
Automated Optimization of Parameterized
Data-Plane Programs

Paper #569, 12 pages body, 15 pages total
ABSTRACT
Programmable data planes allow for sophisticated applica-
tions that give operators the power to customize the func-
tionality of their networks. Deploying these applications,
however, often requires tedious and burdensome optimiza-
tion of their layout and design, in which programmers must
manually write, compile, and test an implementation, ad-
just the design, and repeat. In this paper we present Parasol,
a framework that allows programmers to define general,
parameterized network algorithms and automatically opti-
mize their various parameters. The parameters of a Parasol
program can represent a wide variety of implementation de-
cisions, and may be optimized for arbitrary, high-level objec-
tives defined by the programmer. Furthermore, optimization
may be tailored to particular environments by providing a
representative sample of traffic. We show howwe implement
the Parasol framework, which consists of a sketching lan-
guage for writing parameterized programs, and a simulation-
based optimizer for testing different parameter settings. We
evaluate Parasol by implementing a suite of ten data-plane
applications, and find that Parasol produces a solution with
comparable performance to hand-optimized P4 code within
a two-hour time budget.

1 INTRODUCTION
The advent of programmable data planes has provided net-
work operators the ability to customize the low-level behav-
ior of network switches, paving the way for sophisticated
applications that run inside the network itself. These appli-
cations include distributed firewalls, load-balancing, sophis-
ticated telemetry, mechanisms for distributed coordination,
and application accelerators like in-network caches. Each of
these data-plane programs leverages the specialized packet-
processing hardware of the switch to run at line rate.
This power comes at a price: sophisticated data-plane

programs are notoriously difficult to write. Thanks to the
complexity of switch hardware, programs written in domain-
specific languages like P4 [5] often fail to compile [13–15, 24,
35], as they cannot fit their data structures into the limited
memory and computation constraints available on a chip.

Even when they do compile, there are many performance-
critical choices to make when crafting these algorithms—
thresholds, memory allocation, which data structures to use,
etc. The first version of an algorithm is rarely the best one.

Consequently, applications often require many revisions and
sometimes weeks’ worth of tweaking and testing to obtain
a variant of the initial program that compiles, fits within
hardware constraints, and performs well. The process is all
the more frustrating as compiling to programmable switch
hardware can be very expensive: ASIC compilers can take
anywhere from minutes to hours to days [14]. Indeed, in one
author’s experience, the state-of-the-art P4 compiler took
more than five days to produce a working binary.
To alleviate these problems, researchers have developed

a variety of different program synthesis systems aimed at
programmable switches [13–15, 22, 32, 35]. These systems
lift the level of abstraction at which programmers write pro-
grams, which gives those programs enough “flex” to be fit
efficiently onto switches by optimizing the use of key re-
sources such as memory, ALUs, or pipeline stages.
As useful as they are, these systems only scratch the sur-

face of what is possible in a more general program synthesis
framework for programmable switches. Each of the above
systems is limited in one or more of the following ways.

Limited objectives. Most systems to date focus on opti-
mizing simple on-switch resources. Common optimization
criteria include memory footprint, number of stages, or ALU
usage. However, humans typically evaluate network appli-
cations on far more sophisticated criteria than just whether
they happen to fit into the switch pipeline: accuracy of mea-
surements, effectiveness relative to an idealized model, and
bandwidth used are just a few other ways to evaluate data-
plane algorithms. Indeed, even the most memory-intensive
applications are typically developed to optimize some other
criteria. For instance, NetCache [16]—an in-network cache
for key-value stores—uses several data structures, including
a count-min sketch (to identify popular keys) and a multi-
stage hash table (to cache the values for popular keys). While
optimizing memory layout of these data structures is impor-
tant, the high-level objective is actually to maximize cache
hit rate. No tool to date has the ability to specify objectives
at such a high level of abstraction.

Limited “program flex.” To give optimizers a chance to im-
prove a program implementation, theymust be free to change
that implementation — the more freedom (i.e., the more “flex”
in the program), the more opportunities an optimizer has to
make improvements. Standard optimizing compilers have
very little freedom in this regard; they must preserve the

surface-level semantics of programs. A system like P2GO [32]
deviates from this requirement by cutting out program com-
ponents that are unnecessary for processing a particular
traffic trace, but this carries some risk if traffic not present
in the trace shows up in the live network. Even if it does
not, P2GO has limited ability to make changes, because it
provides only three operations: it can merge tables, remove
dependencies, or move processing to the control plane.

A system like P4All [15] or SketchGuide [35] adds a little
more flexibility by allowing data structures to be resized. Still,
data-plane algorithms could be tweaked in so many other
ways that affect their performance: the rate at which active
probes are emitted in a telemetry application, the choice of
data structures to use in an in-network cache, the threshold
at which to declare a heavy hitter, or the criterion to use
for failure detection, to name just a few. No tool to date
allows users to write programs with so much flex, let alone
automatically optimize them.

Limited environmental input. The performance of a data-
plane application is a product of its environment. A program
tailored to one workload may not perform well if used in a
different setting. As a result, systems like Chipmunk [14] and
P4All [15] are limited because they have no access to traffic
traces. Even if it were possible to express a property such as
“optimize cache hit rate” in a system like P4All (which it is
not), it would not be possible to solve the optimization prob-
lem because hit rate depends on the distribution of requests
in the network, which P4All does not consider. P2GO and
SketchGuide do provide access to such data, but they have
neither the flex nor the range of objectives to exploit that
information to its fullest potential.
Developing an appropriate framework is challenging be-

cause of the tradeoff between expressibility and complexity.
Making a framework more expressible by allowing more
program flex inherently makes the optimization more dif-
ficult, as the program can have any number of parameters
that affect its performance, and it can be nearly impossible
to develop objective functions to capture every parameter
in a program. On the other hand, while limiting the flexibil-
ity simplifies the optimization, it also restricts the types of
programs that can be expressed.

Enter Parasol. Parasol is a novel, more general framework
for synthesizing data-plane programs that overcomes the lim-
itations of earlier frameworks. Parasol consists of two parts:
a sketching language and an optimizer. The sketching lan-
guage is an extension of Lucid [24], a high-level, event-based
data-plane programming language. Parasol programmers
write sketches [23], which are normal programs with several
“holes”. These holes represent the parameters of the program;
each is an undefined value that will be filled in by the op-
timizer. Parameters in Parasol are highly flexible; they can

control just about any aspect of the implementation. This
might include memory layout, decision thresholds, measure-
ment intervals, or even a choice between data structures; in
contrast, systems like P4All and SketchGuide are limited to
only optimizing memory layout.
The optimizer uses an iterative search algorithm to au-

tomatically optimize the parameters according to a user-
defined objective. These objectives come in two parts. The
first part measures arbitrary aspects of a program executing
in simulation mode over an example traffic trace. The sec-
ond part computes an arbitrary, user-defined score based on
those measurements. Both parts are implemented in Python
rather than the more limited languages of switch data planes.
Hence, users can express essentially unlimited optimization
criteria—the main constraint is the fidelity of the simula-
tion environment to reality. The optimizer simulates the
program’s behavior on traffic traces drawn from a partic-
ular network, allowing more tailored optimizations than
would be possible from relying solely on static, workload-
independent quantities such as switch memory resources
and architecture.

To summarize, Parasol is a new data-plane sketching lan-
guage and optimization framework with the following fea-
tures.

• Flexible objectives: Parasol’s optimization algorithm
can optimize for a wide variety of high-level metrics
such as hit rate or measurement accuracy.

• Flexible programs: The parameters of a Parasol pro-
gram may control many properties, including probe
generation frequency, algorithmic choices, memory
layout, data-structure selection, or threshold values.

• Flexible environments: Parasol programmers may
tailor their optimization to particular network envi-
ronments by providing representative traffic traces.

We evaluate Parasol by developing a number of data-plane
programs with various parameters and objective functions.
Our experiments found that the Parasol optimizer completed
an iteration in approximately eight minutes on average (with
an average trace size of two million packets), and all applica-
tions could be optimized with a time budget of two hours.
The solutions produced by the optimizer not only complied
with the resource constraints of the hardware, but were com-
parable in performance to hand-optimized P4 code.
Ethics: This work does not raise any ethical issues.

2 AN ILLUSTRATIVE EXAMPLE
Before describing Parasol in detail, we provide a motivat-
ing example application that one might wish to deploy in a
programmable network: a load-balancing cache, inspired by
NetCache [16]. The structure of the cache is illustrated in Fig-
ure 1. The cache reduces load on storage servers by directly

2

cache

request
handler

response
handler

key-value
map

access
counts

request

response

(hit)

request(miss)

response

(miss)

storeclient

response (miss)

Figure 1: Motivating example: an in-network cache.

Param Description

𝐶𝑚 Number of columns / hashes in multi-hash table (MHT).
𝑅𝑚 Number of rows (cells per hash) in multi-hash table.
𝐶𝑐 Number of columns / hashes in count-min sketch (CMS).
𝑅𝑐 Number of rows in CMS.
𝑇𝑡 Timeout threshold for cache.
𝑇𝑟 Replacement threshold.
𝑃 Use precision in place of MHT + CMS.

Figure 2: Parameters of the data-plane cache.

serving requests for the most popular keys, and forwarding
only cache misses to the servers.
The cache operates by storing key/value pairs in a hash

table on a switch. When a request arrives, the switch first
checks to see if the key is in the table; if it is, the switch
simply retrieves the value and sends it back to the requester.
Otherwise, the switch forwards the request to the appropri-
ate storage server. When the response arrives, the switch
forwards it to the client and optionally caches the entry.

Tomaximize efficiency, the cache should serve requests for
the most popular keys. Because popularity may change over
time, the switch dynamically updates its cache to remove less
popular keys in favor of more popular ones. To enable this,
the switch tracks statistics about the popularity of keys not
stored in the cache using a second data structure: a compact,
approximate counter (e.g., a count-min sketch (CMS)).

Parameters and performance. The high-level description
of the cache algorithm is quite simple, but to implement it, a
programmer must make numerous low-level decisions. How
much memory should be allocated to the hash table vs. the
counter? When should we replace cached keys? How should
we represent that counter—using a CMS, or something else?
Consider a cache implemented using Precision [3], a hash
table that probabilistically replaces cached keys upon colli-
sion, where more popular items are less likely to be replaced.
Each of these questions corresponds to a parameter of the
program; Figure 2 provides a non-exhaustive list of the pa-
rameters that an implementation might depend on.
These decisions are not simply details — they can have

significant performance implications. For example, a larger

hash table can cache more keys at once, but reduces the
memory available to the approximate counter and, in turn,
its accuracy. A too-small timeout means that moderately
popular keys will get frequently evicted and re-added, while
a too-large timeout can result in less popular keys staying
in the cache for far too long.

Fundamentally, these trade-offs exist because programmable
switches have extremely limited resources that are shared
across all data structures on the switch. As a result, it is par-
ticularly difficult to figure out precisely what effect different
decisions will have on the program’s behavior.
In contrast, the desired behavior of a data-plane cache is

easy to define—it should maximize hit rate. This behavior is
equally easy to measure, by simply monitoring the switch
in question and recording whether each incoming packet
is a hit or a miss. However, hit rate is not easy to predict
from the values of the cache’s parameters, let alone model
analytically. It would be very difficult (likely impossible)
to derive a closed-form equation that relates the cache’s
hit rates and parameters, which precludes us from using
recent ILP-based optimization frameworks [15] to find a
good configuration.

Traffic dependence. There is another wrinkle: the hit rate
of the cache does not depend solely on the parameters, but
also on the network. This can be illustrated by comparing
Parasol’s implementation of a cache against an equivalent
implementation in P4All, another framework that optimizes
parameters of a program sketch. The hit rate depends on
which keys are in the cache, which is determined not only by
how large the data structures are but also the choice of that
data structure (CMS vs. Precision) and the timeout parameter,
neither of which can be optimized by P4All.
As a result, the performance of the P4All program is lim-

ited by the programmer’s hard-coded choices for these pa-
rameters. Certain parameters can have a large range of po-
tential values (e.g., timeout could range from milliseconds to
seconds to even longer). The subset of that range that per-
forms well in practice can be quite small, making it common
to pick suboptimal values. We found that if the programmer
chose those values poorly, the hit rate for a skewed work-
load could be as low as 56%, while our optimizer produced a
solution with a hit rate of 93%. For a uniform workload that
hit rate plunged to 11%, while Parasol managed a hit rate of
28%. One might worry that Parasol is achieving its better hit
rates by overfitting to its input trace; this is a concern for
any framework that relies on a particular input. We discuss
how to prevent overfitting in detail in §4.4.

f

3

3 SKETCHING LANGUAGE
The first component of Parasol is a sketching language that
allows users to write parameterized programs. This language
is an extension of Lucid [24], a high-level data-plane pro-
gramming language built atop P4. Lucid uses C-like syntax
to provide an event-based view of the network, in which
incoming packets are represented as events. When a packet
arrives at the switch, the event’s handler is executed. Han-
dlers run directly on switch hardware, and may read and
modify header values and register arrays, as well as drop,
create, and forward packets. Lucid provides two backends: a
simulation-based interpreter and a compiler to P4.
We chose Lucid as the basis of our tool for two reasons.

First, as a high-level language, it provides useful abstractions
for representing the numerous decisions programmers must
make during implementation. Second, Lucid provides an
interpreter that can simulate a program’s behavior without
compiling it. The interpreter runs a network-wide simulation,
and can be run on different input traces, allowing the same
program to be optimized for different traffic profiles with no
additional user effort.

To implement Parasol, we add three new features to Lucid.
First, we add symbolic values (à la P4All [15]) to represent the
parameters of a program that should be optimized. Second,
we add a way to select between two different data structures
based on a symbolic value. Finally, we add a foreign function
interface that allows the user to take arbitrary measurements
of the network during simulation. Figure 3 shows a pared-
down example implementation of a data-plane cache that we
use to demonstrate these extensions. Parts of the program
that do not relate to Parasol’s extensions have been omitted,
including the hash table storing the key/value pairs.

Symbolic Values. Symbolic values in Parasol function as
placeholders that may take on any value of the given type.
Each is later replaced with a concrete value, supplied dur-
ing the compilation/optimization process. Once declared, a
symbolic is used in the same way as a compile-time constant.
The program in Figure 3 contains four symbolic values.

The boolean useCms determines if the program should use a
CMS or Precision data structure, and the integer trackerSize
determines how much memory is allocated to that structure.
If a CMS is used, cmsThresh determines the threshold for
adding new keys to the cache. Finally, timeout determines
when keys in the cache are considered expired.

Selecting Data Structures. Lucid provides a standard mod-
ule system for representing data structures. Each module
contains definitions for zero or more types, functions, and
events. In Figure 3, the CMS and Precision modules both
contain definitions for a type t — the type CMS.t represents
a count-min-sketch structure, while the type Precision.t

1 symbolic bool useCms;

2 symbolic int trackerSize;

3 symbolic int cmsThresh;

4 symbolic int timeout;

5
6 module CMS : {

7 type t = ...;

8 fun t create(int size) {...}

9 fun int getCount(int key) {...}

10 fun bool decideIfAdding(int key) {

11 return (getCount(key) > cmsThresh); } }

12 module Precision : {

13 type t = ...;

14 fun t create(int size) = {}...};

15 fun int getCount(int key) {...}

16 fun bool decideIfAdding(int key) {...} }

17
18 module KeyTracker=CMS if useCms else Precision;

19
20 global KeyTracker.t tracker =

21 KeyTracker.create(memSize);

22
23 extern logHits(bool found);

24
25 event request(int key) {

26 int cachedKey = // Hash key and return

27 int cachedTime = // what 's stored at that

28 int cachedValue = // index in the hashtable

29
30 bool found = (key == cachedKey);

31 int timeDiff = Sys.time() - cachedTime;

32 bool expired = timeDiff > timeout;

33
34 logHits(found);

35 if (found)

36 { generate response(cachedValue); }

37 else if (expired)

38 { AddKeyToCache(key); }

39 else {

40 bool add = KeyTracker.decideIfAdding(key);

41 if (add) { AddKeyToCache(key); } } }

Figure 3: A demonstrative implementation of a data-plane
cache in Parasol. Parts of the code not containing novel
elements have been truncated or omitted entirely.

represents a Precision data structure. They also contain func-
tions for initializing those structures, and functions for de-
ciding when to add a particular key to the cache.

Although CMS and Precision are the actual modules, they
are not referenced anywhere else in the program. Instead, the
rest of the program uses the KeyTrackermodule, which is an
alias for either CMS or Precision, depending on the symbolic

4

Program
sketch

Objective
function

Network
trace

Pick
concrete
values

Compute
instance

cost
Simulate
execution

Best concrete
program

Measurement
functions

Parasol
Optimizer

Figure 4: Overview of the Parasol optimization framework.

value useCms. The program may then simply call the func-
tion KeyTracker.create to initialize the tracker1, and simi-
larly use the function KeyTracker.DecideIfAddingKey to
determine if a key should be added to the cache.

Parasol’s extension to the Lucid type checker makes sure
CMS and Precision contain exactly the same declarations
(i.e., implement the same interface), which allows the pro-
gram to use KeyTracker safely while remaining oblivious to
implementation-level differences between CMS and Precision.
If the modules differed, the programmer could instead create
wrapper modules to ensure they present the same interface.

Foreign Function Interface. Our final extension to Lucid lets
a programmer instrument their code with calls to external
measurement functions that are executed by the Parasol
simulator, but removed from the final compiled program. In
Figure 3, the extern logHits is a function implemented in
Python by the programmer, which counts the number of
cache hits and misses while the Parasol simulator is running.
Each time a cache lookup is performed, logHits is called
to record whether the lookup was a hit or a miss. After
completing a simulation, the Parasol optimizer uses these
measurements evaluate the program’s effectiveness.

Parasol permits only extern functions that have no return
value, but does not impose any requirements on what can be
passed as a parameter to these functions. Since externs also
cannot modify any Lucid program state, this means they can
be safely elided during compilation.

4 OPTIMIZING SKETCHES
The second component of Parasol is a framework for au-
tomatically optimizing the parameter values of a program
sketch; a high-level overview of this framework is provided
in Figure 4. The programmer provides four inputs: (1) a pro-
gram sketch, (2) a traffic trace, (3) one or more measurement

1The tracker variable is annotated as global to indicate that it is a persis-
tent structure stored in register arrays.

functions, and (4) an objective function. The Parasol optimizer
then finds effective values for the parameters of the sketch
using an iterative search algorithm. In each iteration, the
search algorithm selects a concrete value for each symbolic
value. The resulting program is then simulated on the pro-
vided traffic trace using the Lucid interpreter.

During simulation, measurements are taken via calls to
the measurement functions, using Parasol’s foreign function
interface. At the end of simulation, the objective function
uses these measurements to score the concrete program.
The search algorithm then uses the historical series of those
scores to select new concrete values for the next iteration.
This process repeats for a set time budget. At the end, the
optimizer returns the highest-ranked concrete program that
successfully compiles to the underlying hardware.

4.1 Simulation
We use a modified version of the Lucid interpreter to model
the behavior of Parasol programs on a traffic trace. The in-
terpreter simulates the passing of messages between one or
more switches in a network, running the appropriate Lucid
code when each is received. The simulation includes impor-
tant switch features such as recirculation and timestamps.
To enable execution of Parasol programs, we augmented the
interpreter to handle symbolic values and foreign functions.
Although the Lucid interpreter models many important

aspects of a network, it is not perfect. For example, it provides
only a limited model of transmission delay, so properties
such as packet reordering are difficult to measure accurately.
However, its limitations are not fundamental; the interpreter
could certainly be extended further to accommodate an even
wider variety of potential applications.

4.2 Measurements and Objectives
Parasol optimizes each program according to a programmer-
defined objective function, written in Python. The objective
can be calculated using any part of the operating environ-
ment. Examples of these objective functions include the dis-
tribution of flows across paths in a load-balancing applica-
tion, the rate of collisions in a hash table, and the comparison
of a CDF created from run-time measurements to a ground
truth CDF. The optimizer treats the objective function as a
black box; any metric used by the function is acceptable.
Objective and measurement functions are often simple.

For our data-plane cache, the goal is to minimize the miss
rate (that is, the ratio of cache misses to cache accesses). The
functions for measuring and computing miss rate can be
defined in just eight lines of Python (Figure 5).
The measurement function logHits is called from the

Parasol program once per request, as in Figure 3. The objective
function is called by the optimization algorithm at the end of

5

1 h i t s = 0
2 mi s s e s = 0
3 def l o gH i t s (found) :
4 global h i t s , m i s s e s
5 i f found : h i t s += 1
6 e l se : m i s s e s +=1
7 def o b j e c t i v e () :
8 return mis s e s / (h i t s +mi s s e s)

Figure 5: Measurement and objective functions for the
data-plane cache.

simulation. The global variables hits and misses are main-
tained in a single instance of the Python interpreter, so their
values persist throughout the execution of the program.

Programmer effort. Optimizing a program based on cost
and measurement functions greatly reduces programmer
effort, compared to prior frameworks that optimize based
on closed-form functions. Writing a closed-form function to
represent the miss rate for a data-plane cache is an arduous
task. The performance of the cache depends on a number of
factors. A key is evicted from the cache when there is a hash
collision, so the miss rate is influenced by the probability of
collisions. However, not all collisions result in a key being
replaced. If the key tracker is a CMS, the choice to insert an
uncached key after a collision depends on the stored count
for that key, and thus, the miss rate also depends on the
accuracy of the counts in the sketch.

The interaction of all these factors is not straightforward -
they depend on the workload distribution. Theoretical mod-
els would then have to make assumptions about that distribu-
tion [11]. Even if the programmer goes through the consid-
erable effort of working out a closed-form objective function
for a cache, it can only express a theoretical miss rate; the
actual rate may be drastically different in practice [8].

Comparing with ideal implementations. A particularly use-
ful type of measurement is to compare the runtime behavior
of a data structure against an idealized implementation. As
an example, a data-plane application can produce round-trip
time (RTT) samples by matching SYN packets with corre-
sponding SYN-ACKs [10, 21]. When the switch sees a SYN
packet, it stores its timestamp in memory, and can compute
the RTT when it sees the corresponding SYN-ACK packet.
However, if the data structure is full, the switch cannot store
new SYN packets; as a result, the application can only pro-
vide a portion of RTT measurements. During simulation, a
measurement function could maintain a Python data struc-
ture which does not run out of memory, and compare its
results to those of the Parasol structure—this provides an
easy-to-compute ground truth for how well the Parasol pro-
gram could possibly perform.

4.3 Search Algorithm
The final component of the Parasol optimizer is the search
algorithm itself. The goal of the search algorithm is to find
parameter values that minimize the objective function. How-
ever, the space of possible solutions can be intractably large.
Doing an exhaustive search is inefficient, and a naïve strategy
may never discover a compiling solution.
As a strawman solution, Parasol could require users to

define the search space by providing bounds on all variables.
However, this will almost certainly include a large number of
non-compiling solutions, as even experts would have trouble
determining the correct bounds. As an example, reasonable
bounds on cache with a CMS as the key tracker might be
1-5 cache tables and CMS rows, and cache entries and CMS
columns that are less than the amount of memory in a stage.
These bounds produce a solution space of 4225 configura-
tions, only 16% of which compiled to our target switch.

Alternatively, Parasol could use a heuristic to test if each
configuration will compile before it is simulated. If the config-
uration does not compile, Parasol can assign it a maximum
cost. While this avoids simulating configurations that do
not compile, it also reduces the effectiveness of the search
strategies because it does not give any indication of a direc-
tion in which to search. One could imagine simulating the
configuration anyway, in the hopes that it will lead us to
a compiling configuration, but this is unlikely – programs
using an impossible amount of memory, for example, are
likely to perform impossibly well.
In practice, we address this issue by splitting the search

algorithm into two phases: preprocessing and simulation. In
the first phase, Parasol automatically prunes non-compiling
solutions from the search space, without requiring user-
defined bounds. In the second phase, Parasol searches the
space of remaining solutions with a user-configurable search
algorithm.

Preprocessing. In a nutshell, the goal of the preprocessing
phase is to ensure our solutions are making maximal use of
the resources on the switch, without using so many that the
program fails to compile. Accordingly, during this phase we
only consider symbolic values which affect resource alloca-
tion. The resources we consider are memory, pipeline stages,
hash units, array accesses, and ALU usage. We assume that
the program is monotonic with respect to resources — that
is, increasing the value of any symbolic value should not
decrease the amount of resources used. In our experience,
this is a safe assumption; we note that all of the applications
we evaluated satisfied this property.

The optimizer begins by setting all symbolic values to
either a default or user-provided starting value. We then
pick a symbolic, and determine an upper bound for it by
iteratively increasing only that symbolic’s value until we run

6

out of resources. Thanks to monotonicity, the largest value
that fits provides an upper bound for the symbolic.
We then pick another symbolic and repeat this process;

however, this time we find one upper bound for each possible
value of the first symbolic. We do the same for the next
symbolic, and the next, each time finding an upper bound
for all valid combinations of previously-processed symbolics.
When we finish, we will have enumerated the entire useful
search space (i.e., every compiling solution).
This process, however, grows multiplicatively with the

number of parameters. To make it more tractable, we use
domain knowledge to set a reasonable default starting value
that allows Parasol to avoid compiling every solution in the
useful search space. Values that represent memory used per
stage are initially set to the max memory available in a stage,
and values that contribute to other resources start at 4. We
choose 4 as a starting value because we found it general-
ized well to all of our applications, providing a significant
reduction in preprocessing time when compared to a starting
value of 1. For example, the preprocessing time for caching
structure with a Precision key tracker improved from almost
2 hours to only 25 minutes.

Simulation. In the second phase of the search algorithm,
we perform a configurable search through the pruned space
of solutions we created in phase 1. We choose a configuration
from phase 1, select values for any non-resource symbolics,
and execute the resulting program in the Lucid interpreter.
We then score the configuration based on its output, and use
a search strategy to select the next configuration to evaluate
based the history of scores.
The Parasol optimizer does not rely on any particular

search strategy; rather, it is able to accommodate a variety
of search algorithms. We provide four built-in search func-
tions for programmers to use—exhaustive search, Nelder-
Mead simplex method, simulated annealing, and Bayesian
optimization—but Parasol also supports any programmer-
defined search of the solution space, and is compatible with
any optimization technique written in Python (e.g., stochas-
tic gradient descent, genetic algorithms, etc.). We choose
these strategies because (with the exception of exhaustive)
they use the history of scores to efficiently navigate the
search space. They also provide a range from simple strate-
gies (exhaustive, Nelder-Mead simplex) to more complex
(Bayesian). Programmers are free to choose the search algo-
rithm that provides their preferred balance between search
time and optimality of the final result. We evaluate the effec-
tiveness of each of the built-in strategies and analyze how
the choice of strategy affects the optimizer in § 5.

Heuristic Avg compile time Reduction

Dataflow graph 51s –

Greedy layout 51s 13%

Lucid-P4 1.5min 13%

Full compilation 1.5min 16%

Figure 6: The performance of each preprocessing heuristic
for a single configuration, averaged over each evalauted appli-
cation. The greedy layout provides the best balance between
performance and accuracy.

4.4 Design Tradeoffs
Accelerating Preprocessing. The first phase of optimization

requires us to analyze the resource usage of a program to
determine if it will compile or not. The simplest way to do
this would be to actually compile the program; however,
compilation can be very slow (the Conquest [9] application
took over 13 minutes), and most applications require compil-
ing many configurations (Conquest has a compiling search
space of 25 configurations). Instead, we have tested a range of
heuristics, with varying trade-offs between performance and
accuracy. We provide a detailed description of each heuristic
in Appendix A.

All three of our heuristics operate by attempting to assign
each action in the Lucid program to a stage of the switch’s
pipeline. The primary distinction between the heuristics is
the types of resources they account for during placement.
They range in complexity from only considering dependen-
cies between actions (dataflow graph), to modeling every
resource except packet header vector (PHV) constraints (com-
piling from Lucid to P4).

A summary of the performance of our heuristics appears
in Figure 6. We list the average compile time for each of our
evaluated applications and the average reduction in search
space size, using the dataflow graph heuristic as the baseline.
In practice, we have found that the greedy layout heuristic
provides the best tradeoff between performance and accu-
racy. We cope with the potential inaccuracy of the heuris-
tic by including a safeguard to ensure that Parasol returns
a compiling solution. Specifically, we actually compile the
highest-ranked configuration at the end of our optimization
loop. Should compilation fail, Parasol tries the next-highest-
ranked, and so on, until one compiles. If none of the tested
solutions compile, the system will repeat the optimization
process, excluding solutions that did not compile.

We found that in practice, this rarely happens. After manu-
ally fixing any PHV errors, the optimal solutions for nine out
of the ten applications fit within the target resources. One of
the applications (CMS) resulted in “optimal” configurations

7

that did not compile. However, the Parasol optimizer found
a compiling solution that had similar performance.

Unrepresentative traces. Since the Parasol optimization
framework is simulation-based, it relies on a representative
traffic trace. If the actual traffic in the network deviates from
the patterns in the trace, the performance of the application
may not match the simulated performance. However, be-
cause Parasol preserves the semantics of the data-plane pro-
gram, it will never produce unexpected or invalid behavior—
its performance may simply be poorer than anticipated.

To mitigate poor performance, programmers can use mul-
tiple traffic traces to optimize their application, and use a
weighted combination of performance on the traces as the
objective function. We show an example with our data-plane
cache in §5.4, by optimizingwithworkloads of different distri-
butions. Alternatively, if the distribution depends on time of
day, the programmer can use traces from peak times, where
applications are likely most sensitive to poor performance.

Beyond poor performance, an unrepresentative trace can
leave an application vulnerable to attacks when the training
trace only contains benign traffic. To use Parasol for tuning a
security system, one needs traces containing the kinds of at-
tacks the application seeks to detect or prevent. Fortunately,
Parasol users need not acquire and label such traces them-
selves, as the network security community already goes to
great lengths to produce and share traces for the evaluation
of their own security systems [27]. These traces come from
a variety of sources, including cyber defense exercises [12]
and security-oriented testbeds or simulators [7, 30].

5 EVALUATION
Our evaluation of Parasol addresses its two components:

• Language.Can Parasol express awide variety of param-
eters, objective functions, and data-plane applications?

• Optimizer. How well do optimized Parasol programs
perform, and how quickly does Parasol find good pa-
rameters?

To answer these questions, we used Parasol to implement and
optimize a suite of ten data-plane applications with respect
to representative traffic traces. We chose applications that
encompass a wide array of structures (including commonly
used structures like sketches and hash tables) and contain
a diverse set of parameters and objective functions. Our
application and optimizer code is publicly available 2.
In the remainder of the section, we discuss each Parasol

component individually, and finish with an in-depth look
at our data-plane caching example. We used three types of
traces in our evaluation—the University of Wisconsin Data

2https://anonymous.4open.science/r/Parasol-FED1/

Center Measurement trace [4], a trace from core Internet
routers [6], and synthetic traces for the cache application.

5.1 Language
To evaluate the expressivity of Parasol, we implemented ap-
plications with multiple classes of parameters and diverse
objectives. The right two columns of Figure 7 show the high-
level benefit of Parasol over prior optimization frameworks:
whereas Parasol allowed us to fully express the optimization
goal of each application (parameters and objective function),
P4All and SketchGuide could only express the full optimiza-
tion goals of 2/10 applications. In the rest of this section, we
discuss the ability of Parasol to represent a diversity of both
parameters (its “program flex”), and objective functions.

Program Flex. As Figure 7 shows, the Parasol programs we
implemented had four general classes of parameters: memory
allocation, decision thresholds, choice of data structure, and
operation timing. These classes encompassed a diverse range
of parameters, including data structure size, and the time
between packets. Parasol’s flexible approach allowed it to
handle all of them.
In comparison, P4All and SketchGuide, the only prior

frameworks for application-level parameter optimization,
could only support parameters from 6/10 of our implemented
applications (CMS, MHT, Starflow, Conquest, Precision) as it
is impossible to express threshold, timing, or data structure
choice parameters in P4All or SketchGuide.

Even for the examples that could potentially be optimized
by P4All or SketchGuide, it is easy to imagine slightly more
complex variants that would require incompatible parame-
ters. For example, our CMS is a simple implementation with
no concept of time intervals—it never resets. Most appli-
cations, however, will want to count over intervals, which
requires a mechanism to periodically reset or age counters,
and a parameter that controls the length of the interval. The
addition of that one simple parameter makes the “deployable”
variant of CMS incompatible with P4All and SketchGuide.

Objective functions. The objective functions for our ap-
plications measured a wide variety of high-level properties
(Figure 7). These functions were generally short and sim-
ple: on average, each function was approximately 50 lines
of Python code. The only requirement for Parasol objective
functions is that they be expressible in Python. They can
include any, all, or none of the parameters in the application,
along with any measurements taken during the simulation.

In contrast, existing systems (P4All, SketchGuide) require
programmers to supply a closed-form objective function,
which specifies exactly how the parameters relate to the final
cost. In practice, this can be very difficult, particularly for
applications that do not have theoretical guidelines or proven

8

Classes of parameters in application P4All/S.G.?

mem. data struct.
Application alloc. threshold choice timing Objective (LoC) Params Obj.
Count-min sketch (CMS)

√
Mean estimate Error (20)

√ √

Multi-hash table (MHT)
√

Collision ratio (11)
√ √

Data plane cache (KV [26])
√ √ √ √

Miss rate (23) ✗ ✗
RTT monitor (RTT [10])

√ √
Read success rate (118) ✗ ✗

Unbiased RTT (Fridge [34])
√ √

Max percentile error (88) ✗
√

Starflow [25]
√

Eviction ratio (17)
√

✗
Conquest [9]

√
F-score (101)

√
✗

load balancing (LB [28])
√ √

Error vs. optimal (38) ✗ ✗
Precision [3]

√
Avg. error for top flows (28)

√
✗

Stateful Firewall (SFW [24])
√ √ √

Packet overhead (70) ✗ ✗

Figure 7: Applications optimized with Parasol, showing which classes of parameters/objective functions were used, and which
of them could be expressed in P4All or SketchGuide.

error bounds. This is common, even in research, where many
data-plane applications are evaluated empirically, without
finding provable theoretical guarantees [9, 25]. Furthermore,
many systems are composed of multiple components or data
structures; writing a closed-form function for those systems
requires not just understanding each component individually,
but codifying precisely how they interact.

In our evaluation, we considered an objective function to
be expressible in P4All or SketchGuide only if we could find
a derivation in existing literature. We consider deriving a
closed-form objective function to be beyond the scope of an
application developer (and also this paper) as it requires sig-
nificant theoretical work. We required that functions include
all the parameters of the applications, but did not require
those parameters to be expressible in P4All or SketchGuide.
Although functions needed not be for a single component, we
note that none of our applications with multiple structures
(KV, Starflow, Conquest) had a closed-form function.

With these criteria, we found that we were only able to
express three out of our ten objective functions in P4All or
SketchGuide. Even so, there is a caveat: functions from the
literature typically quantify worst-case performance. These
objective functions oftentimes do not provide a realistic idea
of how the application performs in practice, and applications
optimized for the worst case may not perform as well on
practical workloads. In contrast, Parasol objective functions
measure actual performance on a sample trace, and are there-
fore able to optimize for a much broader range of criteria,
even when a closed-form error function exists [8, 19, 35].

5.2 Optimization Quality
We evaluate the quality of Parasol’s solutions, compared
to both hand-optimized systems and an oracle optimizer
(described below) and analyze the factors that impact it. All

experiments in this section are based on a two-hour time
limit for the dynamic search phase of the Parasol optimizer.

First, we compare the results of optimization with Parasol
to optimization with an “oracle”. Whereas the Parasol opti-
mizer chooses parameters on a training data set, separate
from the testing data, the oracle optimizer chooses param-
eters by exhaustively searching the testing data set, i.e., it
always chooses the optimal parameters.
Parasol found configurations that performed as well as

the oracle for 6/10 applications (CMS, MHT, RTT, Starflow,
Precision, and SFW). For 3/10 applications (KV, Fridge, Con-
quest), the relative difference between the objective score of
Parasol’s and the oracle’s configuration was under 1.1% (i.e.,
|Objectiveoracle−ObjectiveParasol |

Objectiveoracle
). For the remaining application, the

load balancer (LB), Parasol’s solution was, in relative terms,
82% worse than the oracle. However in absolute terms the
difference was small: the oracle’s configuration performed
1.7% worse than a perfect load balancer, while Parasol’s con-
figuration performed 3.1% worse than a perfect load balancer.

5.2.1 The Parasol preprocessor. To measure the effect that
Parasol’s preprocessor had on the solution quality, we com-
pared application performance when optimized with and
without preprocessing, using the same two-hour time bud-
get for Parasol’s search phase. When the preprocessor was
disabled, we bounded the search space by setting the same ini-
tial bounds for all memory allocation variables — 20 register
arrays (e.g., cache tables) and the max amount of SRAM per
stage for registers (e.g., cache entries per table). In our judge-
ment, this represented a reasonable bound – high enough to
include all compiling solutions for each application without
unnecessarily inflating the search space. Additionally, with-
out the preprocessor, we assigned a predetermined max cost
to solutions that did not compile (e.g., 100% cache miss rate),
to avoid simulating them.

9

Preprocessing consistently improved application perfor-
mance, especially for applications that had a large search
space or used multiple structures that compete for resources
(Starflow, KV, Conquest, SFW). In fact, when the cache used
CMS as the key tracker, Parasol consistently did not find a
compiling solution in the time budget without preprocessing.

• For Conquest, enabling the preprocessor improved re-
call from 75% to 87%.

• For Starflow, the preprocessor improved eviction ratio
from 35% to 15%.

• For the stateful firewall, the preprocessor improved
recirculation and retransmission overhead from 16 kbps
to 0.01 kbps.

Applications that had a small search space (CMS, MHT,
Fridge, LB) did not perform significantly better when prepro-
cessing was enabled. However, even for such applications,
preprocessing still has an important benefit: it automatically
bounds the search space for the programmer, without the
need for them to manually “guess” reasonable bounds.

5.2.2 The Parasol searcher. As this section describes, we
found that the effectiveness of Parasol’s search phase de-
pended on two factors: the search strategy and the quality of
the input trace. Parasol provides four built-in strategies: ex-
haustive search, Bayesian, simulated annealing, and Nelder-
Mead simplex. We note that all of these strategies (except
exhaustive) have hyperparameters that control the learning
process. We chose hyperparameter values manually such
that strategies produce solutions as good as or near the ora-
cle solutions. We found that we could re-use these values for
all applications without negatively affecting solution quality.

Search strategy. For some applications, the choice of search
strategy does not matter because a large portion of the com-
piling solution space is near-optimal. For example, in the
Precision application, over half of the search space after pre-
processing contained solutions that produced an average
error of less than 10% (Figure 8), compared to the optimal
of less than 1%. In such cases, the search methods mostly
converged to the same configuration or to configurations
that had very similar performance.
For more complex applications, we found that no single

search strategy dominated. Because of this, we found that
the best strategy was to run multiple strategies in parallel
for each application, and choose the best result from among
them. Conversely, for applications with a small search space
(after preprocessing), we simply used exhaustive search. We
consider a search space to be small if the exhaustive search
completed within the two-hour time budget.

Training trace. The effectiveness of Parasol search phase
depended on the training trace’s size and representativeness.

1 2 3
Tables

6

8

10

12

14

16

Lo
g

en
tri

es
 p

er
 ta

bl
e

0.0

0.2

0.4

0.6

0.8

Av
g

er
ro

r f
or

 to
p

12
8

flo
ws

Figure 8: Average error for top 128 flows in the Precision
application for different data structure configurations. A
darker color represents a lower error. The optimal config-
uration achieved an error of 0.01%, and nearly 40% of the
solution space produced an error of less than 1%.

Across all applications, we found that traces with approxi-
mately 1 million packets were sufficiently large for Parasol to
find high quality (i.e., near optimal) configurations. Training
trace size mattered more for some applications than others.
One large class of applications where training trace size mat-
tered was applications that use hash tables. Here, traces had
to be large enough to cause hash collisions; otherwise the
differences between configurations are small and it is diffi-
cult (or impossible) for Parasol’s search algorithm to find
the best one. For example, the Starflow configurations found
by the simplex and Bayesian strategies resulted in similar
eviction ratios (12% and 5%, respectively) in a small trace of
5000 packets, but had very different errors (46%, 26%) with a
larger trace of 5 million packets.
It was often important that the training trace was rep-

resentative of the testing trace. For some applications, the
search phase was only effective when a trace contained cer-
tain network events. For example, the Conquest data struc-
ture detects microbursts, and only begins monitoring when
one occurs. A trace with no microbursts would produce no
meaningful objective, regardless of the configuration.
Some applications, however, were less sensitive to differ-

ences between training traces and target workloads. When
testing Starflow on a wide-area network (WAN) trace, we
found that Parasol was able to find near-optimal solutions
using training traces from either a WAN or a datacenter.

5.2.3 Comparison to hand-optimized configurations. We
compared the performance of Parasol configurations to that
of hand-tuned configurations for our three most complex ap-
plications: Fridge, Conquest, and Starflow. The hand-tuned
configurations come from the applications’ original evalua-
tions [9, 25, 34]. Our goal is to determine whether Parasol can
essentially reproduce these results, by finding configurations
that perform comparably on a similar workload.

10

App Preprocess Train trace Test trace
time size, time size, time

CMS 16s 500k, 25s 10M, 12min
MHT 15s 1M, 47s 10M, 7min
KV, Precision 25min 1M, 6min 5M, 25min
KV, CMS 2hrs 1M, 2min 5M, 7min
RTT 23s 1M, 1min 3M, 3min
Fridge 3s 1M, 56s 3M, 2min
Starflow 1.5hr 900k, 1min 5M, 27min
Conquest 15s 10M, 9min 10M, 10min
LB 2s 500k, 16s 3M, 2min
Precision 32min 1M, 6min 18M, 1.7hrs
SFW 30s 4M, 3min 11M, 7min

Figure 9: Runtime of Parasol components per application.
Preprocess time is the total time to preprocess with the
greedy layout heuristic, train/test trace size is the size of
the trace in packets, and train/test trace time is the average
time to simulate the trace once for an application.

Appendix B describes the case studies in detail, but at a
high level, Parasol solutions performed reasonably close to
the hand-optimized solutions for all three applications.

• For Fridge, Parasol found a configuration that achieved
a delay estimation error of 18%, compared with the
original evaluation’s result of 25%.

• For Conquest, Parasol found a configuration with a
precision of 97% and recall of 87%, compared to the
original evaluation which found precision and recall >
90%, using the same trace.

• For Starflow, Parasol found a configuration with an
eviction ratio of 15% in a wide area workload, which
is better than the 18% eviction ratio reported in the
original evaluation of the single configuration that the
authors compiled to the Tofino.

5.3 Optimizer Speed
The runtime of the Parasol optimizer is application-dependent
(shown in Figure 9), and has two major components: pre-
processing time and search time. Preprocessing time scales
with the complexity of the input program and number of pa-
rameters, and took between 7 seconds and 1.5 hours. Search
time scales primarily with the size of the input trace, and
was limited to 2 hours, though many applications required
less than that. A single iteration of the training trace took
between 16 seconds to 9 minutes, depending on application.

Overall, the Parasol optimizer took no more than 3.5 hours
to find near-optimal settings for any of our applications.
This compares favorably to compiling, testing, and tuning
applications by hand: just compiling one configuration of
a program to a reconfigurable architecture like the Tofino

can take hours [14] for both research or industrial compilers,
because it is a fundamentally hard task [29].
As mentioned above, we found three main factors that

influenced the overall runtime: application complexity, train-
ing set size, and search strategy.

Application complexity. The optimizer preprocesses each
Parasol program as a heuristic to check if it will compile to
hardware. The preprocessing time depends on the complex-
ity of the program, both in terms of length and number of
parameters. Programs with more parameters (e.g., Starflow)
took longer than programs with few parameters (e.g., LB).
Figure 9 lists total preprocessing time for each application.

Complex programs also take longer to simulate. The CMS
simulation took about a minute for a 1 million packet trace,
while a trace of the same size with Precision took three min-
utes. Precision is more complex because it contains logic for
recirculating packets, while the CMS does not recirculate
packets. The recirculation not only adds complexity to Pre-
cision, it also requires the program to process more packets,
as recirculated packets must be processed again.

Training set size. The runtime of Parasol’s search phase
increases roughly linearly with the size of the input training
trace, because the search algorithm executes each chosen
configuration on the trace. Reducing the size of the provided
trace can speed up optimization, but many applications re-
quire large traces. For example, evaluating the performance
of a program that measures heavy hitters (e.g., Precision)
requires enough traffic that the trace contains heavy flows.

Search strategy. Search strategies took different amounts
of time to converge, depending on the application. We com-
pare search strategies, using the load balancing and Starflow
applications, by tracking the best evaluated configuration
after each iteration. All three methods found similarly per-
forming configurations for the load balancer, but the overall
search timewasmuch different: Bayesian search took approx-
imately 19 minutes, while simulated annealing and simplex
search took only 2 minutes. Similarly, for the Starflow appli-
cation Bayesian and simulated annealing strategies reached
a configurations with similar performance (in 13 and 10 min-
utes, respectively) while simplex did not find a configuration
that produced the best collision rate within the time budget.

5.4 Case Study: Data-plane Caching
To better understand how Parasol handles workload depen-
dence and how the distribution affects the performance of
different structures, we provide a more detailed look at our
cache application. We optimize the cache for three different
workloads: skewed zipfian (top 10 keys had 58% of requests),
less skewed zipfian (top 10 keys had 15% of requests), and
uniform (top 10 keys had .06% of requests). Training traces

11

contained 1 million requests, and test traces contained 5
million requests. We limit the cache size to 10K entries.

We first compare the cache with a CMS key tracker (Net-
Cache [16]) and Precision key tracker. The skewness of the
workload significantly impacted cache performance. For the
skewed trace, the Precision cache slightly outperformed CMS
(7% vs. 10% miss rate, respectively).

For the less skewed trace, Precision again slightly outper-
formed CMS (64% vs. 69% miss rate, respectively). However,
they achieved the same miss rate for the uniform distribution
(73% miss rate). The uniform distribution puts more pres-
sure on the key tracker because there are more unique keys,
causing worse performance than the skewed workload.
Both the Precision and CMS key trackers are complex

applications that require recirculation to insert keys. As an
alternative, we implemented a single-stage hash table as a
cache, with no key tracker. The hash table always evicts keys
on collisions, and thus does not require recirculation. For
skewed and uniform workloads, the hash table performed
similarly to Precision and CMS (10% skew, 73% uniform miss
rate). Given that more complex structures provide marginal
benefit, the hash version might be preferred for these work-
loads because of its simplicity. However, for the less skewed
trace, the performance of the hash cache deviated more no-
ticeably (70% miss rate). For this distribution, the added com-
plexity of Precision provides a more notable improvement.

To mitigate overfitting, we also optimized our cache using
a combination of the three traces. Our objective function
was the average of the miss rates for each trace. The layouts
chosen by Parasol for the Precision and hash versions were
the same as when training with each workload individually,
with Precision providing the lowest miss rate. The layouts
chosen by Parasol for the CMS key tracker differed when
trained on all three distributions. They performed slightly
worse on each distribution individually — achieving miss
rates that were approximately 1% worse for each distribution.
Parasol has the flexibility to express arbitrary programs

with arbitrary parameters, that can be optimized with any
objective, for any workload. With Parasol, we can directly
compare different caching structures, for multiple traffic
distributions, by simply tweaking a boolean value. In doing
so, we found that the structure used in literature (CMS), is not
always the best structure to track keys in a data-plane cache.
Parasol is able to make this process easy because it lifts the
burden of reasoning about how parameter choices can affect
performance off of the programmer, greatly simplifying the
development process for data-plane applications.

6 RELATEDWORK
Researchers have developed a number of tools to more easily
write data-plane programs. Domino [22], Chipmunk [14]

Lucid [24], Lyra [13], and O4 [2] provide new, high-level lan-
guages for expressing data-plane programs, each providing
abstractions and a compiler targeting one or more architec-
tures. These compilers include optimizations or synthesis
techniques to ensure that programs compile. However, if a
program cannot fit on a target, the program will not compile.
They also do not provide environment-specific optimizations,
as the compiler does not have access to traffic information.

There also exist tools for optimizing prewritten data-plane
programs. P2GO [32] uses a traffic trace to minimize the re-
sources used by a P4 program by reducing dependencies that
do not appear in practice, shrinking tables, and offloading
parts of the program to a controller. Cetus [18] uses static
analysis to eliminate dependencies between tables and to
merge tables. Although P2GO and Cetus fit programs into
limited resources, they either do not provide environment
optimizations or risk changing program semantics.

A third type of tool optimizes by leveraging user domain
knowledge. P5 [1] uses a high-level description of the net-
work’s policy to remove spurious dependencies and unused
features. P4All [15] and SketchGuide [35] allow users to
declare flexibly-sized structures and optimize them with a
user-provided objective function. Although they provide a
detailed optimization, these tools ask a lot of their users;
P5 requires a high-level policy description, and P4All and
SketchGuide require a closed-form objective function.
An area of work related to the implementation of Para-

sol’s optimizer is network simulation. Network simulators
are designed for many objectives, including high fidelity [20],
interactive operation [17], automatic traffic generation [33],
and scalable performance [31]. In general, all of these tools
complement Parasol. Future work on Parasol will likely in-
volve integrating these tools to improve Parasol’s simulator.

7 CONCLUSION
Currently, the process of writing and deploying a data-plane
application that works well is an arduous one, requiring the
programmer to undergo a grueling process of compiling,
testing and tweaking to find the best settings for their pro-
gram. Parasol is a new and flexible framework for writing pa-
rameterized data-plane programs, and synthesizing effective
settings for those parameters. Parameters in Parasol can rep-
resent a wide variety of high-level implementation decisions,
and the Parasol optimizer can target a wide variety of high-
level behavioral goals. The optimization process is orders
of magnitude faster than modern iterative testing strategies,
and incorporates a representative traffic trace to tailor its so-
lution to a particular networking environment. We evaluated
Parasol on a variety of applications and objective functions,
and found that its solutions were near optimal and performed
comparably to hand-optimized configurations.

12

REFERENCES
[1] Anubhavnidhi Abhashkumar, Jeongkeun Lee, Jean Tourrilhes, Sujata

Banerjee, Wenfei Wu, Joon-Myung Kang, and Aditya Akella. 2017.
P5: Policy-Driven Optimization of P4 Pipeline. In ACM Symposium
on SDN Research (Santa Clara, CA, USA) (SOSR ’17). Association for
Computing Machinery, New York, NY, USA, 136–142. https://doi.org/
10.1145/3050220.3050235

[2] Albert Gran Alcoz, Coralie Busse-Grawitz, Eric Marty, and Laurent
Vanbever. 2022. Reducing P4 Language’s Voluminosity Using Higher-
Level Constructs. In International Workshop on P4 in Europe (Rome,
Italy) (EuroP4 ’22). Association for Computing Machinery, New York,
NY, USA, 19–25. https://doi.org/10.1145/3565475.3569078

[3] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich. 2018. Effi-
cient Measurement on Programmable Switches Using Probabilistic
Recirculation. In IEEE International Conference on Network Protocols.
313–323.

[4] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network
Traffic Characteristics of Data Centers in the Wild. In ACM SIGCOMM
Internet Measurement Conference (Melbourne, Australia) (IMC ’10).
Association for Computing Machinery, New York, NY, USA, 267–280.
https://doi.org/10.1145/1879141.1879175

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 87–95.

[6] CAIDA. 2019. CAIDA 2016 Chicago direction A traces. https://www.
caida.org/catalog/datasets/monitors/passive-equinix-chicago/.

[7] Ritu Chadha, Thomas Bowen, Cho-Yu J Chiang, Yitzchak M Gottlieb,
Alex Poylisher, Angello Sapello, Constantin Serban, Shridatt Sugrim,
Gary Walther, Lisa M Marvel, et al. 2016. Cybervan: A cyber security
virtual assured network testbed. In MILCOM 2016-2016 IEEE Military
Communications Conference. IEEE, 1125–1130.

[8] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu.
2021. Precise error estimation for sketch-based flow measurement. In
ACM SIGCOMM Internet Measurement Conference. 113–121.

[9] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori
Rottenstreich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-
Grained Queue Measurement in the Data Plane. In ACM SIGCOMM
Conference on Emerging Networking Experiments And Technologies (Or-
lando, Florida) (CoNEXT ’19). Association for Computing Machinery,
New York, NY, USA, 15–29. https://doi.org/10.1145/3359989.3365408

[10] Xiaoqi Chen, Hyojoon Kim, Javed M. Aman, Willie Chang, Mack Lee,
and Jennifer Rexford. 2020. Measuring TCP Round-Trip Time in the
Data Plane. In ACM SIGCOMM Workshop on Secure Programmable
Network Infrastructure (Virtual Event, USA) (SPIN ’20). Association for
Computing Machinery, New York, NY, USA, 35–41. https://doi.org/
10.1145/3405669.3405823

[11] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data
Stream Summary: The Count-min Sketch and Its Applications. Journal
of Algorithms 55, 1 (April 2005), 58–75. https://doi.org/10.1016/j.jalgor.
2003.12.001

[12] Center for Infrastructure Assurance and Security. 2023. National
collegiate cyber defense competition. https://www.nationalccdc.org

[13] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu.
2020. Lyra: A Cross-Platform Language and Compiler for Data Plane
Programming on Heterogeneous ASICs. In ACM SIGCOMM. 435–450.

[14] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan,
Aatish Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman,
Srinivas Narayana, and Aarti Gupta. 2020. Switch Code Generation

Using Program Synthesis. In ACM SIGCOMM. 44–61. https://doi.org/
10.1145/3387514.3405852

[15] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer
Rexford, and DavidWalker. 2022. Modular Switch Programming Under
Resource Constraints. In USENIX Symposium on Networked Systems
Design and Implementation. USENIXAssociation, Renton,WA, 193–207.
https://www.usenix.org/conference/nsdi22/presentation/hogan

[16] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Symposium on
Operating System Principles.

[17] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in
a laptop: Rapid prototyping for software-defined networks. In ACM
SIGCOMMWorkshop on Hot Topics in Networks. 1–6.

[18] Yifan Li, Jiaqi Gao, Ennan Zhai, Mengqi Liu, Kun Liu, and
Hongqiang Harry Liu. 2022. Cetus: Releasing P4 Programmers from
the Chore of Trial and Error Compiling. In USENIX Symposium on
Networked Systems Design and Implementation. USENIX Association,
Renton, WA, 371–385. https://www.usenix.org/conference/nsdi22/
presentation/li-yifan

[19] Hun Namkung, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.
2022. SketchLib: Enabling Efficient Sketch-based Monitoring on Pro-
grammable Switches. In USENIX NSDI 2022. USENIX.

[20] George F Riley and Thomas R Henderson. 2010. The ns-3 network
simulator. In Modeling and tools for network simulation. Springer,
15–34.

[21] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Contin-
uous In-Network Round-Trip Time Monitoring. In ACM SIGCOMM
(Amsterdam, Netherlands) (SIGCOMM ’22). Association for Computing
Machinery, New York, NY, USA, 473–485. https://doi.org/10.1145/
3544216.3544222

[22] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-
eown, and Steve Licking. 2016. Packet Transactions: High-Level Pro-
gramming for Line-Rate Switches. In ACM SIGCOMM. 15–28.

[23] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial Sketching for Finite Programs.
In Architectural Support for Programming Languages and Operating
Systems. 404–415.

[24] John Sonchack, Devon Loehr, Jennifer Rexford, and DavidWalker. 2021.
Lucid: A Language for Control in the Data Plane. In ACM SIGCOMM
(Virtual Event, USA) (SIGCOMM ’21). Association for Computing Ma-
chinery, NewYork, NY, USA, 731–747. https://doi.org/10.1145/3452296.
3472903

[25] John Sonchack, OliverMichel, Adam J Aviv, Eric Keller, and JonathanM
Smith. 2018. Scaling Hardware Accelerated Network Monitoring to
Concurrent and Dynamic Queries With *Flow. In USENIX Annual
Technical Conference. 823–835.

[26] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. 2021. Flightplan: Dataplane disaggregation and place-
ment for p4 programs. In USENIX Symposium on Networked Systems
Design and Implementation. 571–592.

[27] Blackfire Technology. 2023. Home. https://www.impactcybertrust.org
[28] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and

Tom Edsall. 2017. Let It Flow: Resilient Asymmetric Load Balancing
with Flowlet Switching. In USENIX Symposium on Networked Systems
Design and Implementation. USENIX Association, Boston, MA, 407–
420. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/vanini

[29] Balázs Vass, Erika Bérczi-Kovács, Costin Raiciu, and Gábor Rétvári.
2020. Compiling packet programs to reconfigurable switches: Theory

13

https://doi.org/10.1145/3050220.3050235
https://doi.org/10.1145/3050220.3050235
https://doi.org/10.1145/3565475.3569078
https://doi.org/10.1145/1879141.1879175
https://www.caida.org/catalog/datasets/monitors/passive-equinix-chicago/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-chicago/
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3405669.3405823
https://doi.org/10.1145/3405669.3405823
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://www.nationalccdc.org
https://doi.org/10.1145/3387514.3405852
https://doi.org/10.1145/3387514.3405852
https://www.usenix.org/conference/nsdi22/presentation/hogan
https://www.usenix.org/conference/nsdi22/presentation/li-yifan
https://www.usenix.org/conference/nsdi22/presentation/li-yifan
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3452296.3472903
https://www.impactcybertrust.org
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini

and algorithms. In P4 Workshop in Europe. 28–35.
[30] Vladislav D Veksler, Norbou Buchler, Blaine E Hoffman, Daniel N

Cassenti, Char Sample, and Shridat Sugrim. 2018. Simulations in
cyber-security: A review of cognitive modeling of network attackers,
defenders, and users. Frontiers in Psychology 9 (2018), 691.

[31] Philip Wette, Martin Dräxler, Arne Schwabe, Felix Wallaschek, Mo-
hammad Hassan Zahraee, and Holger Karl. 2014. Maxinet: Distributed
emulation of software-defined networks. In IFIP Networking Conference.
IEEE, 1–9.

[32] Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and
Laurent Vanbever. 2020. P2GO: P4 Profile-Guided Optimizations. In
ACM SIGCOMMWorkshop on Hot Topics in Networks (Virtual Event,
USA) (HotNets ’20). Association for Computing Machinery, New York,
NY, USA, 146–152. https://doi.org/10.1145/3422604.3425941

[33] Qizhen Zhang, Kelvin KW Ng, Charles Kazer, Shen Yan, João Sedoc,
and Vincent Liu. 2021. MimicNet: Fast performance estimates for data
center networks with machine learning. In ACM SIGCOMM. 287–304.

[34] Yufei Zheng, Xiaoqi Chen,Mark Braverman, and Jennifer Rexford. 2022.
Unbiased delay measurement in the data plane. In SIAM Symposium
on Algorithmic Principles of Computer Systems.

[35] Zhengyan Zhou, Jingwen Lv, Lingfei Cheng, Xiang Chen, Tianzhu
Zhang, Qun Huang, Jiayu Luo, Longlong Zhu, Dong Zhang, and Chun-
ming Wu. 2022. SketchGuide: Reconfiguring Sketch-based Measure-
ment on Programmable Switches. In IEEE International Conference on
Network Protocols (ICNP). 1–11. https://doi.org/10.1109/ICNP55882.
2022.9940368

A PREPROCESSING HEURISTICS
All three of our heuristics operate by attempting to assign
each action in the Lucid program to a stage of the switch’s
pipeline. The primary distinction between the heuristics is
the types of resources they account for during placement.
Our simplest heuristic, dataflow graph, only accounts for
dependencies between actions (two actions cannot be in the
same stage if one depends on the output of the other). Our
next heuristic, greedy layout, additionally considers the lay-
out of memory, hash units, array accesses, and ALU usage
(for example, we cannot have multiple concurrent accesses
to the same array). Our final heuristic is to run a partial
compilation – rather than fully compiling to the switch, we
instead compile Lucid to P4. This is much faster than a full
compilation, and additionally considers resource limits on
physical tables in the pipeline (such as match column width,
maximum table size, and number of actions per stage). The
only constraints that we encountered which were not mod-
eled by the Lucid compiler are packet header vector (PHV)
clustering constraints – each packet header or metadata vari-
able in a program must be placed into a specific PHV cluster,
and each cluster has a fixed number of ALUs in each pipeline
stage. In our experience, it was possible to run afoul of PHV
constraints in sufficiently complicated programs, but these
violations were unaffected by choice of parameter values.
Our preliminary implementations of 6/10 applications failed
to compile with /emphany configuration due to PHV con-
straints, but once we adjusted the programs to accommodate

for the constraints, we did not run into PHV constraint vio-
lations for any configurations.

B COMPARISON TO HAND-OPTIMIZED
CODE

We also compared Parasol solutions to hand-optimized so-
lutions for three of our applications: Fridge, Conquest, and
Starflow. Parasol’s solutions performed reasonably close to
the hand-optimized solutions for all 3 applications. We de-
scribe each application in more detail below.

Fridge (Unbiased RTT). The Fridge[34] data structure is
used to collect RTT samples in the data plane by storing re-
quests and matching them with the corresponding response,
without penalizing samples with a large RTT. Each request
is added to the data structure with probability 𝑝 , and once
a request is in the structure, it can be removed either upon
receipt of the response, or if a new response overwrites it
when the structure is full.

The value of 𝑝 is the primary parameter to be optimized.
If 𝑝 is too small, requests are less likely to be added to the
structure, and the program will not produce enough RTT
samples. Conversely, if 𝑝 is too large, requests are more likely
to be overwritten before their responses arrive.

In general, the objective function that Fridge seeks to min-
imize is the difference between the distribution of sampled
RTTs and the distribution of all RTTs. We implemented the
same error function in Parasol as was used in the original
evaluation of Fridge [34]: maximum percentile error, or the
maximum error of the sampled distribution for percentiles
∈ [5%, 95%].

In the hand-tuned program, the authors achieved an error
of 25%, and our optimized program, found using exhaustive
search, achieved a maximum delay estimation error of 18%,
well within the expected performance. The Fridge authors
found that they could achieve nearly the same error with a
wide range of 𝑝 values. In our workloads, Parasol also found
that 𝑝 had a negligible effect on error as long as it greater
than 2−10 (0.001) or less than 2−3 (0.13). Going outside of
that bound for the chosen fridge size increased the error to
over 45%.

Conquest. Conquest [9] aims to identify flows that are
making a significant contribution to queue build-up, during
some time window 𝑇 . It maintains several sketches as “snap-
shots” of the queue length for 𝑇 . During a time window, the
program cleans one sketch, writes to one sketch, and reads
a flow’s queue length estimates from the rest.

Conquest has three parameters that can impact its perfor-
mance: the number of sketches and the rows and columns
in each sketch. These parameters are challenging to tune
because the choice of one affects the others. If the number

14

https://doi.org/10.1145/3422604.3425941
https://doi.org/10.1109/ICNP55882.2022.9940368
https://doi.org/10.1109/ICNP55882.2022.9940368

of columns is too large, it reduces the number of rows that
will fit on the target, and the sketch may not be fully cleaned
before rotating. Conversely, too many rows requires less
columns and smaller sketches. As a sketch gets smaller, it
becomes less accurate.
The objective of Conquest is to identify the packets re-

sponsible for queue build-up as accurately as possible. For
comparison with the original evaluation, we quantify accu-
racy using the F-score3, which depends on both precision
and recall.
The original evaluation of Conquest found that it could

achieve both precision and recall greater than 90%, i.e., an F-
score >90%. Parasol found a comparable configuration with
an F-score of 92% (precision of 97% and recall of 87%). The
Parasol optimizer used the Bayesian search strategy, and the
configuration was found after 9 iterations.

The choice of metric used for cost affects the configuration
chosen by the optimizer. F-score incorporates both precision
and recall. A configuration with lower precision has more
false positives, and a lower recall means more false negatives.
Some applications may be more tolerant to false negatives,
and others may prefer false positives. We can tailor the ob-
jective function based on an application’s preference.

To minimize false positives, we can optimize for precision.
This will result in a larger sketch, that keeps more accurate
counts for each flow. On the other hand, we can optimize
for recall to minimize false negatives. This produces a con-
figuration with a smaller sketch, which will result in more
flows being identified as significant contributors. In other
words, more true positives, at the cost of more false positives
as well.
3Specifically, the cost is 1 minus the F-score

Starflow. Starflow [25] is a telemetry system that partitions
query processing between the data plane and software. The
switch selects and groups per-packet records, which are
sent to software for flow-level analytics (e.g., classifying
traffic, identifying microbursts). Packet records are stored
within buffers on the switch, and are evicted to software
when their buffer is filled, no buffer is available, or there
is a collision. There are two kinds of buffers, whose sizes
must be configured at compile time: a “narrow” buffer which
tracks many small flows, and a “wide” buffer for tracking a
few large flows.

The most important performance metric for Starflow is its
eviction ratio: the ratio of flushed cache records to packets. A
lower eviction ratio is preferable because it means that more
packets are being covered by each record that the server
must process, saving both bandwidth and processing time at
server.

The original, hand-optimized P4 code achieved an eviction
ratio between 7.1% and 25%, depending on the size of the
cache and the workload. The Parasol optimizer achieved an
eviction ratio of 15%, well within the performance range of
the original program. In other words, 15 out of every 100
packets are recirculated to evict a record from the cache. The
best compiling configuration was found after 7 (out of 85)
iterations (1.5 min) of simulated annealing. We found that
both the sizes of the narrow and wide buffers impacted the
eviction ratio. Our optimizer found, for our representative
traffic trace, that a narrow cache smaller than 1024 slots and
a wide cache smaller than 8192 slots resulted in an eviction
ratio greater than 40%, with fixed wide and narrow caches,
respectively.

15

	Abstract
	1 Introduction
	2 An Illustrative Example
	3 Sketching Language
	4 Optimizing Sketches
	4.1 Simulation
	4.2 Measurements and Objectives
	4.3 Search Algorithm
	4.4 Design Tradeoffs

	5 Evaluation
	5.1 Language
	5.2 Optimization Quality
	5.3 Optimizer Speed
	5.4 Case Study: Data-plane Caching

	6 Related Work
	7 Conclusion
	References
	A Preprocessing heuristics
	B Comparison to hand-optimized code

