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Abstract

Formal verification has been successful in developing new provably
correct systems, including compilers, OS kernels, and cryptographic func-
tions. But these efforts seldom verify existing, real-world implementa-
tions, and those that do focus on small components. Verification of real-
world software libraries at scale introduces new challenges and considera-
tions. In this paper, we explore these challenges in the context of PETSc,
a widely-used, state-of-the-art numerical linear algebra library. In partic-
ular, we discuss how to evaluate the feasibility of a library for verification,
how to identify a verifiable subset and minimize its set of dependencies,
and how to keep such a subset up-to-date with an actively developed li-
brary. We create several small tools automate these tasks and apply them
to PETSc, producing a verifiable (though not yet verified) subset usable
to external clients with no additional work required. We hope that our
methodology can help to enable feasible and scalable verification of large-
scale software, especially numerical and other mathematically intensive
libraries.

1 Introduction

As software grows more and more complex, the potential for bugs in-
creases. Formal verification uses the tools of mathematical logic to prove
the absence of bugs in a program, and a variety of automated and inter-
active methods have been developed for this purpose. Such techniques
have been applied at scale, for instance to develop the CompCert veri-
fied C compiler [22], which is accompanied by a formal proof that the
compilation preserves the semantics of the input program.

Existing efforts to verify real-world programs typically take one of two
forms: either they involve writing a new program and proving it correct,
carefully designing the program to facilitate reasoning (as in CompCert or
Fiat crypto [11]); or they involve verifying a piece of already-existing code,
such as a cryptographic primitive [1]. However, the latter efforts involve
verification of a single version of a program. Especially for programs
whose correctness requires significant mathematical reasoning, it can be
extremely difficult to evolve the specification and proofs as the software
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itself changes. As a result, users often cannot choose to link their code
against verified versions of existing software, as these are out-of-date and
no longer reflective of the current state of the program. These issues are
only avoided by considering programs that change very infrequently.

In this paper we consider techniques and principles for both analyzing
the feasibility of verifying real-world, large-scale software libraries and for
making it practical to keep such verification efforts up-to-date and thereby
allow users to use verified versions of such libraries. We use as a case
study PETSc (Portable, Extensible Toolkit for Scientific Computation)
[3], a state-of-the-art library for numerical linear algebra. While we do
not verify PETSc, we describe the process by which it could be done and
discuss how one might systematically approach such a verification effort,
with the goal of allowing external users to link against verified components
of PETSc with no additional effort.

Library verification is a distinct task from ordinary program verifica-
tion, with its own set of considerations and challenges. In this paper, we
address the following questions:

1. How can we evaluate whether a library is amenable for verifica-
tion? Considerations include the use and amount of encapsulation,
abstraction, and modularity in the library design, the ability to iden-
tify library features in isolation (for example, by separating logging
and error handling capabilities), and the amount of system-level in-
frastructure the library contains. We analyze these aspects, among
others, in our discussion on the feasibility of PETSc as a verification
target.

2. How can we transform a large-scale, state-of-the-art library into a
smaller subset that minimizes the number of dependencies (so as to
require verification of only the minimal subset of library components)
yet, for a particular client program, still runs exactly the same code
as the existing, unverified library? We design a methodology and a
tool to address this problem for C libraries.

3. How can we keep a verified library in sync with, or at least knowl-
edgeable about the differences between, the current version of an
actively-developed library, and incorporate this information into con-
tinuous integration (CI)? We again discuss design considerations and
produce a small tool to help with this.

2 Background

2.1 Verification and VST

Most program verification tools capable of proving full functional correct-
ness (i.e. proving that a function has the correct behavior on any possible
input) can broadly be split into two categories. Automated tools use
SMT solvers, model checkers, and other methods to prove programs cor-
rect with minimal effort needed by the user – the user typically annotates
their program with a specification and some hints to help the solver, and
the solver takes care of the rest. Examples include Dafny [21], a language
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with built-in verification capabilities, and Frama-C [10] and VeriFast [17]
for C programs.

Interactive methods require the user to manually construct a proof
of the program’s correctness in a proof assistant, with only user-defined
automation. Such tools are much more powerful than automated ones
and are necessary for proving program properties that require sophisti-
cated mathematical reasoning, but require significantly more expertise.
Examples include VST [2] for verifying C programs and CakeML [20] for
verifying ML programs.

VST in particular is crucial to our efforts. It consists of a program
logic for C in the Coq proof assistant, proved sound with respect to the
CompCert C compiler. This means that we can verify real C programs
(CompCert supports a significant subset of C99) and compile with Comp-
Cert, resulting in a formal, machine-checked proof that the assembly code
satisfies the specification we proved. VST is very expressive, support-
ing concurrency and higher-order, object-oriented patterns. Its assertion
language is that of Coq, a dependently typed, higher-order logic. The
upshot is that one can prove sophisticated, real-world, and unmodified
C programs correct using VST and connect these proofs seamlessly to
higher-level mathematical proofs about the underlying algorithms.

Such an approach has been used to verify many different C programs,
including an HTTP key-value server [28], OpenSSL SHA256 [1], a packet
error-correction system based on Reed-Solomon erasure coding [9], and a
variety of numerical programs including a leapfrog integrator for a har-
monic oscillator [18] and an implementation of Jacobi iteration to solve
linear systems [27]. The latter 4 efforts rely on nontrivial mathemati-
cal reasoning in the application domain of interest: cryptography, error-
correcting codes (linear algebra over finite fields), and numerical analysis,
respectively; Coq and associated mathematical libraries like Mathematical
Components [23] are well-equipped for this.

However, all of these existing projects either implement their own C
program (HTTP, integrator, Jacobi) or verify a single version of an exist-
ing C program (SHA256, erasure correction). In particular, existing proof
assistant-based verified numerical programs rely on a newly written pro-
gram, in C or otherwise. This does not align with how developers write
code in practice, which is to use existing, mature software libraries. We
would like VST-style verification for such libraries (we are particularly
focused in the numerical domain, but the same ideas apply more broadly)
so that users with no verification expertise or knowledge can use verified
code with no additional effort. We focus on the PETSc library.

2.2 PETSc

PETSc is a widely used, state-of-the art library for numerical linear al-
gebra. It includes data structures such as sequential and parallel vectors
and a variety of (parallel and sequential) sparse matrix formats, as well
as dozens of algorithms for solving linear and nonlinear systems and dif-
ferential equations. PETSc is written in C with bindings for Python and
Fortran, but it uses an object-oriented programming style (with an ad-
hoc implementation of objects using function pointers). It includes a very
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large “standard library” of data structures, string operations, and meth-
ods to handle memory allocation and deallocation. It also contains error
handling and logging capabilities, as well as the ability to modify the
behavior of code at runtime via (configurable) command-line options.

PETSc is an intriguing target for VST-style interactive verification
for several reasons. It is widely used in dozens of higher-level projects
and tools, as well as directly for a variety of numerical simulation prob-
lems, which means that verification can have large benefits and bugs are
potentially very costly. It implements numerous sophisticated numerical
algorithms and efficient data structures; this introduces the possibility of
bugs both in the mathematics (while the underlying algorithms are well-
understood, some proofs do not rigorously handle the semantics of floating
point numbers) as well as the possibility for low-level implementation bugs
(dereferencing null pointers, overflow, crashes, etc), particularly as C is a
memory-unsafe language. To verify such a library, we need a tool capable
of reasoning at both of these levels – VST is a particularly good fit, and
it is equipped to handle the higher-order, object-oriented design patterns
used extensively in PETSc. Automated tools would not be able to handle
the sophisticated real and numerical analysis needed to prove correctness
of the underlying algorithms, and we need a powerful program logic to
handle the inherently higher-order nature of the library.

Finally, PETSc is attractive for verification because it fills a gap in the
existing verified pipeline. Numerous projects have formalized properties
of numerical algorithms in Coq and other proof assistants [27, 18, 16, 6],
about which there are now intricate proofs of correctness and precise
bounds on error and/or iteration time. However, these proofs are con-
nected to simple implementations written for verification purposes. A
user who wishes to solve a linear system with Jacobi iteration, for in-
stance, cannot make use of this code. This is not an inherent limitation;
indeed, an advantage of the standard Coq+VST workflow is that the
mathematical proofs about the algorithm are completely separate from
the C-language verification conditions; this means that the higher-level
proofs can be reused for any equivalent implementation. In practice, of
course, one wishes such an implementation to be efficient; libraries like
PETSc have undergone significant optimization and careful engineering
to improve speed and accuracy. Therefore, connecting existing proofs
about numerical algorithms with their PETSc implementations can make
it possible for users to run verified code without suffering any performance
penalty or requiring any additional effort.

3 Analyzing Suitability for Verification

PETSc is an intriguing target for verification, but is such verification
feasible? There is a good reason why many existing verification projects
consider their own code: formal verification is difficult, and verifying code
that was not written with verification in mind is even more so.

PETSc is a well-designed library; accordingly, it makes crucial de-
sign decisions that make verification easier in principle. In particular, it
makes extensive use of abstraction and modularity. Figure 1 shows this
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Figure 1: Structure of the PETSc library 1

structure, in which each object type (Vector, Matrix, Krylov Subspace
Solver, etc) implements a well-defined interface, and only interacts with
lower layers through this interface. In principle, one could design speci-
fication boundaries accordingly; for example, the specification for matrix
multiplication would be defined on the abstraction, and each matrix im-
plementation should implement multiplication in such a way that we can
prove it correct against this same specification. Then, at higher layers in
the proof, one does not need to know which implementation was used,
only that some implementation satisfying the spec was. Also particularly
helpful for verification is PETSc’s extensive use of abstraction, largely
avoiding code duplication and grouping common functionalities.

Of course, verifying an entire library the size of PETSc (roughly 800K
LOC) is not feasible. Instead, we want to identify a small subset that
nevertheless allows one to write real programs. With the modular nature
of PETSc, even this small subset is extremely valuable, as it would be rel-
atively easy to incrementally verify more components and plug them into
the existing verified pipeline. Therefore, such an initial subset should com-
prise a vector implementation, a matrix implementation, a linear solver, a
preconditioner (used to adjust the matrix to make iterative linear solvers
converge faster), and enough of the base PETSc system so that the result-
ing system compiles and runs exactly the same as with the full PETSc.

A natural choice for such a subset is that required to implement Jacobi
iteration (which in PETSc consists of Richardson iteration with a Jacobi
preconditioner). Then, we can link the PETSc proofs with the existing

1https://petsc.org/release/overview/nutshell/

5

https://petsc.org/release/overview/nutshell/


numerical and convergence proofs about this algorithm in Coq [27], giv-
ing us an end-to-end correctness theorem about an efficient, real-world
implementation.

We note that PETSc, as with many large software libraries, has a
variety of flags and configuration options. For instance, one can enable or
disable logging, ways of drawing and viewing data, and certain types of
error handling. For our verification purposes, we would like to consider a
single but realistic configuration of PETSc – that is, we identify a single
setting of flags and options under which we will verify the system. Then,
we can identify which flags must be set if a user wishes to stay within the
verifiable subset.

Ideally, this set of flags would minimize the amount of code that we
need to verify – both by disabling features like error handling which are
not needed because we prove that no errors are encountered and by dis-
abling irrelevant features like logging. However, this is only partially
possible: PETSc includes many features which are both difficult to ver-
ify and largely irrelevant for verification purposes but which are tightly
integrated into the library and which cannot be disabled. Such features
include dynamic options and libraries and use of the Message Passing
Interface (MPI) for parallelism even in purely sequential code.

For these features, our specifications will be largely trivial, but veri-
fication is still nontrivial: we need to ensure that these components do
not crash or use memory incorrectly. However, we do not want to change
the code or remove these features, inconvenient as they may be, as we are
guided by the following principles:

• The subset of PETSc we choose must be achievable with some pos-
sible set of configuration flags and options. Then, we can inform the
user to choose such a configuration if they wish to use the verifiable
subset of PETSc.

• To write a client-level program that uses the verifiable subset of
PETSc, assuming the configuration options are set correctly, the
user should need to do nothing other than link against the verified
PETSc binaries.

• When a user writes a program and links against the verifiable sub-
set, the code that runs must be exactly the same code as that of
linking against PETSc (except of course for any bugs found during
the verification process, which would hopefully be fixed in PETSc
as well).

• A user linking against the verifiable subset need not be responsible
for knowing exactly which parts of PETSc are in this subset; at
runtime their code should throw an error if they attempt to call
functions outside of the subset.

Our verifiable subset will include large parts of the PETSc system and
libraries which are largely unnecessary for our efforts yet are still exe-
cuted, and thus must be considered. These include the aforementioned
dynamic options, functions for string processing, some error handling and
printing (we would prove that these errors are not triggered), MPI infras-
tructure (though the subset we wish to verify is sequential), and functions
to register citation metadata.
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4 From Large-Scale to Small(ish)-Scale

One might suppose, then, that the task is rather simple: take the minimal
set of dependencies needed to verify Jacobi iteration, which will hopefully
be small enough to be feasible, while allowing for further incremental and
modular verification of future components as described above. Yet the
concept of the “minimal set” of dependencies is more complicated than it
may seem.

Appendix A shows the PETSc program we are interested in, which
computes Jacobi iteration on a matrix stored in Compressed Sparse Row
(CSR) format (called MATAIJ in PETSc). The example matrix is not too
relevant (although it has a property called diagonal row dominance under
which Jacobi iteration is provably guaranteed to converge); verifying the
underlying algorithms would allow us to prove correct any such example.
The naive approach is to start with this program, identify all the functions
called (PetscInitialize, MatCreate, etc), identify all of their dependencies,
and so on until we have a PETSc subset that compiles.

This approach results in an enormous number of dependencies, for 2
main reasons. First, PetscInitialize, the first function call in any PETSc
program, initializes a variety of global data structures to handle the dy-
namic options database, MPI, error handling, and so on. These structures
and associated functions rely on lower-level functions for handling memory
allocation and generic PETSc objects as well as data structures includ-
ing hash tables and circular buffers. Secondly, PETSc handles dynamic
libraries by registering (in global data structures) all known classes (Vec,
Mat, KSP, etc), all known types in this class (sequential vectors, com-
pressed sparse row matrices, etc), and a constructor for each type. Thus,
even though we are only interested in a single implementation, the depen-
dencies include every vector, matrix, preconditioner, and solver imple-
mentation (or at least their constructors, but their constructors initialize
their function pointers to their other methods, so in practice, all such im-
plementations become dependencies). Thus, under such an approach, the
required dependencies include a substantial fraction of PETSc.

One obvious reduction in the number of dependencies is to ignore
functions stored in function pointers yet not called – e.g. in all matrix
implementations other than CSR, only the constructors are relevant de-
pendencies, and the rest of the functions can be replaced with trivial stubs
(and specifications asserting that such functions are never called). This
helps, but still leaves at least 30K LOC, which is still infeasible.

Instead, we will recall the principles of §3 and note that we only need
to preserve PETSc functions which are actually run. To illustrate this,
consider the following toy example:

int foo() {
if (true) a();
else b();

}

int a() {
c();
d();

}

int b() {
e();
f();

}

In the naive approach, a(), b(), c(), d(), e(), and f() are all dependen-
cies, and may have further dependencies. However, we really only care
about a(), c(), and d() (and their dependencies); i.e. we would like the
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following:

int foo() {
if (true) a();
else b();

}

int a() {
c();
d();

}

int b() {
assert(false);

}

And we note that the actual code run when foo is executed is exactly
the same in both cases. Using this as motivation, we aim to only in-
clude the dependencies of our Jacobi iteration implementation that are
actually run. Thus, any functions in PetscInitialize that are only run if
certain options are enabled (say, for logging), any functions registered as
constructors but never called, any function pointers of the data structures
we verify which are not called, and any code paths not executed should
have their resulting dependencies turned into stubs. Moreover, as the
assert(false); above demonstrates, we should enforce that such code is not
used; if the user desires to link their program against the verifiable subset
of PETSc, they should have a way to know that they have left the subset.

In summary, we now have 3 different kinds of functions: those functions
appearing in the verifiable subset (i.e. those actually executed by the
program in Appendix A), functions needed for compilation but which are
not run and should be stubified, and functions not needed at all, which can
be removed. Manually identifying which function falls into each category
and stubifying functions is tedious, error-prone, and would need to be
repeated with each new version of PETSc. Instead we create a tool to
handle this largely automatically.

4.1 Stubify: A Tool for Producing Minimal De-
pendencies

Our tool, Stubify2, takes in a preprocessed C program and a list of func-
tions to keep, and it stubs out everything else, returning an updated
preprocessed C file. Specifically, it is a modified C lexer/parser that re-
places all function bodies of functions not in the input list with equivalent
whitespace, preserving preprocessor line numbers and other metadata.
The subset of C accepted is that of CompCert (we modify CompCert’s
lexer/parser), which is the same subset supported by VST.

There is some subtlety in ensuring that the resulting code is still valid
C. There are two issues: first, to ensure compilation, the function must
still return something of the correct type. Second, recall that we want
the client at runtime to encounter an error if they try to use a stubified
function. Achieving this in general (for any C file) is not trivial. The
assert(false) in the previous example was an oversimplification; we cannot
assume that the C files we are stubifying have included assert.h. Similarly,
we cannot directly print an error message (stdio.h may not be included)
or exit with exit(1) (stdlib.h may not be included).

To deal with the first issue, we can end the function with an infinite
loop (while(1)). For the second issue, we use the fact that C allows extern
declarations within function bodies. Thus, the tool adds the following C

2github.com/joscoh/stubify
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code immediately before the closing curly brace of the stubified function
(where curr name stores the name of the function it is stubifying):

extern void stub error(char ∗); stub error(curr name); while(1);

Then, we link the resulting stubs with a file stub error.c, which can be
user-configurable but in our case is simple:

#include <stdio.h>
#include <stdlib.h>

void stub error(char ∗ str) {
fprintf(stderr,
”ERROR: Called %s, which is not in the verified subset of PETSc\n”, str);

exit(1);
}

Therefore, calling a stubified function results in an error with an informa-
tive error message about which non-verifiable function was called. In the
VST specifications, we would give stub error a precondition of false – this
would ensure that if any verifiable function calls a stubbed-out function
on a code path not ruled out by the function’s preconditions, the verifica-
tion will fail. In other words, these functions will provably correspond to
the functions that are not actually run from within the verifiable subset.

5 Verifying Actively-Developed Libraries

PETSc, like any large-scale software library, is actively developed and
changes frequently. Formal verification is difficult and time-consuming,
particularly when we are interested in full functional correctness. Accord-
ingly, it is very difficult to keep proofs up-to-date with changing code. We
do not directly address that problem here, although we speculate that the
lower-level parts of PETSc, comprising foundational data structure and
algorithms that the rest of the library builds on, should not change very
often.

Instead, we consider two simpler problems: how can we keep our ver-
ifiable subset up to date with the library, and how can we detect changes
in the verifiable subset? The stubify tool is extremely helpful for both of
these purposes.

5.1 Keeping the Verifiable Subset Up-to-Date

To address the first issue, we build up a small framework for using our
Stubify tool on PETSc.3 In particular, we mirror the directory structure
of the subset of PETSc we are interested in; for each corresponding C

3The scripts and files mentioned in this section can be found at https://github.com/

joscoh/petsc/tree/main/verified. Subsequent footnotes in this section contain files relative
to this repository. The repository includes a README explaining how to run the relevant
scripts.
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file, we include the list of functions in the verifiable subset.4 This ap-
proach makes it clear exactly what files and functions are included in the
verifiable subset, and allows us to deal with static functions from header
files. Some C files have associated function lists which are empty; this
means that (some of) the functions are needed for compilation but none
are actually verified, so all should be stubified. Other files do not have
any function list; we can ignore these files when compiling the verifiable
subset since no verified code uses them. Otherwise, we proceed with the
Stubify tool, keeping the listed functions and stubifying the others. This
process is entirely automated, with several scripts, so that generating the
preprocessed, stubified C files and compiling (with CompCert) requires
only a single command.5

5.2 Compiling the Verifiable Subset

With this, we can compile our Jacobi program (Appendix A) with Comp-
Cert against this PETSc subset. We do require a few very minor changes
to allow CompCert to compile this (PETSc supports gcc and clang):

1. We provide a configuration flag PETSC VERIFIED and, if enabled,
ensure that the other configuration flags are set appropriately (for
example, to disable logging, disable some use of builtin functions
that CompCert cannot handle, and so on). This does not change
the code run, only the specific (valid) PETSc configuration used.

2. There are 3 included header files that CompCert cannot compile – 2
from Valgrind and quadmath.h. The #include directives are already
conditional; we add the additional condition that PETSC VERIFIED
is not defined. None of these files contain code that is run in the
verifiable subset.

3. We refactor one function for convenience; the function first tests if
the input is null, and if not, calls many other functions. In our case,
the value will always be null; instead of including the roughly 25 ad-
ditional (stubified) dependencies from this function, we refactor it to
put the post-null-return code in a separate, now-stubified function.
Again, this does not change the code run.

4. The final change is more interesting; it is due to the following macro,
which is used in a sizeof:

#define PetscSafePointerPlusOffset(ptr, offset) ((ptr) ? (ptr) + (offset) : NULL)

PETSc relies on behavior of gcc and clang that violates the C stan-
dard: defining sizeof(void) to be 1. CompCert rejects this as un-
defined behavior, and we replace this (when PETSC VERIFIED is
defined) with the macro:

#define PetscSafePointerPlusOffset(ptr, offset) ((ptr) + (offset))

4verified/src
5Such commands are automated by our Makefile, which calls cpp stub.h, a wrapper around

stubify which creates the stubified files based on the provided function lists.
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This is not ideal, as we are changing the code that is executed.
However, in any verification effort, we would prove that the input
pointer exists; thus the first case is always hit and so these two are
equivalent – when the verifiable subset is used as specified.

In total, these changes comprise 29 insertions and 18 deletions compared
to the main PETSc branch, with #3 above excluded, there are 8 additions
and 4 deletions. In principle, if these changes were added to PETSc via a
pull request, the entire generation and compilation of the verifiable subset
would be completely automatic.

We also note that the verifiable subset can change after commits; for
example due to refactoring. This requires changes to the lists of non-
stubified functions. However, there is an easy way to identify such func-
tions: run the Jacobi program. If any newly created functions are exe-
cuted, our stub error call will alert us. As one data point, we note that
pulling about 8 months of commits (about 2000 commits) from PETSc, re-
running the scripts, and adding refactored functions so that the program
still compiled required about a half hour.

5.3 Monitoring the Verifiable Subset: Continu-
ous Integration

In practice, libraries like PETSc are continually developed, and the major-
ity of such developers are likely completely unconcerned with verification.
The tools, scripts, and workflows we have presented produce the verifiable
subset of PETSc largely automatically, and thus can be run each time the
code changes (say, at each commit). However, such commits may alter
the subset, and we would like a way to detect this. To that end, we have
written a script using Bash and Python which compares the generated
stubified files between the current directory and the last git commit and
determines if these files have changed.6 We do not consider changes in
whitespace, and some care must be taken to ignore irrelevant debug in-
formation (e.g. the directory in which the program is stored). However,
this script successfully returns a zero error code if and only if the two
verifiable subsets are identical (and otherwise, prints the file names that
differ). With this information, the mantainers of the library could inte-
grate this into continuous integration and could determine what action to
take in case of changes to the verifiable subset.

6 Related Work

Verification of Real-World Software As discussed in §2.1, most
proof-assistant-verified software is built from the ground up for verification
purposes, and only rarely is existing, real-world software verified. Real-
world verified software includes 2 functions from OpenSSL: the SHA-256
cryptographic hash function [1], and HMAC message authentication [5].
Additionally, Cohen, et. al. verify a real-world packet error correction
system [9]. Beyond C programs, Breitner et. al. apply the hs-to-coq tool

6diff.sh and compare.py
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to verify parts of Haskell’s containers library in Coq [7]; they produce a
verified (though unmaintained) subset of this library.7

Beyond these efforts, many verification projects that are writing new
code, rather than verifying existing code, nevertheless deal with real sys-
tems and standards. These include the CompCert verified compiler for C
[22], the sel4 verified operating system kernel [19], the CertiKOS concur-
rent operating system kernel [14], the GoJournal verified file system [8],
a verified POSIX shell [13], and verified cryptography in EverCrypt [24]
and Fiat [11], which both generate correct-by-construction C code from
F* and Coq specifications, respectively. Fiat in particular has become
real-world code, as it is included in Chrome.

Reasoning about Proof Changes Real-world software libraries
are continually evolving, but there has been little work on dealing with
these issues in the context of verification. SymDiff [15] is a tool for com-
paring two versions of a program to prove properties such as relative
termination; it operates not at the source level but at the level of the
Boogie [4] intermediate language. Regression Verification [12] attempts a
similar task but broadens to full functional correctness; it uses CBMC,
the C Bounded Model Checker, which is much less powerful and scalable
but more automated than a tool like Coq/VST.

There is more recent work in the area of proof repair, which develops
techniques for automatically adapting proofs to changing programs. Such
work includes PUMPKIN PATCH [26], which searches for patches to Coq
scripts automatically based on the history of changes. This was extended
to deal with transformations across general type equivalences [25] and a
focus on integrating this into real Coq workflows.

7 Conclusion

In this work, we examine the issues present in verifying a large, mathe-
matically sophisticated, evolving, real-world software library, taking the
PETSc numerical linear algebra library as a case study. We examine the
features of such libraries that make them more and less amenable to veri-
fication, propose methods to identify minimal dependency subsets in such
libraries, examine the problem of keeping such subsets up-to-date, and
incorporate these analyses into a small set of tools to enable verification
of the smallest amount of code possible while allowing a client to link
against the verified code with no additional effort.

One key aspect to making verification of such large-scale libraries fea-
sible is the use of automated tools. Since we need to deal with sophis-
ticated mathematics, we need the power of a proof assistant; however,
the main PETSc system, comprising the vast majority of the code in the
verifiable subset, could in principle be verified with an automated or semi-
automated solver such as VeriFast [17], leaving only the mathematically
interesting parts to VST and Coq. Further work is needed to study how

7https://hackage.haskell.org/package/containers-verified
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to combine such tools in a sound and principled way that do not sig-
nificantly compromise the guarantees that the VST-CompCert pipeline
provide. Nevertheless, we hope that verification of real-world libraries at
scale can become a future reality, and we believe that the issues we have
considered will be crucial to making such efforts viable.
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A PETSc Code for Jacobi Iteration

This program is a slight modification to ex1.c in PETSc’s KSP examples.

#include <petscksp.h>
int main(int argc, char ∗∗args)
{
Vec x, b, u; /∗ approx solution, RHS, exact solution ∗/
Mat A; /∗ linear system matrix ∗/
KSP ksp; /∗ linear solver context ∗/
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PC pc; /∗ preconditioner context ∗/
PetscReal norm; /∗ norm of solution error ∗/
PetscInt i, n = 5, its;
PetscMPIInt size;
//Values in each row of matrix
PetscScalar value[5][3] = {{1, 0.25, 0.25}, {1, 0.5, 0.125}, {0.5, 1, 0.25}, {0.25, 1, 0.5}, {0.125, 0.5, 1}};
//Columns filled in each row
PetscInt col[5][3] = {{0, 1, 2}, {1, 3, 4}, {0, 2, 4}, {1, 3, 4}, {2, 3, 4}};

// Initialize PETSc library
PetscFunctionBeginUser;
PetscCall(PetscInitialize(&argc, &args, (char ∗)0, help));

// Create and initialize x, b, u as vectors of size n
PetscCall(VecCreate(PETSC COMM SELF, &x));
PetscCall(VecSetSizes(x, PETSC DECIDE, n));
PetscCall(VecSetType(x, VECSEQ));
PetscCall(VecDuplicate(x, &b));
PetscCall(VecDuplicate(x, &u));

// Create matrix A in compressed sparse row format and populate values
PetscCall(MatCreateSeqAIJ(PETSC COMM SELF, n, n, 3, NULL, &A));
for(i = 0; i < n; i++) {
PetscCall(MatSetValues(A, 1, &i, 3, col[i], value[i], INSERT VALUES));

}
PetscCall(MatAssemblyBegin(A, MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd(A, MAT FINAL ASSEMBLY));

// Create the linear system Ax = b, with expected solution x = (1,1,1,1,1)
PetscCall(VecSet(u, 1.0));
PetscCall(MatMult(A, u, b));

// Create a Richardon iteration solver with Jacobi preconditioner
PetscCall(KSPCreate(PETSC COMM SELF, &ksp));
PetscCall(KSPSetType(ksp, KSPRICHARDSON));
PetscCall(KSPSetOperators(ksp, A, A));
PetscCall(KSPGetPC(ksp, &pc));
PetscCall(PCSetType(pc, PCJACOBI));
PetscCall(KSPSetTolerances(ksp, 1.e−5, PETSC DEFAULT, PETSC DEFAULT, PETSC DEFAULT));

// Solve the system and check the result
PetscCall(KSPSolve(ksp, b, x));
PetscCall(VecAXPY(x, −1.0, u));
PetscCall(VecNorm(x, NORM 2, &norm));
PetscCall(KSPGetIterationNumber(ksp, &its));

printf(”Norm of error %g, Iterations %” PetscInt FMT ”\n”, (double)norm, its);

// Destroy the created solver, vectors, and matrix
PetscCall(KSPDestroy(&ksp));
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PetscCall(VecDestroy(&x));
PetscCall(VecDestroy(&u));
PetscCall(VecDestroy(&b));
PetscCall(MatDestroy(&A));

// Destroy all library data structures and exit
PetscCall(PetscFinalize());
return 0;

}
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