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ABSTRACT
Rapid delay variations in today’s access networks impair the
QoE of low-latency, interactive applications, such as video
conferencing. To tackle this problem, we propose Athena,
a framework that correlates high-resolution measurements
from Layer 1 to Layer 7 to remove the fog from the window
through which today’s video-conferencing congestion-control
algorithms see the network. This cross-layer view of the net-
work empowers the networking community to revisit and
re-evaluate their network designs and application scheduling
and rate-adaptation algorithms in light of the complex, het-
erogeneous networks that are in use today, paving the way for
network-aware applications and application-aware networks.

CCS CONCEPTS
• Networks → Network measurement; Mobile networks.
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1 INTRODUCTION
Interactive Video-Conferencing Applications (VCAs) such
as Google Meet [15] and Zoom [46] are ubiquitous [13], yet
unreliable [11, 30]. The vagaries of today’s heterogeneous
wireless access networks (4G, 5G, Wi-Fi, and low-earth orbit
satellite)—in particular their capacity and latency variations—
challenges VCAs’ estimation of these variables, frustrating
their task of encoding video and audio media streams that
match this capacity [3, 8, 9, 24, 28] to maximize interactive
video quality. Wireless access technologies are complex and
necessarily employ sophisticated methods to enable multiple
access to a shared medium and increase the reliability of data
transmission at the link layer. Yet these same methods intro-
duce various artifacts in the datagram stream higher layers see,
such as rapidly changing packet delays and link capacities.
Today, congestion control and VCA bit-rate adaptation algo-
rithms are largely oblivious to such artifacts and instead oper-
ate on the assumption of the generic bottleneck link model,
which has been used to design congestion-control algorithms
for decades [19]. While some proposals [12, 22, 42] leverage
machine learning-based approaches to deal with these hard-
to-predict artifacts, we show here that they still largely see a
clouded view of packet arrivals, filtered through a wireless net-
work that introduces a number of pathological-seeming—yet
in fact explainable—jitter patterns.

While the physical and link layers of the wireless network
know exactly their network state and can provide the nec-
essary millisecond-level telemetry information [14, 17, 23,
40, 43], today, this layer-specific information remains siloed
away from higher layers. If higher-layer algorithms (e.g., for
rate adaptation) had access to this information, they could
track and match physical capacity more accurately, resulting
in higher application performance. Conversely, higher layers
know best about their demands such that the physical layer
does not need to attempt to infer and predict future appli-
cation requirements. Consequently, in this paper, we argue
that (while functionality should remain within the respective
layer) we need APIs to open up layer-specific information to
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Fig. 1 — The Athena Measurement Framework: Athena
synchronizes fine-grained measurements of video confer-
encing across all layers of the network stack, revealing
new performance insights for application and transport
protocol designers to improve their end-point adaptation
algorithms.

adjacent layers to enable more efficient operation of today’s
heterogeneous networks.

To enable this vision, we propose Athena1, a cross-layer mea-
surement framework that correlates information across the
physical, link, network, and application layers. In the specific
context of 5G networks and VCAs, we demonstrate Athena’s
capability to remove the fog that hinders today’s network
applications when estimating the quality of the underlying
network, suggesting the potential of our approach to do the
same for myriad other types of access networks such as satel-
lite, cable modem, 5G mmWave New Radio, and others.

Athena correlates measurements across layers (as depicted
in Fig. 1), revealing the root causes of individual QoE impair-
ments, such as video stalls, low resolution, or long mouth-to-
ear delay. Specifically:
(1) We extract fine-grained 5G control channel telemetry of

physical-layer data units (transport blocks), retransmis-
sions, and scheduling decisions [40].

(2) We precisely time-synchronize this data with packet cap-
tures at the network layer and correlate physical transport
blocks with network datagrams.

(3) We further correlate network datagrams with application-
layer semantics, such as frames, different Scalable Video
Coding (SVC) layers indicating the relative importance
of a frame, and audio samples whose quality we also
measure from the application side [28].

This broad, new perspective offers deep insights into the
operation of the 5G Radio Access Network (RAN) and other
access networks, and their immediate impacts on applica-
tion QoE. We identify various causes of delay variation and
delay spread, along with significant scheduling inefficien-
cies within the 5G RAN. Armed with this understanding, we

1After Athena Glaukopis (lit. gleaming-eyed), Greek goddess of seeing.

propose a comprehensive agenda for future work, outlining
concrete steps to mitigate these issues using mechanisms at
the physical, network, and application layers. We specifically
explore how application-layer information can be leveraged
to inform the RAN scheduler, significantly reducing uplink
delay. Additionally, we propose an approach where physical-
layer information is fed to the application layer, enhancing
delay-based congestion control mechanisms.

A Call to Cross-Layer Interactive Video Research
As users’ QoE demands and the use of video conferencing,
cloud gaming, and AR/VR in new wireless access networks
increase, we urgently need research that can provide deep
insights into the operation of cutting-edge access networks
(L1, L2) and their impact on QoE (L7). To this end — and
using Athena with Zoom as a starting point for this arc of
research — we demonstrate and explain the intricacies of
5G networks that incur significant delay variations, leading
to poor QoE, such as low frame rates and video stalls.

2 5G TELECONFERENCING PITFALLS
Today, video-conferencing applications (VCAs) generally
deliver media signals in a similar way [2, 3, 27, 28, 32]: the
sender captures media information, encodes it using a codec
such as H.264 [34] or Opus [39], and transmits it over the
network using the Real-Time Transport Protocol (RTP) [36]
or similar transport. A congestion-control algorithm estimates
network capacity by observing delay and loss, so the encoder
may adjust media quality, resolution, and frame rate to match
this capacity. A jitter buffer at the receiver smooths delay
variations before it decodes and plays back the stream.

Given the real-time character of VCAs, stable and low la-
tency and sustained network capacity are both essential to
their performance. When the network cannot provide these,
VCAs are left with three options. First, they can reduce the
sending rate at the cost of reduced quality, hoping that this
reduces congestion and jitter. Second, they can expand the
jitter buffer at the cost of increased mouth-to-ear delay to
better smooth out delay variations. Finally, they may not react
and choose to accept a higher risk of stalls in order to main-
tain low end-to-end latency and high picture quality. Clearly,
each option has pros and cons, so the choice of which to use
depends on application requirements and user expectations.

To understand how 5G affects VCA QoE, we run a 20-
minute two-party Zoom video call where the sender of the
stream we monitor is connected to a private standalone 5G
small cell [29], and the receiver is wired (Fig. 2), with all
hosts NTP time synchronized. We inject a prerecorded video
file, annotated frame-by-frame with QR codes, via a virtual
camera device. At the receiver side, we capture the screen at
70 fps (slightly above the typical monitor refresh rate). Using
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Fig. 2 — Athena’s measurement framework targeting a Zoom session for a
mobile device accessing the network via 5G Standalone.
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Fig. 6 — 5G frame structure: downlink and uplink switch-
ing pattern and BSR-based uplink transmission.

this method, we determine if a particular frame was on the
screen for longer than its intended (packetization) time given
the current frame rate. Additionally, we compute picture qual-
ity by comparing each received frame with the corresponding
sent frame and computing their structural similarity (SSIM)
[41]. Cross traffic from six other cellular mobiles varies in
throughput, from 0 to 14, 16, and finally 18 Mbps, in five-
minute phases. Using this data, Athena computes sender-to-
core (via the 5G RAN) and core-to-receiver (via the Zoom
server) one-way delay (respectively, the red and blue lines in
Fig. 2), effectively isolating the cellular uplink.

5G RAN uplink (only) jitters. Athena sees significant de-
lay variation (jitter) on the 5G uplink in particular, ranging
from 40 to 120 ms as Fig. 3 shows. Separating this delay
into its audio and video components in Fig. 4, we see audio

slightly less delayed but note a long tail of delay out to sec-
onds. To ascribe the smaller jitter between the core and the
receiver to the WAN or to Zoom itself, we concurrently ping
the Zoom server from the core every 20 ms (orange lines in
Figs. 2 and 3). Takeways: Athena sees that (a) the 5G uplink
is the primary source of jitter, (b) the Zoom server’s appli-
cation-layer processing (not present in the ping probes) is a
secondary source of jitter, and (c) the WAN, and importantly,
the 5G RAN downlink provide low and stable delay.

Drilling down into Athena’s Zoom latency measurements,
we observe that audio samples and video frames (usually
consisting of multiple RTP packets) are sent in bursts. We
calculate the delay spread — the time between the first and
last packets of an audio sample or video frame — at the
sender and in the 5G core, respectively, during a five-minute
period without any cross traffic on the cellular network. We
observe (Fig. 5) that the RAN uplink spreads out the one-way
delay of samples and frames at the receiver in increments of
2.5 ms. Takeaway: Delay spread accounts for the difference
in packet-level one-way delay between audio and video in
Fig. 4, as audio samples rarely span multiple packets and
are thus only delayed when sent in conjunction with a video
frame. We explain this effect that stems from RAN scheduling
in Section 3.1.

5G Impairs QoE. We next use Athena to isolate the effect
of the aforementioned 5G delay and jitter on Zoom itself. We
create a baseline with a fixed 15 ms latency that emulates
the cellular network’s capacity (calculated from the physical
transport block sizes) using Linux traffic control (tc) over a
wired network. Figure 7 compares key QoE and performance
metrics between the two networks. Takeaway: We see that
5G consistently delivers lower quality both with respect to
bitrate and media-level jitter, as well as user-centric metrics
such as frame rate and picture quality.

How Zoom Adapts. To understand how Zoom adapts to delay
variations, we plot Zoom’s frame rate and bit rate as a time-
series in Fig. 8. Zoom uses the temporal scaling dimension of
Scalable Video Coding (SVC) [18, 37], including a base layer
at either seven or 14 fps, and adding enhancement layers to
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Fig. 8 — Zoom adaptation: Zoom reacts to both high
absolute delay and high jitter primarily by adapting the
frame rate.

reach 14 or 28 fps, respectively. When the target frame rate is
14 fps, Zoom uses a different identifier for the enhancement
layer, denoted “Low-FPS Enhancement” in the figure. The
layer identifier is included in the RTP header extensions. We
spoke with Zoom engineers to confirm that Zoom indeed uses
this type of media scalability. We can see that Zoom reacts to
very high absolute delay (above one second) by changing the
set of SVC layers and more permanently reducing the frame
rate to 14 fps. If the jitter is high, Zoom appears to transiently
skip frames, reducing to rates around 20 fps. The upper plot
shows the impact on the overall bandwidth utilization the two
adaptation strategies have. Either adaptation leads to impaired
user experience, as summarized in Fig. 7.

3 SHEDDING LIGHT ON THE 5G RAN
The 5G network introduces significant delay variations in
the uplink direction, as illustrated in Figs. 3, 4 and 8. We
now explain the two main causes of these variations in detail:
link-layer scheduling and link-layer retransmissions.

3.1 Link-Layer Scheduling
Our private 5G small cell operates in Time Division Duplex-
ing (TDD) mode, as shown in Fig. 6, which divides time into
periodic downlink and uplink slots. In our cell’s configuration,
downlink slots occur four times as frequently as uplink slots,
with uplink slots appearing every 2.5 milliseconds.

The base station allocates uplink resources to the mobile via
uplink grants, which specify the transport block size for each
uplink slot. There are two types of uplink grants: requested
and proactive. For requested grants, a 5G mobile reports the
amount of data in its transmission buffer using a Buffer Status
Report (BSR) [1], as illustrated in Fig. 6. Based on the BSR,
the base station allocates uplink grants to match the mobile’s
traffic demand. However, there is a scheduling delay between
the time a mobile sends a BSR and when it receives and
utilizes the uplink grant [38], ca. 10 ms in our Private 5G
network.

To mitigate this BSR scheduling delay, some base stations
use proactive grants, which pre-allocate uplink resources to
the mobile before receiving any BSR. Proactive grants can
consistently reduce delay by around 10 ms for sporadic pack-
ets. They, however, come at the cost of potentially wasting
bandwidth (if remain unused) and require extra computing
resources. Additionally, this scheduling does not fit in well
with bursty traffic patterns as present in VCA traffic.

To investigate link-layer scheduling on VCA traffic, we
use Athena to drill down into our collected trace (Section 2)
and present a time series in Fig. 9(a). In the upper part of
the figure, each horizontal line represents a packet, where the
left and right edges indicate the timestamps when the packet
is sent at the sender and when we capture it at the mobile
core, respectively, as shown in Fig. 2. The length of the line
represents the one-way delay between the sender and the
mobile core. The lower part of the figure shows the physical
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layer transport block (TB) sizes within the same time period.
Multiple packets, sent in a burst, comprise each video

frame—when these are ready at the mobile, a proactive TB
can carry only one or two of them. Given the 2.5 ms downlink-
uplink period, another proactive grant arrives 2.5 ms later,
allowing the mobile to send another one or two packets. This
process continues until the BSR-requested grant arrives, typ-
ically around 10 ms after the initial packet transmission, at
which point all remaining packets in the UE’s buffer are de-
livered by the BSR-requested TBs. This scheduling approach
results in the previously discussed delay spread at the frame
level, which is denoted as yellow double arrows in Fig. 9(a).

Proactive grants also cause over-granting issues. As shown
in Fig. 9(a) (green bars), the BSR-requested TB size is based
on the buffer status at the time the UE sends the BSR. How-
ever, once the BSR-requested TB becomes available to the
mobile, 10 ms later, the remaining data in the mobile’s buffer
has decreased, because proactive TBs have already delivered
some packets during the BSR scheduling delay period. This
over-granting results in some requested TBs being wasted
without transmitting any data (the unfilled green bars in
Fig. 9(a)), ultimately leading to a waste of bandwidth.

3.2 Link-Layer Retransmissions
5G link-layer retransmissions happen due to mobility and
dynamic channel conditions, which cause errors or data loss
in the transmitted TB. These retransmissions occur frequently,
particularly in environments with high interference or signal
variability. As a result, retransmissions introduce additional
delay to the packets they carry, impacting overall network
latency. In our configuration, retransmission delay is 10 ms.

Fig. 9(b) illustrates another time series example, highlight-
ing failed and retransmitted TBs in red and purple, respec-
tively. In instances where retransmissions occur for TBs con-
taining packets, the packet delay (the length of the horizontal
lines in Fig. 9(b)) is typically inflated by 10 milliseconds, indi-
cated with yellow double arrows. If the retransmitted TBs fail
again at the base station, it leads to multiple rounds of retrans-
missions of the same TB, further inflating the packet delay
by multiples of 10 milliseconds. This introduces additional
variations to the network latency. Additionally, Athena’s ob-
servations reveal that the base station also mandates the UE to
retransmit empty proactive and requested TBs, which results
in unnecessary bandwidth consumption.

4 A DELAY-BASED SOLUTION?
It is well known that loss-based congestion control is poorly-
suited for low-latency video conferencing applications be-
cause it intentionally creates network buffering to probe net-
work capacity. When packet loss occurs, it indicates that the
buffer is full and the network is already congested, leading to
increased delay and a degraded user experience.

Delay, on the other hand, is widely recognized as the ear-
liest indicator of network congestion. Consequently, delay-
based congestion control algorithms, such as SCREAM [20],
NADA [45], and GCC [7], have been widely adopted by
video conferencing applications to provide the most respon-
sive performance to network capacity fluctuations. Among
these, GCC is the default congestion control algorithm for
WebRTC [3, 10], a widely used real-time communication
standard that powers, for example, Google Meet [15]. Since
the congestion control used in Zoom is proprietary and the
details are unknown, we use GCC as an example to demon-
strate the potential impact of RAN-induced delay variations
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Fig. 10 — GCC running at a mobile connected via a Pri-
vate 5G network detects frequent network overuse based
on its filtered packet one-way delay gradient estimate.

on the design of a delay-based congestion control protocol.
GCC leverages the one-way delay gradient to detect the

status of network usage, which is defined as 𝑑𝑚 = (𝑇𝑖−𝑇𝑖−1)−
(𝑡𝑖 − 𝑡𝑖−1) where the 𝑡𝑖 and 𝑇𝑖 are the sending and receiving
timestamps of the 𝑖-th packet, respectively. GCC then smooths
the delay gradient by applying a trendline filter to obtain the
filtered delay gradient. If the filtered delay gradient is positive
and exceeds a certain threshold, the network is identified as
being overused. Conversely, if the delay gradient is negative
and falls below a negative threshold, the network is considered
underused. To demonstrate the impact of RAN-induced delay
variations, we measure the filtered one-way delay gradient of
the packets transmitted within one video conference session
inside an idle 5G network within which our mobile is the
only user. We plot the filtered delay gradient, the threshold
and the detected network overuse in Fig. 10, from which we
can observe significant fluctuations in the gradient, which
could potentially result in frequent identification of network
overuse and underuse, while the network is consistently idle
and underused. Such frequent misidentification of overuse
could severely mislead GCC, causing it to falsely react to
phantom network fluctuations.

5 ATHENA LOOKING FORWARD
Athena’s analysis of latency artifacts reveals a physical-layer
scheduling and retransmission cause. This naturally motivates
future measurement studies Athena’s first-in-kind cross-layer
methodology enables, and leads to many opportunities for the
mitigation of latency inflation and its detrimental effects on
video-conferencing applications.

5.1 Cross-Layer Measurements
While we demonstrate the potential of the Athena measure-
ment framework in the context of video conferencing and
5G, our methodology is also a blueprint for future measure-
ment. In general, there are more and more diverse applica-
tions that exhibit various traffic patterns (e.g., short video
[26], video on demand, web browsing, interactive applica-
tions) and an ever-growing set of physical and link-layer

technologies (e.g., 4G and 5G with a wide range of multiple-
access and duplexing strategies, Wi-Fi, satellite networks, and
Bluetooth). All underlying networks introduce different arti-
facts that are of varying importance to the different classes
of applications. A challenge here is to find a generic way
how these diverse physical-layer technologies can match and
interact with application-layer demands to maximize perfor-
mance. We call for a more frequent, principled interchange
of information between layers enabled through continuous,
fine-grained measurement—the Athena framework enables
exactly this.

To gain deeper insights and gather more data points for
this vision, in the future, we plan to use Athena to further
measure Google Congestion Control (GCC) and work toward
a GCC simulator that evaluates video-conferencing behavior
in various physical-layer contexts. For example, in the context
of cellular networks, different base stations use different du-
plexing strategies. Also, the wireless spectrum can be divided
along multiple axes. Time slicing (as in TDD) is done using
different slice lengths in differing frequency bands, and some
cellular networks use Frequency Division Duplexing (FDD)
for uplink and downlink, resulting in differing impacts on
application-layer latencies (cf. Section 2).

5.2 A More Application-Aware RAN?
Video conferencing and other real-time communication ap-
plications exhibit a very predictable traffic pattern: a video
frame is sent approximately every 33 ms (at 30 fps) or every
66 ms (at 15 fps). The size of the frames also rarely changes
significantly as VCAs typically do not use I-frames but rather
transmit all video as a series of P-frames that only encode
the difference from the previous picture [28]. In Section 3.1,
we show that the 5G TDD uplink-grant scheduling mecha-
nism delivers the majority of packets using small proactive
grants, leading to delay spread at the frame level, while reac-
tive grants typically arrive too late and often remain unused,
wasting resources for other users (Fig. 9(a)).

Given the predictability of VCA traffic, there are ample
opportunities for the RAN to issue uplink grants in a more
informed, application-aware way. This can be realized in two
ways. First, video-conferencing packets can be annotated (e.g.,
through RTP extensions) with media-level metadata. This
information could include the number of streams originating
at a particular sender, together with data about their sampling
rates (in the case of audio) or frame rates in the case of video,
together with a periodically updated estimate for the current
frame size as this may depend on multiple factors. Using this
information, the base station can issue grants exactly at the
right times when a sample or frame is generated and ready
for transmission. Second, the base stations can use machine
learning to learn the current transmission patterns, and predict
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future traffic demands to precisely issue grants.
The Open-RAN Alliance specifies the RAN Intelligent

Controller (RIC) as a software component that provides cen-
tralized control and optimization of radio network functions [33,
35]. Network operators can use the RIC to apply customized
algorithms to various RAN operations, including resource al-
location. Specifically, a Real-Time RIC [21] can be employed
to implement such an intelligent traffic learning algorithm
and subsequent grant scheduling. Either approach has the po-
tential to cut the delay inflation experienced by frames in half.
Note that the frame-level delay (i.e., from the transmission of
the first packet of a frame to the reception of the last packet of
the frame) is extremely relevant as a frame cannot be rendered
until all of its packets have been received.

5.3 More RAN-Aware Applications?
Conversely to the RAN becoming application-aware, there
is a clear need for applications and transport protocols to be
better informed of the RAN’s state. Here, the key architectural
challenge is to define the congestion protocol for application
and transport layer senders. How should the wireless access
network abstract its complexities to higher-layer senders?
How should this information be communicated to senders
across the wide area network?

Generally, the RAN could give applications finer insights
into its operation through telemetry that, for example, conveys
the cause for a particular delay increase. Alternatively, the
RAN could mask RAN-induced delays through the congestion-
control feedback channel by modifying per-packet delay in-
formation as reported by, for example, RTCP transport-wide
congestion-control messages in GCC. As a protocol, L4S
[4–6] is attractive, as it adopts ECN bits in the IP header to
accelerate or brake the sender (cf. ABC [16]), which stands a
good chance at practical and incremental deployability, topics
under close consideration in the IETF. But challenges remain
here, too: how should control of the accelerate-brake signal
be defined in the presence of retransmissions due to (unpre-
dictable) loss versus the more predictable delay spikes and
spreads that we observe with Athena?

6 RELATED WORK
There is a line of research designing cellular PHY-layer mon-
itoring tools, as in [23, 25, 43]. Additionally, [40, 44] in-
tegrates 4G/5G PHY-layer measurements with the transport
layer to enhance congestion control algorithms. Previous stud-
ies have also investigated how cellular network affects net-
work latency, for sporadic and small traffic applications [38],
and in high user mobility scenarios [31]. Our work differs by
correlating information across the physical, link, network, and
application layers, and providing a in-depth analysis revealing
the root cause of the impaired VCA QoE under 5G.

7 CONCLUSION
The Athena measurement framework is the first of its kind
to deeply look across all layers of the network stack, an ap-
proach whose time has come given the accelerating pace of
innovation at the high and low ends of the stack. In this paper,
we have reported a proof of concept of the Athena approach
for Zoom, and have scanned the horizon of new work that
Athena enables.

ACKNOWLEDGEMENTS
This work has been supported by the National Science Foun-
dation under Grant Nos. AST-2232457 and CNS-2223556,
and by DARPA under contract HR001120C0107.

REFERENCES
[1] 3GPP. TS138.321: 5G NR Medium Access Control (MAC) protocol

specification.
[2] S. A. Baset, H. G. Schulzrinne. An analysis of the skype peer-to-peer

internet telephony protocol. IEEE INFOCOM 2006, 1–11. IEEE, New
York, NY, USA, 2006. doi:10.1109/INFOCOM.2006.312.

[3] N. Blum, S. Lachapelle, H. Alvestrand. Webrtc: Real-time communica-
tion for the open web platform. Communications of the ACM, 64(8),
50–54, 2021. ISSN 0001-0782. doi:10.1145/3453182.

[4] B. Briscoe, K. D. Schepper, M. Bagnulo, G. White. Low Latency, Low
Loss, and Scalable Throughput (L4S) Internet Service: Architecture.
Request for Comments RFC 9330, Internet Engineering Task Force,
2023. doi:10.17487/RFC9330. Num Pages: 36.

[5] B. Briscoe, K. D. Schepper, O. Tilmans, M. Kuhlewind, J. Misund.
Implementing the ’Prague Requirements’ for Low Latency Low Loss
Scalable Throughput (L4S).

[6] D. Brunello. L4S in 5G networks, 2020.
[7] G. Carlucci, L. De Cicco, S. Holmer, S. Mascolo. Analysis and de-

sign of the google congestion control for web real-time communica-
tion (webrtc). Proceedings of the 7th International Conference on
Multimedia Systems, MMSys ’16. Association for Computing Ma-
chinery, New York, NY, USA, 2016. ISBN 9781450342971. doi:
10.1145/2910017.2910605.

[8] G. Carlucci, L. De Cicco, S. Holmer, S. Mascolo. Congestion control for
web real-time communication. IEEE/ACM Transactions on Networking,
25(5), 2629–2642, 2017. doi:10.1109/TNET.2017.2703615.

[9] H. Chang, M. Varvello, F. Hao, S. Mukherjee. Can you see me now? a
measurement study of zoom, webex, and meet. ACM Internet Measure-
ment Conference, 216–228. ACM, New York, NY, USA, 2021. ISBN
9781450391290.

[10] T. W. W. W. Consortium. W3C recommendation: WebRTC: Real-
time communication in browsers, 2023. Retrieved April 6, 2023, from
https://www.w3.org/TR/2023/REC-webrtc-20230306.

[11] S. Dhawaskar Sathyanarayana, K. Lee, D. Grunwald, S. Ha. Converge:
QoE-driven Multipath Video Conferencing over WebRTC. Proceed-
ings of the ACM SIGCOMM 2023 Conference, 637–653. ACM, New
York NY USA, 2023. ISBN 9798400702365. doi:10.1145/3603269.
3604822.

[12] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, M. Schapira. PCC: Re-
architecting congestion control for consistent high performance. 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 395–408. USENIX Association, Oakland, CA, 2015. ISBN
978-1-931971-218.

109



HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Fan Yi, Haoran Wan, Kyle Jamieson, Jennifer Rexford, Yaxiong Xie, and Oliver Michel

[13] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, G. Smaragdakis. The lockdown effect: Implications of
the covid-19 pandemic on internet traffic. ACM Internet Measure-
ment Conference, 1–18. ACM, New York, NY, USA, 2020. ISBN
9781450381383. doi:10.1145/3419394.3423658.

[14] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, D. J. Leith. srsLTE: an open-source platform for LTE evolution
and experimentation. ACM WiNTECH, 2016.

[15] Google meet, 2023. Retrieved April 14, 2023, from
https://meet.google.com.

[16] P. Goyal, M. Alizadeh, H. Balakrishnan. ABC: A Simple Explicit
Congestion Controller for Wireless Networks. Proceedings of the 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’20), 2020.

[17] T. D. Hoang, C. Park, M. Son, T. Oh, S. Bae, J. Ahn, B. Oh, Y. Kim.
LTESniffer: An Open-source LTE Downlink/Uplink Eavesdropper. Pro-
ceedings of the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 43–48. Association for Computing
Machinery, New York, NY, USA, 2023. ISBN 978-1-4503-9859-6.
doi:10.1145/3558482.3590196.

[18] ISO/IEC. Standard 14496-10:2022.
[19] V. Jacobson. Congestion avoidance and control. Symposium Proceed-

ings on Communications Architectures and Protocols, SIGCOMM ’88,
314–329. Association for Computing Machinery, New York, NY, USA,
1988. ISBN 0897912799. doi:10.1145/52324.52356.

[20] I. Johansson. Self-clocked rate adaptation for conversational video in
lte. Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop, CSWS ’14, 51–56. Association for Computing
Machinery, New York, NY, USA, 2014. ISBN 9781450329910. doi:
10.1145/2630088.2631976.

[21] W.-H. Ko, U. Dinesha, S. Shakkottai, D. Bharadia. EdgeRIC: Empow-
ering Realtime Intelligent Optimization and Control in NextG Cellular
Networks. NSDI, 2024.

[22] Y. Kong, H. Zang, X. Ma. Improving tcp congestion control with
machine intelligence. Proceedings of the 2018 Workshop on Network
Meets AI & ML, NetAI’18, 60–66. Association for Computing Ma-
chinery, New York, NY, USA, 2018. ISBN 9781450359115. doi:
10.1145/3229543.3229550.

[23] S. Kumar, E. Hamed, D. Katabi, L. Erran Li. LTE Radio Analytics
Made Easy and Accessible. SIGCOMM Comput. Commun. Rev., 44(4),
211–222, 2014. ISSN 0146-4833. doi:10.1145/2740070.2626320.

[24] I. Lee, J. Lee, K. Lee, D. Grunwald, S. Ha. Demystifying commercial
video conferencing applications. ACM International Conference on
Multimedia, 3583–3591. ACM, New York, NY, USA, 2021. ISBN
9781450386517.

[25] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, T. Wang. Mobileinsight:
Extracting and analyzing cellular network information on smartphones.
Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking, 202–215, 2016.

[26] Z. Li, Y. Xie, R. Netravali, K. Jamieson. Dashlet: Taming Swipe
Uncertainty for Robust Short Video Streaming. NSDI, 2023.

[27] K. MacMillan, T. Mangla, J. Saxon, N. Feamster. Measuring the
performance and network utilization of popular video conferencing
applications. ACM Internet Measurement Conference, 229–244. ACM,
New York, NY, USA, 2021. ISBN 9781450391290.

[28] O. Michel, S. Sengupta, H. Kim, R. Netravali, J. Rexford. Enabling
passive measurement of zoom performance in production networks.
Proceedings of the 22nd ACM Internet Measurement Conference, IMC
’22, 244–260. Association for Computing Machinery, New York, NY,
USA, 2022. ISBN 9781450392594. doi:10.1145/3517745.3561414.

[29] Mosolab. Mosolab Canopy Small Cell, 2023.

[30] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, Z.-L.
Zhang. A First Look at Commercial 5G Performance on Smartphones.
Proceedings of The Web Conference 2020, 894–905. ACM, Taipei Tai-
wan, 2020. ISBN 978-1-4503-7023-3. doi:10.1145/3366423.3380169.

[31] Y. Ni, F. Qian, T. Liu, Y. Cheng, Z. Ma, J. Wang, Z. Wang, G. Huang,
X. Liu, C. Xu. {POLYCORN}: Data-driven cross-layer multipath net-
working for high-speed railway through composable schedulerlets. 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 1325–1340, 2023.

[32] A. Nistico, D. Markudova, M. Trevisan, M. Meo, G. Carofiglio. A
comparative study of rtc applications. IEEE International Symposium
on Multimedia, 1–8. IEEE, New York, NY, USA, 2020.

[33] Open ran alliance, 2024. Retrieved June 27, 2024, from https://www.o-
ran.org.

[34] I. E. Richardson. The H.264 Advanced Video Compression Standard.
Wiley Publishing, 2nd edn., 2010. ISBN 978-0-470-51692-8.

[35] R. Schmidt, M. Irazabal, N. Nikaein. FlexRIC: an SDK for next-
generation SD-RANs. Proceedings of the 17th International Confer-
ence on emerging Networking EXperiments and Technologies, 411–425.
ACM, Virtual Event Germany, 2021. ISBN 978-1-4503-9098-9. doi:
10.1145/3485983.3494870.

[36] H. Schulzrinne, S. L. Casner, R. Frederick, V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550, 2003. doi:
10.17487/RFC3550.

[37] H. Schwarz, D. Marpe, T. Wiegand. Overview of the scalable video
coding extension of the h.264/avc standard. IEEE Transactions on
Circuits and Systems for Video Technology, 17(9), 1103–1120, 2007.
doi:10.1109/TCSVT.2007.905532.

[38] Z. Tan, J. Zhao, Y. Li, Y. Xu, S. Lu. {Device-Based}{LTE} latency re-
duction at the application layer. 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), 471–486, 2021.

[39] J.-M. Valin, K. Vos, T. B. Terriberry. Definition of the Opus Audio
Codec. Request for Comments RFC 6716, Internet Engineering Task
Force, 2012. doi:10.17487/RFC6716. Num Pages: 326.

[40] H. Wan, K. Jamieson. Evolving Mobile Cloud Gaming with 5G Stan-
dalone Network Telemetry, 2024. doi:10.48550/ARXIV.2402.04454.
Version Number: 1.

[41] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Im-
age Processing, 13(4), 600–612, 2004. doi:10.1109/TIP.2003.819861.

[42] K. Winstein, H. Balakrishnan. Tcp ex machina: computer-generated
congestion control. Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM, SIGCOMM ’13, 123–134. Association for Com-
puting Machinery, New York, NY, USA, 2013. ISBN 9781450320566.
doi:10.1145/2486001.2486020.

[43] Y. Xie, K. Jamieson. Ng-scope: Fine-grained telemetry for nextg
cellular networks. Abstract Proceedings of the 2022 ACM SIG-
METRICS/IFIP PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMET-
RICS/PERFORMANCE ’22, 27–28. Association for Computing Ma-
chinery, New York, NY, USA, 2022. ISBN 9781450391412. doi:
10.1145/3489048.3522652.

[44] Y. Xie, F. Yi, K. Jamieson. Pbe-cc: Congestion control via endpoint-
centric, physical-layer bandwidth measurements. Proceedings of the
Annual conference of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architectures, and protocols
for computer communication, 451–464, 2020.

[45] X. Zhu, R. Pan. Nada: A unified congestion control scheme for low-
latency interactive video. 2013 20th International Packet Video Work-
shop, 1–8, 2013. doi:10.1109/PV.2013.6691448.

[46] Zoom, 2023. Retrieved April 14, 2023, from https://zoom.us.

110


	Abstract
	1 Introduction
	2 5G Teleconferencing Pitfalls
	3 Shedding Light on the 5G RAN
	3.1 Link-Layer Scheduling
	3.2 Link-Layer Retransmissions

	4 A Delay-Based Solution?
	5 Athena Looking Forward
	5.1 Cross-Layer Measurements
	5.2 A More Application-Aware RAN?
	5.3 More RAN-Aware Applications?

	6 Related Work
	7 Conclusion
	References

