
Implementing OCaml APIs in Coq
Joshua M. Cohen

jmc16@princeton.edu
Princeton University

Abstract
Extraction is a good way to produce verified programs; the

extracted code can be linked with hand-written OCaml to

produce an executable. But this is not sufficient to implement

(stateful, exception-throwing) OCaml APIs, whose types and

behavior must be preserved exactly for client compatibility.

We propose a lightweight design pattern for implementing

such functions by carefully modifying extraction to provide

support for features such as exceptions and mutable state.

The resulting programs are executable both within Coq and

in OCaml, exactly matching the expected OCaml interface.

We provide a small library to enable programming with this

pattern and demonstrate on 3 examples: a subset of OCaml’s

List library, a mutable counter, and a stateful term API that

generates unique variable names for 𝛼-conversion and safe

substitution.

1 Introduction
Coq’s extraction mechanism, which translates Gallina to

OCaml or Haskell, has been crucial in developing usable ver-

ified programs including CompCert [5], the FSCQ file system

[4], and the CertiCoq compiler [2]. Such programs typically

link the extracted code with additional hand-written code to

enable interaction with the outside world (e.g. a command

line interface, or file I/O).

However, most real-world programs are built atop APIs

of existing libraries, and often provide their own APIs for

clients. Even many executable OCaml programs follow this

approach, including formal methods tools like Coq itself,
1

the Why3 deductive verification framework,
2
the Frama-C C

verifiation toolchain,
3
and the Alt-Ergo SMT solver.

4
These

tools are built atop more basic standard libraries (e.g. Stdlib,

Batteries, and Jane Street’s Core). Being able to implement

such APIs in Coq enables incremental verification – one could
replace some API functions with proved-correct versions and

the client would get the benefit of verification for free.

But such APIs cannot in general be implemented in Coq.

For example, the hd function in OCaml’s List library throws

an exception if the list is empty:

val hd : ' a l i s t −> ' a
l e t hd = function
[] → f a i l w i t h " hd "
| a : : _ → a

1
https://coq.inria.fr/doc/master/api/

2
https://www.why3.org/api/

3
https://frama-c.com/api/

4
https://ocamlpro.github.io/alt-ergo/latest/API/index.html

Clients may rely on this behavior, but it is impossible to write

an axiom-free function with this type in Coq. Exceptions

are not the only incompatibility; other OCaml features that

are difficult or impossible to write in Coq include mutable

state, efficient machine-length integers, I/O, nontermination,

and private types. Here, we focus on exceptions, state, and

ints, proving an axiom-free library of functions to enable

such implementations in Coq. The main idea is to modify
the extraction to represent features differently in Coq and

OCaml; this increases the trusted code base, but results in

computable and idiomatic code on both sides.

2 A Library for Implementing APIs
2.1 Error Handling
We demonstrate our approach for exceptions, aiming to im-

plement the above hd example. In Coq, we represent excep-

tions using the error monad from the coq-ext-lib library.

First, we define a type of exceptions; like in OCaml, we can

create new instances on the fly:

Record e r r t y p e : Type : = { errname : s t r i n g ;
e r r a r g s : Type ; e r r d a t a : e r r a r g s } .

Defini t ion mk_err type name {A } (x : A) : =
{ | errname : = name ; e r r a r g s : = A ;

e r r d a t a : = x | } .
Defini t ion F a i l u r e (msg : s t r i n g) : e r r t y p e

: = mk_err type " F a i l u r e " msg .

The error monad is just a sum type of either the result or the

error; we use the monad functions (return, bind, etc) from

coq-ext-lib:

Defini t ion errorM A : Type : =
Datatypes . sum e r r t y p e A .

Defini t ion e r r _ r e t { A } (x : A) : errorM A : =
r e t x .

Defini t ion e r r_bnd {A B } (f : A→ errorM B)
(x : errorM A) : errorM B : = b ind x f .

Defini t ion throw : ∀ { A } (e : e r r t y p e) ,
errorM A : = fun A e ⇒ r a i s e e .

When extracting, errtype becomes exn, errorM A becomes

just A, and monad functions are extracted accordingly (ret
becomes the identity, bind becomes function application, and

throw becomes raise):

E x t r a c t Constant errorM " ' a " ⇒ " ' a " .
E x t r a c t Inductive e r r t y p e ⇒ exn [" "] .
E x t r a c t I n l i n e d Constant e r r _ r e t ⇒

" (fun x → x) " .
E x t r a c t I n l i n e d Constant e r r_bnd ⇒ " (@@) " .
E x t r a c t I n l i n e d Constant throw ⇒ " r a i s e " .
E x t r a c t I n l i n e d Constant F a i l u r e ⇒ " F a i l u r e "

.

https://orcid.org/0000-0002-9555-8781
https://coq.inria.fr/doc/master/api/
https://www.why3.org/api/
https://frama-c.com/api/
https://ocamlpro.github.io/alt-ergo/latest/API/index.html

Joshua M. Cohen

Then we can write a function in Coq in this error monad. As

long as we use the above functions (err_ret , throw, etc), the
resulting OCaml code is exactly what we expect:

Defini t ion hd {A : Type } (l : l i s t A) :
errorM A : = (∗ Coq ∗)

match l with
| n i l ⇒ throw (F a i l u r e " hd ")
| x : : _ ⇒ e r r _ r e t x
end .
l e t hd = function (∗OCaml ∗)
| [] → r a i s e (F a i l u r e " hd ")
| x : : _ → x

Furthermore, we can reason about hd in Coq as usual and

compute with it via Coq’s compute mechanisms.

2.2 Integers and Mutable State
To implement efficient integers and mutable state, we follow

the same basic approach: providing different implementa-

tions in Coq and OCaml and carefully relating them during

extraction. We provide two flavors of integers: 31-bit inte-

gers, which we implement in Coq using CompCert’s Integers
library and in OCaml by int , and unbounded integers, which
we implement in Coq as Z and in OCaml using the efficient

Zarith library. The latter is easier to work with in proofs, but

many existing OCaml APIs (e.g. List . length) use the former.

For mutable state, we use coq-ext-lib’s state monad in Coq,

which we encapsulate in a generic State module. In OCaml,

we implement this with a mutable reference. However, the

behavior differs: in Coq we can run a state from any initial

state, but with a mutable reference, the initial state is fixed.

Naive translation is unsound: for example, given function

incr that increments a counter and returns the new value,

runState incr 0 = runState incr 0 in Coq but not in OCaml.

To avoid this, we parameterize the State module by an initial

value and only permit the user to run the state starting from

this value; whenever runState is called, the state is also reset

to this initial value in both Coq and OCaml. This models the

behavior of Coq: each time we force the state to evaluate,

the history is cleared and the state resets.

3 Examples
We first demonstrate our methods by implementing both a

mutable counter and several OCaml List library functions us-
ing exceptions and integers. In each case, we program against

an idiomatic .mli interface. We prove several theorems about

the List functions and write small Coq and OCaml client

programs calling each API.

As a more interesting case study, we implement a task

particularly difficult to implement efficiently in a pure lan-

guage: generating globally unique names. We give a small

API for terms with integer-valued variables based on the

design of the Why3 [3] term API
5
and define a semantics

under a given variable context. The (simplified) API is:

5
https://www.why3.org/api/Term.html

type va r
type tm_bound
type tm = p r i v a t e . . . | Tvar of va r

| T l e t of tm ∗ tm_bound
val c r e a t e _ v a r : s t r i n g → va r
val t_open_bound : tm_bound → (va r ∗ tm)
val t _ c l o s e_bound : va r → tm → tm_bound
val sub_t : va r → tm → tm → tm

OurAPI implements variable binding asWhy3 does: bindings

and variables are abstract to clients, and the only ways to

create variables are via create_var and t_open_bound, which
use a global counter to assign each newly created variable

a fresh tag. When substituting, t_open_bound creates fresh

bindings to avoid capture.
6
We implement this in Coq via our

State module; the type of create_var is state Z var. To reason
about our substitution function, we implement a version of

the Hoare State Monad [8], equipping our state with pre-

and post-conditions. This allows us to prove the correctness

of substitution against our semantics.

Finally, we again give client programs: in OCaml, we write

a function to eliminate let bindings, while in Coq we prove

that a single let-elimination is correct; in both cases we

demonstrate on concrete examples.

4 Limitations and Related Work
We take a pragmatic, lightweight approach to combining

monads with imperative programs. In contrast, Ynot [6] pro-

vides a heavy-duty framework for imperative programming

in Coq, axiomatizing the stateful operations. Similarly, Abra-

hamsson et. al. produce proved-correct imperative CakeML

programs from monadic HOL code [1].

Our design pattern is simple and lightweight; this intro-

duces several limitations:

• Wemust trust themodified extraction directives (though

we do not add any axioms to Coq’s logic).

• It is difficult to control opacity in Coq; we cannot

ensure that user calls only functions from the monadic

interface.
7
The situation would be improved if Coq

had a .mli-like-construct [7].

• The resulting OCaml code satisfies the desired API

but often has incorrect imports, so we post-process

the resulting files with dune.

Nevertheless, this method is effective for producing pro-

grams that can be executed in Coq and OCaml, used by

clients in both Coq and OCaml, and reasoned about in Coq.

Our code is available at github.com/joscoh/coq-ocaml-api.

6
To prove the termination of functions recursing on t_open_bound, we
need a dependently typed version of bind for state that remembers the

argument the continuation is applied to.

7
For example, a user could execute the underlying state monad, violat-

ing our runState properties. To warn against this, we name the internal

function st_run_UNSAFE.

https://www.why3.org/api/Term.html
https://github.com/joscoh/coq-ocaml-api

Implementing OCaml APIs in Coq

References
[1] Abrahamsson, O., Ho, S., Kanabar, H., Kumar, R., Myreen, M. O.,

Norrish, M., and Tan, Y. K. Proof-Producing Synthesis of CakeML

from Monadic HOL Functions. Journal of Automated Reasoning 64, 7
(Oct. 2020), 1287–1306.

[2] Anand, A., Appel, A. W., Morrisett, G., Paraskevopoulou, Z., Pol-

lack, R., Belanger, O. S., Sozeau, M., and Weaver, M. CertiCoq:

A Verified Compiler for Coq. In CoqPL’17: The Third International
Workshop on Coq for Programming Languages (Paris, France, Jan. 2017).

[3] Bobot, F., Filliâtre, J.-C., Marché, C., and Paskevich, A. Why3:

Shepherd Your Herd of Provers. p. 53.

[4] Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M. F., and

Zeldovich, N. Using Crash Hoare logic for certifying the FSCQ file

system. In Proceedings of the 25th Symposium on Operating Systems

Principles (New York, NY, USA, Oct. 2015), SOSP ’15, Association for

Computing Machinery, pp. 18–37.

[5] Leroy, X. Formal verification of a realistic compiler. Commun. ACM
52, 7 (July 2009), 107–115.

[6] Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., and

Birkedal, L. Ynot: dependent types for imperative programs. In Pro-
ceedings of the 13th ACM SIGPLAN international conference on Functional
programming (New York, NY, USA, Sept. 2008), ICFP ’08, Association

for Computing Machinery, pp. 229–240.

[7] Swasey, D., Giarrusso, P. G., andMalecha, G. ACase for Lightweight

Interfaces in Coq. In CoqPL’22: The Eighth International Workshop on
Coq for Programming Languages (Philadelphia, US, Jan. 2022).

[8] Swierstra, W. A Hoare Logic for the State Monad. In Theorem Proving
in Higher Order Logics (Berlin, Heidelberg, 2009), S. Berghofer, T. Nip-
kow, C. Urban, and M. Wenzel, Eds., Springer, pp. 440–451.

	Abstract
	1 Introduction
	2 A Library for Implementing APIs
	2.1 Error Handling
	2.2 Integers and Mutable State

	3 Examples
	4 Limitations and Related Work
	References

