
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 8: Deterministic Decremental SSSP and Approximate Min-Cost
Flow in Almost-Linear Time

Lecturer: Huacheng Yu Scribe: Chenxiao Tian

1 Introduction

This lecture notes starts going through the paper [1] which introduces the first deterministic,
almost-linear time data structure for decremental SSSP in undirected graphs.In this lecture
notes, we firstly go through some basic notations, goal, settings, main result and background
of the problem. Then we review the ES-tree and an approximated shortest paths algorithm
[2] based on it. After that, we introduce the concept of Emulator H of a graph. In this
lecture note, we finally go through the main building block construction in this paper, which
is the Robust Core Data Structure that can lead to an algorithm, the algorithm could keep
the Emulator, maintain decremental cores and create new cores.

Settings. We begin with an undirected weighted graph G = (V,E,w) with n nodes and m
edges, where edge weights are non-negative (w(e) ≥ 0) for all e ∈ E, and a fixed source node
s ∈ V . The problem is to find the shortest paths from the fixed s to any other vertex in the
graph. As the edges of G are deleted sequentially, we maintain a (1 + ϵ)-approximation of
the shortest path distances from the source s to every other vertex in the graph.

Goal. To minimize the total update time required to maintain these (1 + ϵ)-approximate
shortest paths as the graph transitions from its initial state G to an empty graph.

Main Result. For any constant ϵ > 1
polylog(n) , it is possible to maintain (1+ϵ)-approximate

shortest paths from the source node s to all vertices in O(m · no(1)) total update time,
deterministically.

Observation 1. We could assume without loss of generality (WLOG) that the maximum
degree of the graph G is at most 3. (The weight in the graph G is strictly bounded by n3.)

2 ES-tree Algorithm and Approximated Shortest Paths Al-
gorithm

The ES-tree algorithm (Even Shiloach 1981) in [2] maintains a decremental unweighted
graph and computes exact distances from a source node s up to a parameter d. The total
time complexity is O(md). Now we review their algorithms in this section.

Algorithm 1. • Maintain a BFS tree from s with a depth d.

• When a tree edge is deleted:

– If a vertex v is disconnected at level l:

1

2

∗ Go through all neighbors u of v.

∗ Check if u is in level l − 1. If such a u exists, reconnect (u, v) in the tree.

∗ Otherwise, disconnect v from all its children in the tree and move v to level
l + 1.

– Repeat this process for all disconnected vertices in levels l + 1, l + 2, . . . , d.

Remark 1. Time Analysis for the Algorithm 1: For each vertex v and level l, the above
steps are performed at most once for every edge (u, v). The total time complexity is no more
than O(md). Weighted Graphs Case for Algorithm 1: The same algorithm can be applied to
weighted graphs by maintaining the shortest-path (SP) tree up to a distance d, with a total
time complexity of O(md).

Algorithm 2. Approximated Shortest Paths: The algorithm can maintain a (1 +
ϵ)-approximation of SPs that use at most u edges in time Õ(mu), where Õ suppresses
logarithmic factors.

• For k = 1, 2, . . . , 2i:

– Maintain an ES-tree for distances approximately k, with an additive error ≤ ϵ ·k.
– Round the edge weights to multiples of (ϵ · k)/u (additive error of SP ≤ ϵ · k).
– The ES-tree maintains SPs up to a distance of O(k).

Remark 2. The total time complexity is:

Õ

(
m · k

ϵ · (k/u)

)
= Õ(m · u).

3 Emulator H of a graph

In this section, we introduce the definition of the Emulator H of a graph.

Definition 1. An (h, ϵ)-hop emulator H of a graph G is defined as follows:

1. G ⊆ H (The graph G is contained within H).

2. For any u, v ∈ V , distG(u, v) ≤ distH(u, v).

3. For any u, v ∈ V , there exists a path P in H using ≤ h edges such that the length of
P in H satisfies:

length(P) ≤ (1 + ϵ) · distG(u, v).

Goal. Assuming that the shortest paths (SPs) in G have ≤ h edges, the goal is to construct
and maintain an (h/γ, ϵ)-hop emulator H, where we think γ = no(1).

Plan. We focus on unweighted graph G. Maintain a collection of cores {Ci}, such that for
any vertex u ∈ G, there exists a core Ci satisfying:

dist(u,Ci) ≤ O(diam(Ci)).

Additionally, maintain ES-trees from each Ci up to a distance Di ≥ D (referred to as
the shell), such that:

ϵDi ≫ diam(Ci).

3

Definition 2. (Definition of Emulator H)
The emulator H is defined based on the collection {Ci} as follows:

• For any vertex v that belongs to shell(Ci), add an edge with weight approximately equal
to distG(v, Ci).

Claim 1. The constructed H is an (O(h/D), O(ϵ))-emulator.

4 The Algorithm maintains decremental cores and creates
new cores

The following algorithm in this section maintains decremental cores and also create new
cores as needed. We introduce it by making a summary on its goal, key construction,
algorithm and lemma 1 in this section.

Goal. 1. Maintain each decreasing core Ci, such that diam(Ci) remains small.

2. Maintain {Ci} such that every u is close to some Ci.

3. Ensure each vertex is in at most △ = no(1) shell(Ci)s.

Definition 3. (Definition of Robust Core Data Structure)
Given a decremental graph and an initial core Cinit with diameter ≤ d, the robust core

data structure maintains a decreasing set C ⊆ Cinit until C is empty, such that:

1. diamG(C) ≤ d · str (stretch str = no(1)),

2. Every v that leaves C (i.e., v ∈ Cinit \ C) satisfies:

|ball(v, 2d) ∩ Cinit| ≤ (1− δ)|Cinit| (δ = n−o(1)).

Algorithm 3. How to Maintain the Emulator?
To maintain the emulator, we use the following steps in the algorithm:

• Maintain cores Ci with initial diameter di.

• Maintain EStree(Ci) up to distance Di = di · str/(4ϵ).

• While there exists u such that no Ci has dist(Ci, u) ≤ 4di (checked using the main-
tained EStrees [2]):

1. Let l be the largest value such that:

|ball(u, d · (str/ϵ)l)| ≥ nl/k, l ∈ [0, k].

2. Let Cinit = ball(u, d · (str/ϵ)l).
3. Set dinit = 2d · (str/ϵ)l.

4

4. Maintain Cinit using the robust core data structure, where k is picked such that
k = ω(1) and (str/ϵ)k = no(1).

Lemma 1. For any u, u can participate in at most Õ
(
n1/k · δ−1

)
cores.

Proof Sketch: For each diameter d · (str/ϵ)l, cores are disjoint.

|ballG(u, 2d · (str/ϵ)l)| ≥ n(l+1)/k, when some u ∈ Ci is initialized.

Using (2) in the definition of the robust core:

|ballG(u, 2d · (str/ϵ)l) ∩ C init| ≤ (1− δ)|C init|.

Thus, at least:
δ · |C init| leaves ball(u, 2d · (str/ϵ)l) ≥ δ · nl/k.

Hence, this process can happen at most n1/k · δ−1 times.

References

1. Bernstein, A., Gutenberg, M. P. & Saranurak, T. Deterministic Decremental SSSP
and Approximate Min-Cost Flow in Almost-Linear Time in 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS) (2022), 1000–1008.

2. Even, S. & Shiloach, Y. An on-line edge-deletion problem. Journal of the ACM 28, 1–4
(Jan. 1981).

