DDPM
이 포스트는 DDPM을 설명한 글입니다. VAE를 먼저 읽으시면 이해가 더 잘 됩니다. :) 복습 VAE를 다음과 같이 표현할 수 있다. Latent Vector인 \(x_T\)에서 synthetic image인 \(x_0\)를 sampling하는 과정이며, 여기서 \(p,q\)를 training을 통해서 구하는 것이다. VAE to DDPM Size 그럼 일단 첫 번째로 Latent vector \(x_T\in \mathbb{R}^{H\times W\times 3}\)가 synthetic image와 동일한 크기라고 가정을 하자. Hierarchical VAE 그 다음으로 VAE가 여러 스탭으로 진행된다고 생각해보자. ELBO 아직 Diffusion의 D자도 들어가지는 않았지만, hierarchical VAE로 만들기만 하면 논문에 나온 공식을 계산 할 수 있다....