in distributions.

Self-measuring data structures efficiently and accurately measure distributions

using data collected from the structures, alongside their intended functionality (e.g.,

firewalls, load balancing, etc). As an example, a self-measuring count-min sketch

would use the information stored in the sketch to identify if the estimated counts are

likely to produce a high error, indicating the sketch is not performing as expected.

The application could include a mechanism to send an alert to a network operator,

but ideally, data structures would be able to adapt to changing workloads, without

manual intervention. If the self-measuring sketch was identifying heavy hitters, it

could potentially automatically adjust its classification threshold. These structures

would then be more robust to potential attacks, and would provide better performance

in the face of changing workloads.
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5.2.2 Programming SmartNICs

SmartNICs [52, 55] are programmable accelerators that have become increasingly

popular for offloading CPU tasks in data centers. They provide the ability to cus-

tomize the networking stack, leading to efficient and flexible packet processing. Like

programmable switches, smartNICs have certain hardware restrictions to enable effi-

cient processing. Unlike switches, however, smartNICs do not adopt the all-or-nothing

model; they utilize a run-to-completion model. If a particular program cannot execute

at line-rate, it can still compile to and run on the smartNIC. This creates an inter-

esting tradeoff for programmers to navigate—if they want more complex processing,

it comes at the cost of reduced throughput.

We can apply the same strategies of P4All and Parasol to smartNICs. We need a

comprehensive programming languages that allows programmers to write applications

that can execute at line-rate, as well as more complex code that requires slower

processing. We can also help programmers navigate this tradeoff by automatically

finding the right balance of processing and throughput, so we can extract the best

possible performance. This involves careful scheduling of operations on smartNIC

cores and intelligently managing memory accesses.

5.2.3 Simplified eBPF Programming

eBPF [24] is a framework that allows programmers to write applications that can

run in the Linux kernel, without having to change the source code or load kernel

modules. eBPF is particularly useful for networking applications because it provides

hooks to the network stack in the kernel. This allows programmers to customize

packet processing and forwarding within the kernel, which enables faster processing,

because packets do not necessarily need to go user space. For example, with eBPF,

programmers can implement packet filtering, load balancing, and flow monitoring,

among other applications, in the kernel. While eBPF is a powerful tool that simplifies
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the process of running applications in the kernel, programming with eBPF is far from

intuitive. Programs can run at different layers of the kernel, and the functionality

available varies among layers. For example, the lowest layer, eXpress Data Path

(XDP), sits at the earliest point, in the NIC, before packets are parsed. XDP is by

far the fastest layer, but as a result, it is also particularly restrictive. It can only

process ingress traffic, and it does not allow programming concepts such as loops,

global variables, and floating point numbers.

We can extend the ideas of P4All and Parasol to develop a framework for pro-

gramming with eBPF that allows programmers to write high-level, parameterized

applications, without necessarily worrying about the layers in which the code can

execute. Alongside this abstraction would be an optimizer that can automatically

decide where the code executes. This is particularly challenging because of the per-

formance tradeoff between layers. If programmers require more capabilities, their

code must run in higher layers, which comes with a performance degradation. For

example, the tc (traffic control) layer is 5-10x slower than XDP. A framework must

take into account computational requirements of an application and the user’s per-

formance expectations. Lastly, the framework would also require a compiler that

translates parameterized code into something recognized by the eBPF compiler.

5.2.4 Programming a Network of Heterogeneous Devices

Today’s networks are comprised of many different types of devices—ASICs [20, 39],

FPGAs [52], smartNICs [55], etc. Most of the devices use domain-specific languages.

If programmers want to deploy the same application on different hardware, or to split

an application across devices, this requires rewriting the program for each type of

device. This makes network programming tedious and complicated. We can extend

the concepts of flexibility and parameterization from P4All and Parasol to a broader

range of devices. Programmers should be able to write a single program that can be
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compiled to any network device with sufficient capabilities. In the case where a device

cannot support the entire program, an optimizer should automatically determine

which pieces of the program the device can support, while deciding where to place

the rest of the program such that the original functionality is preserved and the

resulting application meets the user’s performance goals. The ultimate goal is to take

full advantage of the programmability in the network by making it actually easy to

program, without having to master device-specific languages for every device in the

network.

5.3 Final Remarks

This dissertation simplifies data-plane programming by freeing programmers from the

burden of reasoning about low-level hardware resources of programmable switches.

Programmable switches, however, are just one piece of the puzzle. As we approach the

ending of Moore’s Law, highly specialized, domain-specific devices are becoming more

common. Networks will need to adopt to a plethora of heterogeneous devices to keep

up with increasing user demands. Unfortunately, because these devices are so special-

ized for high-speed processing, they also come with a high barrier to entry. They are

not designed with usability in mind, with each device using different programming

languages and having radically different constraints. Development of network applica-

tions can then become siloed, because programmers often become experts in a single

type of device. Network-wide applications must be deployed across many types of

devices, so development is broken up among several different groups of programmers.

It becomes extremely difficult to adopt these devices in real networks, and we cannot

reap their benefits in practice. We need to rethink the approach for programming

these devices, and design systems that make them actually programmable, so that

networks can easily adapt our changing needs.
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