
Campus Cyberinfrastructure (CC*)

Institution(s): Princeton University PI(s): J. Brassil/J. Rexford PO: D. Medhi

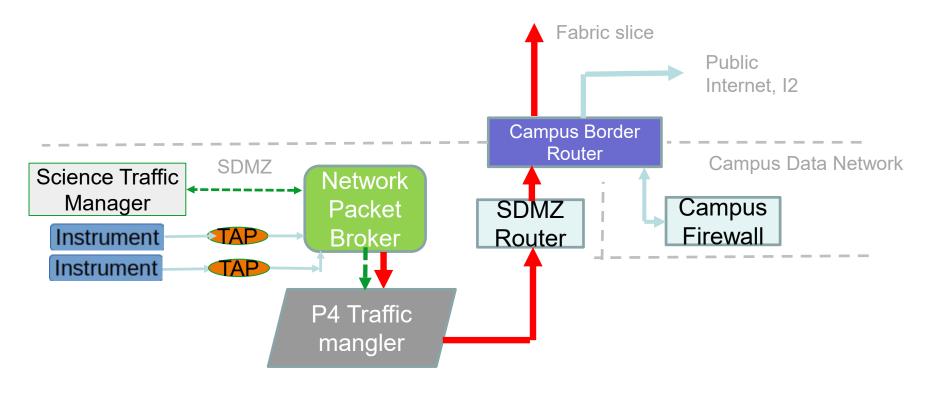
- Create a decentralized, system-wide traffic generation service for experimenters
 - Deploy prototype on Cornell-Princeton network testbed over NYSERnet
 - Primarily an end system service; FABRIC must permit on-demand injection of traffic into slice
- Critical gap addressed is realistic foreground/background network traffic for experimenters
- *Transformative* because it treats traffic as a first tier system service; all connected institutions offload traffic generation burden from experimenter
- Objective: Build a working scalable prototype edge system

Workplan

- Short-term plans: Equipment acquisition, deployment and testing on Princeton campus
- *Long-term plans*: Deploy two campus prototype
- What are the experimental data and *artifact sharing* methodology you plan to follow? SW & system template GitHub
- *Risks* and plans to mitigate them: Cornell-Princeton initial pilot (start now)
 - Convincing data traffic owners to permit mirroring their traffic
 - Convincing other campuses to participate in traffic sourcing
 - Maintaining traffic stream integrity over WAN

Task Area	Year 1 (10/1/20))	Year 2 (10/1/21)			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Element 1 – Hardware	D	1		1	S	12		
Element 2 – Open Source SW			D	I, REU	S		Р	S,G
Element 3 – Software Dev.		D	I	L	S	12	F	3,6
Element 4- Policy/Security	D	D	I			Р		
Broader Imacts			0	REU			0	0

D: Design	REU
O: Outreach/evangelization	G: Github
I: Implementation (NPI Testbed)	P:Playbook &
12: Implementation (FABRIC prep & port)	Experimenter
S: Demonstration	Guides


Evaluation plan

- Key Milestones
 - Local use by P4campus project experimenters
 - First mirrored flow over WAN
 - STAAS node build kit system template, hw, sw instructions
- Key midterm/final exam work with representative experimenter(s) to evaluate service value add, ease-of-use, etc

Task Area	Metric	Value
Element 1 – Hardware	STAAS target FABRIC/hank site min. entry cost Equipment Identification & acquisition completed Min. WAN simultaneous tapped flows (tunneled)	\$20,000.00 April, 2021 5
Element 2 – Open Source SW	Traffic Generation max. bit rate (local area) Traffic Generation max. bit rate (NYSERnet) WAN traffic integrity characterization completed	100Gbps 10 Gpbs October, 2021
Element 3 – Software Dev.	P4 traffic mangler initial app prototype Min. WAN simultaneous tapped flows (mangled) Target packet drop rate/flow (10 Gbps)	June, 2021 2 (Oct. 2021), 4 (Oct. 2022) 0.01%
Element 4- Policy/Security	FABRIC consultation meetings Participating Scientific instrument flows (PU) Participating DTNs (Cornell, Princeton)	4 (Month 6, 12, 18, 24) 4 (2/year) 2

Requirements

- FABRIC hardware and software needs
 - Coordination of FABRIC & STAAS management planes; attachment of STAAS egress to FABRIC slice
- What level of support will you require from FABRIC developers?
 - Y1- none; Y2 minimal;
- Do you have any suggestions to FABRIC developers?
 - Participating campus costs lower if STAAS components can be offloaded to HANK equipment

