Investigating Integrated Access and Backhaul on the Aether 5G Testbed

Jack Brassil

Dept. of Computer Science

Princeton University

- Standardized in 3GPP Release 16
- Wireless replacement of wired backhaul (fiber)
- In-band, relay based multi-hop forwarding architecture
- Resilience through Backhaul Adaption Protocol

- Standardized in 3GPP Release 16
- Wireless replacement of wired backhaul (fiber)
- In-band, relay based multi-hop forwarding architecture
- Resilience through Backhaul Adaption Protocol

- Evaluating campus deployment of outdoor small cells
 - Neutral host solution preferred
 - Commercial and research radios
 - Challenges
 - Scaling many fibers, much trenching, many networking ports required
 - Siting uncertainty
 - Co-engineering different carrier RANs
- Wireless backhaul potentially attractive, cost-saving option (e.g., Wi-Fi)

- Develop a research testbed capable of evaluating a variety of investigations of nG architectures, implementations, & protocols
- Primary testbed objectives include
 - versatility
 - experiment repeatability
 - ease of testbed replication at other sites
- Wireless backhaul the initial use case
 - Standards-compliant IAB is one focus among many
 - Lack of open-source components for 5G \rightarrow using COTS CBRS RAN with upgrades coming
 - Work-in-progress: OK with basic, limited function emulation for now

Aether 5G Testbed

- Developed by Open Networking Foundation with support from DARPA Pronto Project
- Disaggregated 5G core edge deployed locally at 16 university & industry sites
- Shared Google Cloud Platform centralized core
- Novel elements such as programmable switch hardware
- Provides potentially fast path to scale & commercialize your research

Key elements used:

- Local breakout (MEC) to Data Network (DN)
- User Plane Function (UPF) hardware-based tunnel decapsulation

Key elements (split RAN compatible):

- UE associates with small cell IAB₁
- IAB₁'s Mobile Termination (MT) communicates to upstream IAB_{donor} Distributed Unit (DU)
- IAB_{donor} Centralized Unit (CU) communicates to UPF in edge 5G core
- Single GTP-U tunnel end-to-end

Highlights:

- Access network: Sercomm CBRS radios & small cells
- Measured HTTP performance over 1, 2, 3 wireless hops
- Tested both integrated (CBRS) and out-of-band (.11ac) backhaul
- Project github site describes packet forwarding (iptables, NAT)

Multihop Backhaul Emulation with Recirculation

- Single client emulates multiple UEs. Each has separate CBRS radio.
- Single small cell emulates multiple IAB nodes
- One GTP-U tunnel/wireless hop
- Packet reaches 5GC-MEC and is returned to client node
- Line speed GTP-U decapsulation via programmable switch HW
- Static routing (e.g., no BAP, dynamic addressing, etc)

Experiment 1: IAB with CBRS

Experiment 1: Integrated Access & Backhaul 0 wireless hops: ethernet, no proxy				
1	426.59	466.40		
2	426.59	351.98		
3	426.59	498.28		
1 wirele	ss hop: proxy; local	l iperf TCP uplink comparison		
Run No.	Downlink	Uplink [iperf: client, server]		
1	81.86	7.42 6.97, 6.66		
2	84.19	5.81 6.05, 5.73		
3	82.39	7.67 6.58, 6.34		
2 wirele	ss hops: proxy			
Run No.	Downlink	Uplink		
1	41.57	4.15		
2	43.21	4.04		
3	43.95	3.95		
3 wirele	ss hops: proxy			
Run No.	Downlink	Uplink		
1	27.24	2.38		
2	29.17	2.23		
3	27.74	2.43		

Experiment 2: CBRS access with Wi-Fi backhaul

Experiment 2: Heterogeneous Access & Backhaul

2 wireless hops – CBRS with WiFi backhaul: proxy		
Run No.	Downlink	Uplink
1	36.78	6.46
2	43.35	6.73
3	44.90	6.28
4	38.51	6.05
5	44.40	6.67

- Aether 5G testbed effective at emulating various wireless backhaul architectures (and more!)
- Testing at scale
- Fast path for technology transfer
- Next steps:
 - Work towards fully compliant IAB system testing
 - Experimentation with diverse hardware components
 - Study applications beyond wireless backhaul

This material is based upon work supported by the National Science Foundation under Grant No. CNS-1923692 and DARPA under Dispersed Computing HR0011-17-C-0047.

