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Abstract—To continue innovating in an age of at-scale com-
puter systems research, the academic computing and networking
systems research community must explore new approaches to
addressing growing researcher demands to support larger size
experiments. CloudJoin explores a transformational approach to
scaling out successful Computing Research Infrastructures (CRI)
into larger testbeds by creating hybrid cloud computing systems.
We describe how to create a seamless, scalable, single experiment
testbed that spans CloudLab and the Google Cloud Platform
(GCP), while requiring no infrastructure changes. In addition to
added elastic computing capacity, CloudJoin experiments benefit
from easy access specialized hardware and cloud services and
APIs to leverage world class data analytics and experimental
infrastructure monitoring. In this work-in-progress, we show how
to integrate the infrastructures by creating a Virtual Private
Network between a CloudLab experiment and a GCP Virtual
Private Cloud (VPC). To simplify understanding of large-scale
experiment behavior, problem diagnosing and debugging, we also
demonstrate how to use scalable, single dashboard cloud moni-
toring and logging tools across the hybrid testbed infrastructure.1

Index Terms—experimental testbeds, hybrid cloud computing,
CloudLab, GCP

I. INTRODUCTION

Advances in large-scale data center computing and network-
ing has accelerated innovation across computer science during
the past decade or longer. To support continued advances,
operators of Computing Research Infrastructures (CRI) such
as Chameleon Cloud [1] and JetStream [2] have been pressed
with demands to support larger size experiments and di-
verse hardware components such as GPUs and programmable
switches.

While public compute cloud platforms have grown expo-
nentially in size, research infrastructures have grown modestly.
All but a few academic researchers with privileged access to
commercial platforms can’t experiment with comparable scale
research infrastructures. Systems researchers are increasingly
suffering a computing research infrastructure scale gap. Unfor-
tunately, this gap seems likely to grow over time, threatening to
further inhibit academic researchers from innovating in large-
scale computing systems research.

1This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1923692

CloudJoin seeks to develop a long-term, sustainable ap-
proach to shrink the scaling gap. We examine innovative
ways to design and deploy CRIs that mirror approaches used
in hybrid clouds. Using CloudLab [3] as a base system,
CloudJoin creates a new hybrid, elastic research infrastructure
by uniting CloudLab with GCP. We are developing methods,
tools, and best practices for deeply integrating these systems
across the data, control and management planes. CloudJoin
seeks to scale experiments at low cost while striving to main-
tain experiment isolation and reproducibility, and preserving a
rendezvous point and an intellectual ‘home’ infrastructure for
experimenters.

This paper focuses on 2 questions that arise in creating a
hybrid cloud to support large-scale experimentation. First, how
should a CRI operator or individual experimenter architect
and implement her infrastructure’s connectivity to a public
cloud? A key contribution of this paper is to help both
CRI developers and experimenters understand the choices and
tradeoffs associated with constructing an experiment that spans
both a public cloud and a research testbed. The second focus
recognizes that CRIs often provide few powerful tools to help
researchers understand and debug experiment behavior. The
question we address is how to improve a user’s understanding
of a deployed experiment, which is potentially much more
challenging in a hybrid setting. Our second key contribution
is to demonstrate that experiment operation and behavior
can be better understood by embracing professional quality,
multi-cloud management platforms equipped with monitoring,
logging, alerting, error reporting and profiling capabilities.
Finally, we make all the software to perform these functions
available as open source on GitHub and on the CloudLab
system.

II. CREATING LARGE SCALE EXPERIMENTAL
INFRASTRUCTURES

CloudJoin seeks to permit experimenters to scale inves-
tigations at low cost while preserving and nurturing an in-
tellectual community. CloudJoin also permits CRI operators
to 1) preserve legacy CRI capital investments, 2) maintain
operational control of infrastructures, and 3) retain institutional
control of critical infrastructure metadata. Finally, CloudJoin
helps sustain community infrastructure while nurturing an



environment that facilitates both research collaborations and
experiment reproducibility.

A hybrid cloud approach has many potential advantages,
including:

1) scale-out – A hybrid environment experiment permits
on-demand resource acquisition at run-time. If a Cloud-
Lab experiment needs hundreds of VM instances that are
not locally available, the experiment will be seamlessly
extended to the cloud where these instances will be
created.

2) low cost – The need for computing resources changes
over the duration of a typical experiment lifecycle. A
hybrid environment permits experiments to be developed
and tested using CloudLab, minimizing use of pay-for-
use cloud resources until required.

3) specialty computing resources – Systems researchers
occasionally seek to evaluate less common hardware
or software technologies without making a large initial
capital or time investment. CloudJoin can provide on-
demand access to nodes with Google TPUs [4]) or
other specialty processors [5]. Software resources such
as Database or Machine Learning stacks can also be
selectively deployed.

4) coordinated control and workflow management – Sys-
tems researchers using both CloudLab and public cloud
tend to do so in a awkward, unintegrated fashion [6].
A possible explanation for this behavior is the lack of
integrated tools, with few exceptions such as the Google
Collaboratory [7]. Hybrid solutions enable integrated
management and control of an experiment spanning the
environments.

5) location flexibility – CRI experimenters have limited
control of where an experiment runs. But placement of
data and compute is of growing importance, for example,
in CyberPhysical systems experiments that are envi-
sioned to operate in an ‘edge computing’ environment.
Hybrid systems exploit cloud computing’s international
footprint to allow an experimenter to place computation
relatively flexibly around the globe.

6) reproducibility/knowledge sharing – In contrast to com-
mercial clouds, CRIs support effective multi-institution
collaboration by emphasizing easy sharing of profiles,
data, and knowledge. CloudJoin can provide a ”shared
home base” in a CRI to help researchers more easily
form communities, supporting sharing of knowledge and
aiding the reproducibility of experiments.

While a hybrid cloud approach potentially offers compelling
technical benefits, it does introduce certain disadvantages and
complexities for experimenters. For example, many research
community members have limited experience using commer-
cial cloud systems for experimentation. Some academic users
report challenges associated with procuring cloud services
under existing university and grant funding rules. Fortunately
a number of these issues are currently being explored and

remedied by the community [6].

A. Alternative approaches for Scalability

We acknowledge that experimenters can and do have plat-
form options for large-scale experimentation outside of hybrid
clouds. Public-private partnership initiatives [8], [9] support
academic-industry exchange, increased access to industry-
based experimental facilities, and opportunities to construct
large infrastructures. CRI operators have also responded to
demands to serve larger size experiments with both infras-
tructure growth and innovations in resource reservations and
scheduling to share limited resources between experimenters.
At the same time large commercial entities such as FaceBook,
Apple, Amazon, Netflix, and Google have developed private,
hyper-scale infrastructures that have served as both proprietary
production service platforms and novel research instruments.
The growth of commercial cloud resources is accelerating. We
note that Google alone has recently made annual investments
in data center capital equipment of roughly US $20B [10].

Academic systems research groups have responded to this
scale gap with a collection of ad hoc strategies and tactics,
including:

1) selecting research problems that can be studied at rela-
tively modest scale;

2) collaborating with commercial entities to access their
large proprietary infrastructures [11]; and

3) shifting research investigations and workloads entirely
to commercial compute cloud platforms [12].

Research infrastructure federation also represents a path to
supporting large experiments [13], [14]. A federated infras-
tructure is a collection of research computing or networking
providers with agreed standards of interoperability to permit
shared goals such as resource sharing, access control, or
common user experience. While scaling experiments through
federation can be achieved – Open Science Grid [15] is an
exemplar – the technical complexities and policy constraints
have made federation a challenging approach to experiment
scaling.

III. HYBRID CLOUD TESTBED DESIGN TRADEOFFS

Hybrid experimental architectures can be architected in
different ways. For example, a CRI can integrate with public
cloud infrastructure at 1) an infrastructure-wide level, such as
by a direct network connection of the entire CRI to cloud; and
2) an individual experiment level, as when adding cloud-based
xPU nodes on demand to a single experiment at its runtime.
The former type of integration benefits all experimenters,
while the latter provides experiment-local benefits. In this
paper we restrict our scope to experiment-local solutions, as
they can help begin exploring hybrid systems while making
no change to existing CRI platforms.

Deciding among feasible and cost-effective networking ap-
proaches is complicated – among the considerations that come
into play are:



1) the need to offer networking quality-of-service guaran-
tees (bandwidth, latency, connection setup time, etc) to
experimenters;

2) cloud ingress/egress and inter-datacenter data transfer
costs;

3) the fraction of experimenters requiring CloudJoin ser-
vices; and

4) the required experiment isolation between CRI users.
Network connectivity can be established at an infrastructure-

or experiment-level. Infrastructure-level options are CRI-
specific; for instance, options depend on whether the CRI host
institution can provide network peering to the chosen cloud
provider. A host institution able to meet the cloud provider’s
peering requirements could consider either direct or carrier
peering.

Experiment-level connectivity is generally simpler and ap-
propriate for CRI supporting connectivity for fewer, less
demanding experiments. A Virtual Private Network (VPN)
based on IPsec tunnels over the public internet might be
adequate to initially explore CRI-cloud connectivity. A par-
ticular advantage of this approach is that VPNs can be dy-
namically constructed on-demand within an experiment, where
infrastructure-level approaches require longer setup times.
Though VPNs generally support lower bandwidth connectivity,
they can represent a step in a CRI’s evolution toward higher
performance networking solutions.

Maintaining experiment isolation is another consideration
when evaluating connectivity. Services such as Virtual Private
Cloud (VPC) can allow experiments (or groups of experi-
ments) to share a single network connection to the cloud,
including to resources in different geographic regions. This
approach can offer groups of CRI users additional forms of
experiment protection over more narrowly focused segregation
techniques such as VLAN-based isolation.

IV. CONSTRUCTING YOUR CLOUDJOIN EXPERIMENT

A CloudJoin experiment data plane spans CloudLab and
GCP; simply using Google services and APIs from a CloudLab
compute node is a corner case of considerable value but
not considered here. A spanning infrastructure requires the
experimenter to be a 1) owner or member of a CloudLab
project, and 2) an authorized owner or user of a GCP account.
A crucial decision by the experimenter – to be discussed
in Sect. IV-A is to decide what experiment infrastructure
resources should be instantiated on which ”side”. The order
of instantiation of the different sides is irrelevant, though
coordination is required for seamless communications. GCP
resources can be started and stopped at fine grain quickly,
so it is preferable to keep the GCP side – or at least those
difficult-to-reconfigure components incurring costs – reserved
but stopped when not in use.

An experiment Manager is used to bootstrap a CloudJoin
experiment. The manager function connects to the GCP con-
sole or CloudLab portal to initiate an experiment. The manager
can initially be located on the experimenter’s desktop, and
migrate if desired to a host within the CloudJoin experiment.

It is helpful to have programmatic control (e.g., google-cloud-
sdk, geni-lib) capabilities installed on the manager machine.
Authorization and authentication are manager functions.

The GCP side comprises 1) experiment resources (e.g.,
instances, Cloud storage); 2) a Virtual Private Cloud (VPC);
and 3) a Cloud Virtual Private Network (VPN) gateway with
encrypted tunnel connected to a peer CloudLab VPN gateway.
Additional cloud capabilities can be optionally added, or cloud
service APIs invoked, as needed by the experiment.

Experiment infrastructure resources are instantiated as
needed by the experiment. Each compute instance has a NIC
with public IP address primarily used for control traffic, a
second NIC with an address on the VPC zone’s subnet (i.e.,
the experiment dataplane), and perhaps one additional NIC
on a local private (zone) subnet for purposes such as local
coordination or control traffic.

A VPC establishes a seamless interconnected private net-
work connecting cloud resources on subnets spanning cloud
provider regions or zones (even globally); routing is automat-
ically handled by a virtual cloud router. GCP side resources
can be restarted at experiment runtime.

Cloud VPN gateways instantiate one or more tunnels to
CloudLab. The experiment’s CloudLab data plane subnet
addresses are advertised by the virtual cloud router, so packets
generated on the VPC are forwarded via the tunnels. Options
for bonded high-availability tunnels exist.

The CloudLab side comprises 1) compute, storage and
network resources (e.g., bare metal nodes, mounted /project)
as requested by the experimenter, organized as usual with
separate data and control plane interfaces, and 2) a node or VM
dedicated to serving as a VPN gateway. A routable public IP
address for each VM is desirable for management and control.
We have created a pair of public images (cloudjoin.vpn,
cloudjoin.vm) on CloudLab to ease creation of CloudJoin
experiments. The first is a Ubuntu 18.04 image used for bare
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Fig. 1: Illustrative CloudJoin experiment topology.



metal machines that is recommended for high-performance
VPN traffic, and the second a 16.04 Xen image for VMs.
The images also have additional sample code, configuration
files, and resources such as google-cloud-sdk for experimenter
convenience.

We selected strongswan v5.8 [16] to implement the
CloudLab-side VPN. This popular IPSec-based product works
on a variety of different platforms and is known to be
compatible with GCP Cloud VPN gateway [17], [18]. Unlike
the GCP side, manual routing table setup is required on the
CloudLab side to support communications to nodes on the
cloud-side of the data plane subnet.

Fig. 1 depicts a small CloudJoin experiment network topol-
ogy. The cloud-side VPN gateway persistently seeks to es-
tablish a tunnel to CloudLab, regardless of the CloudLab-
side experiment state (e.g., even if not instantiated). Note
that the a public IP address of the CloudLab-side VPN
gateway is ephemeral; a new address appears for each newly
instantiated CloudLab-side experiment, while the IP address
of the cloud VPN gateway is persistent. Hence, coordinating
tunnel establishment is best done from the CloudLab side after
gateway instantiation. Table A presents a simplified bash script
that can be invoked on the CloudLab-side gateway machine
to create the connection.

A. Resource placement and Network Performance

Public clouds offer enough cloud locations to allow the
experimenter to specify the geography of an experiment.
Cloud-side resources can be instantiated in a geography
minimizing inter-side communications latency. For instance,
GCP instances connected to CloudLab Clemson might be best
placed in the GCP South Carolina location, depending on
the campus’ cloud network connectivity via Cloud Connect,
commodity internet, or regional or national R&E network. In
this case we found that experiment data plane network latency
to be 21 ms between sites, roughly comparable to the latency
of a connection over the public internet connection.

The tunneled VPN connection limits throughput to the
experiment. Running on an otherwise unused bare metal 2.6
GHz Xeon Gold 6142 class machine at Clemson, the tunnel
offers roughly 750 Mbs upstream (CloudLab to GCP) and
downstream. However, when the gateway node runs on a
VM (same machine type) we find asymmetric throughput –
approximately 476 Mbs upstream, and 250 Mbs downstream.
Recall that control and monitoring traffic is transferred over
the separate public internet connections (not shown in Fig. 1).
Of course, additional tunnels may be constructed and logically
aggregated to improve throughput performance. In addition,
some CRI will be hosted at universities with higher perfor-
mance cloud connections such as Direct Connects, which don’t
required VPNs and are typically 10 Gbs line rates and above.
Exploiting this connectivity would both improve throughput
and could simplify experiment infrastructure construction.

TABLE A: Illustrative bash script showing key GCP SDK
commands for connecting a CloudLab experiment to a GCP
virtual private cloud with an encrypted tunnel.

1 #!/usr/bin/env bash
2 ### GCP variables and resource names
3 GCP_VPN_ADDRESS="34.86.208.69"
4 GCP_VPN_TUN_NAME="tun0"
5 GCP_VPN_GW_NAME="vpn-gw-east1"
6 GCP_TRAFFIC_SELECTOR="10.150.0.0/24"
7 # GCP VPN tunnel named *tun0*
8 # GCP VPN gateway named *vpn-gw-east1*
9 # GCP VPC route named *cloudjoin*
10
11 ### Cloudlab variables
12 PEER_ADDRESS="130.127.133.66"
13 REMOTE_TRAFFIC_SELECTOR="10.10.1.0/24"
14 VPC_ROUTE="cloudjoin"
15
16 # GCP authentication and project setup
17 gcloud auth login
18 gcloud config set project "cs-research-*"
19 gcloud config set compute/region "us-east4"
20
21 # GCP VPN tunnel setup
22 gcloud compute vpn-tunnels list
23 # Example tunnel details:
24 #tun0 us-east4 vpn-gw-east1 130.127.133.66
25 GCP_VPN_TUN_NAME1=\\
26 $(gcloud compute vpn-tunnels list\\
27 --filter="name=$GCP_VPN_TUN_NAME"\\
28 --format=list |\\
29 grep "name" | awk ’{print $2}’)
30 gcloud compute vpn-tunnels delete\\
31 $GCP_VPN_TUN_NAME1
32 # get public IP address
33 PEER_ADDRESS=$(/sbin/ifconfig xenbr0 |\\
34 grep "inet " | awk ’{print $2}’)
35 gcloud compute vpn-tunnels create\\
36 $GCP_VPN_TUN_NAME\\
37 --shared-secret=mQbdk5qV...jT2\\
38 --peer-address=$PEER_ADDRESS\\
39 --target-vpn-gateway=$GCP_VPN_TUN_NAME\\
40 --ike-version=2\\
41 --remote-traffic-selector=\\
42 $REMOTE_TRAFFIC_SELECTOR\\
43 --local-traffic-selector=\\
44 $GCP_TRAFFIC_SELECTOR\\
45 --description=peer-address-
46 $PEER_ADDRESS
47
48 # Example GCP VPC route details:
49 # cloudjoin net1 10.10.1.0/24 testtun0
50 gcloud compute routes describe $VPC_ROUTE
51 gcloud compute routes delete $VPC_ROUTE
52 gcloud compute routes create $VPC_ROUTE\\
53 --destination-range=\\
54 $REMOTE_TRAFFIC_SELECTOR\\
55 --next-hop-vpn-tunnel=tun0\\
56 --network=net1
57
58 # config and start strongswan
59 sed -i -s ’s/$OLD_IPADDR/$PEER_ADDRESS’\\
60 /etc/ipsec.conf /etc/ipsec.secrets
61 service strongswan restart



Fig. 2: GCP Stackdriver monitoring dashboard depicting cpu
utilization of CloudLab Clemson nodes running BindPlane
collectors.

Of course, there are many factors (i.e., cloud egress charges)
in determining placement of experiment nodes. These deci-
sions are highly specific to the characteristics of a particular
experiment. Our focus is on developing tools, methods and
best practices to assist individual experimenters with these
deployment decisions.

V. MONITORING YOUR CLOUDJOIN EXPERIMENT

Experimenters often express frustration with a CRI’s user
experience, particularly when encountering and debugging
unexpected experiment behaviors. Experiment monitoring can
be even more difficult in hybrid cloud settings, where exper-
imental resources span systems and locations. Management
tools that might have been adequate to observe experiments
with tens of nodes are likely to be inadequate for thou-
sands of nodes. In addition, experimenters need to monitor
new billing management interfaces and dashboards to over-
see cloud resource usage and credit consumption. CloudJoin
addresses the complexities of scaling experiments by em-
bracing commercial-grade multi-cloud management platforms
equipped with monitoring, logging, alerting, error reporting
and profiling capabilities.

We integrate both sides of a CloudJoin experiment using a
single monitoring suite, and consequently offer experimenters
a single pane of glass. Here we describe operations using
Stackdriver [19], the GCP logging and monitoring visual-
ization framework. CloudJoin experimenters can customize
display ‘cards’ to assemble a professional quality system

dashboard to visualize their experiment’s resource use and
behavior.

The implementation of CloudJoin monitoring is simple. The
stackdriver-agent service (collectd daemon) is loaded and run
on all GCP-side experiment nodes [20]. CloudLab nodes run
the comparable Blue Medora BindPlane collector (google-
fluentd) [21]. All collectors export data to a single Google
Monitoring service [22]. Fig. 2 depicts a custom dashboard
for a monitored experiment. The upper panel shows that
both CloudLab nodes and GCP instances are being observed.
The lower panel depicts a cpu utilization dashboard plot of
CloudLab nodes vpn and vm1 of Fig. 1 at 1 minute intervals.

While infrastructure monitoring is crucial to support large-
scale experiments, we find that experimenters increasingly
rely on sophisticated software components and stacks (e.g.,
hadoop, docker, kubernetes, mongoDB, puppet, etc) and cloud
data analytics (e.g, datalab) to run and evaluate their ex-
periments. The integrations available with commercial cloud
monitoring frameworks permit experimenters to examine in
parallel the operation of both infrastructure and software stacks
to maintain a comprehensive view of experiment operation.

VI. CONCLUSION

Research advances in large-scale computing systems and
software ultimately require researchers to have access to ”big”
experimental infrastructure and datasets to validate their ideas.
While many problems can be initially studied at small scale,
key learnings and deeper understanding come only by studying
large datasets and workloads. But the academic computing
systems research community has increasingly struggled to
tackle problems at scale due in part to unavailability of
sufficiently large campus-based or shared community testbeds.
This problem has been particularly acute at underserved insti-
tutions with limited campus cyberinfrastructure deployments.

We have argued that successful CRI’s can be more easily
sustained by embracing recently introduced programming in-
terfaces, SDKs, tools, services and integrations provided by
commercial compute clouds. We stress that this solution can’t
independently satisfy all large-scale experiment needs, but we
believe it can address some that neither federated testbeds or
public clouds can on their own.

Adoption of commercial cloud computing by much of the
broad science research community has proceeded slowly [23].
We are cognizant of the additional learning burden for time-
pressed researchers, but we have found the benefit worthwhile.
CloudJoin will continue to develop tools and practices to
reduce the learning curve for those reaching beyond familiar
testbeds into the less familiar public cloud computing systems.

The contributions described in this work focused on
experiment-local use of hybrid cloud systems – that is, steps
that an experimenter can take without explicit changes to CRI.
We anticipate that our future work will extend to helping
CRI developers evaluate mechanisms and deploy shared in-
frastructure to allow their experimenters to more easily create
hybrid experiments. If successful, CRI developers stand to



benefit from elasticity by offloading some demand during peak
utilization periods.
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