
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 7: A ”combinatorial” max flow algorithms in n2+o(1) time using
directed expander hierarchy

Lecturer: Huacheng Yu Scribe: Ijay Narang

1 Introduction

In these notes, we explore the weighted push-relabel algorithm combined with expander hier-
archies to efficiently compute maximum flows in directed graphs. The classical push-relabel
algorithm faces challenges in dense graphs due to excessive relabeling. By decomposing the
graph into (DAGs and expander levels), the improved algorithm achieves a time complexity
of O(n2+o(1)). Our core problem is:

Find good w such that

• There exists an approximate max-flow such that every flow path P has weight w(P) =∑
e∈P w(e) ≤ h ≤ n1+o(1)

•
∑

e 1/w(e) ≤ n1+o(1)

In terms of notation, we have that if F ⊆ E, then degF (u) is the number of edges in F
incident to u in both directions. We define volF (S) =

∑
u∈S degF (u). We say that a graph

is a A φ-expander where, for every non-empty subset S ⊂ V , the edge boundary satisfies:

|E(S, Sc)|
min(volF (S), volF (Sc))

≥ φ,

We can use this notion to extend our typical definition of expanders to directed graphs
as follows: An expander hierarchy for a directed graph G = (V,E) is a sequence of edge
sets H = (D,X1, . . . , Xη) such that:

• D contains the DAG edges connecting strongly connected components (SCCs).

• Each Xi is a φ-expander with respect to the remaining graph after removing edges
from higher levels:

Gi = G \
⋃
j<i

Xj .

For the purpose of this problem, we want (in our expander decomposition) |Xi| ≤
Õ(ϕi−1m)⇒ η ≤ O(log 1

ϕ
m).

2 Expanders + DAG + ϕ-expanding X2

Our goal is to show that there exists an approximate max flow f such that the flow path
uses Õ(1ϕ) edges in X2 and less than Õ(1ϕ) in each expander.

A lemma of importance to us (that we will not prove here) is the following:

1

2

Lemma 1 Let F ⊆ E, and G be ϕ−expanding, then any flow instance (∆,∇), such that
for all u, we have that ∆(u) ≤ degF (u) and ∇(u) ≤ degF (u), then there exists a flow f
where:

• cong(f) ≤ Õ(1ϕ)

• every flow path has Õ(1ϕ) edges in F

Now, consider the flow problem on f and X1 and X2, note that by an application of
the lemma, we can obtain a flow path f1 such that every path of f uses Õ(1ϕ) edges in X2

with congestion Õ(1ϕ). Now, consider a flow path in f1 and an expander Ui. If length of P

in Ui ≤ Õ(1ϕ), then we do not need to reroute and we are done. Otherwise, let l = Õ(1ϕ),
consider the first l vertices on P in Ui (u1, u2, · · · , ul) and the last l vertices on P in Ui,
v1, v2, · · · vl in Ui. Observe that when we route 1/l units of flow from each of the uj to the
vj on every long path P implies that for every vertex u, we have that:

• ∆(u) ≤ 1/l · vol(u) · cong(f1)

• ∇(u) ≤ 1/l · vol(u) · cong(f1)

It thus follows that Lemma 1 implies that (∆, ∇) can be routed by f2 such that

• cong(f2) ≤ Õ(1ϕ) · 1/l · cong(f1)

• Every path uses Õ(1ϕ) edges

Therefore, the congestion after rerouting is upper bounded by cong(f1) + cong(f2) ≤ (1 +
Õ(1ϕ · 1/l)) · cong(f1) ≤ (1 + 1/polylog(n)) · cong(f1) Keeping this in mind (and assuming
the existence of the hierarchy), we can first find a topological order with respect to the
DAG and expanders from the hierarchy. Then, by setting the weight of each edge to
w(u, v) = |τ(u)− τ(v)| we get that the total weight of a flow path meets our desired result,
as there are Õ(|Ui|/ϕ) expander edges in Ui, Õ(nϕ) backward edges and Õ(nϕ) forward edges.
Thus, the only remaining question is why must a hierarchy (D,X1, X2, · · ·Xη) exist? This
is the focus of the next section.

3 Building an Expander Hierarchy

In this section, we show how to construct the expander hierarchy of the input graph that was
critical towards deriving the weight function fof the push-relabel algorithm. The original
paper formally defines this as follows:

Theorem 2 ([1]) There is a randomized algorithm that, given an n-vertex graph with capac-
ities (G, c), with high probability constructs a 1/no(1)-expander hierarchy H = (D,X1, . . . , Xη)
of (G, c) with η = O(log n) in n2+o(1) time.

The capacities c are all unit capacities, as it is not too difficult to generalize from there.
A more general variant of the above theorem is below. Note that the first theorem follows

immediately when we choose ϕ = exp
(
− logn

(log logn)1/3

)
.

3

Theorem 3 ([1]) Given an n-vertex graph (G, c) and a parameter 0 < ϕ < 2
−ω

(√
logn

log logn

)
sufficiently small, there is a randomized n2+o(1)ϕ3 time algorithm that with high probability
constructs a ϕ/no(1)-expander hierarchy H = (D,X1, . . . , Xη) of (G, c) with η = O(log n).

The high-level methodology towards constructing each Xi is to repeatedly find cuts in G
and removing edges from one of the directions (i.e., EG(S, S) or EG(S, S) for some S) which
disconnects the two sides of the cuts. We provide more detail in the next section.

The naive approach for computing (D,X1, X2, · · · , Xη) is to greedily find sparse cuts in
G, and to move edges in the sparse direction to X2 and recurse on both sides. That is, via
standard expander decomposition, we can get three edge sets D, X1, X2 such that D is a
DAG, X1 is ϕ-expanding in G1, and |X2| is small (on the order of ϕm). To construct the
second level and onward, one immediate idea is to simply do expander decomposition with
respect to the volume induced by X2. If the returned edge set X3 happens to be a subset
of X2, then we can set X2 ← X2 \X3 and continue to run expander decomposition on X3.
As the number of edges in the terminal set decreases roughly by a factor of ϕ each time,
after O(log1/ϕ n) iterations we will get the desired expander hierarchy.

The issue is that the edge set X3 we need to cut when doing expander decomposition
with respect to the volume induced by X2 may not be a subset of X2. It might neces-
sarily be the case that X3 includes edges from X1 or even from D. When this happens,
X3 ⊈ X2 the graph G1 = G \X>1 in which X1 is expanding changes which decreases the
well-connectivity of G1 and make X1 no longer expanding (breaking the hierarchy).

Intuitively, we can resolve this by immediately removing X3 \ X2 from G1 (note that it
suffices to remove X3 \ X2)and then further refine the strongly connected components of
G1 into smaller pieces so that X1 is still expanding in this graph. That is, we repeatedly
find the set S such that min{|E(S, S̄)|, |E((̄S), S)|} < ϕmin{volX2(S), volX2(S̄)} and move
edges in the more sparse direction to X3 and once again recurse on the two sides. Because
of the charging argument, we have that we moved at most Õ(ϕ·vol(X2)) ≤ Õ(ϕ·|X2|) to X3.

The issue with this scheme is that we may move edges in X1 or D to X3, breaking the
expanders in the first level.Thus, in order to fix this issue, we iteratively fix the expansion
in all levels and move a set of edges R to X3. This procedure works as follows:

1. For every expander in X1, while there exists a cut less than ϕ/4-sparse (3/4 of the
edges are in R), we move all the edges in the sparse direction.

2. For X2, we iteratively find sparse cuts w < ϕ/4 and move the edges to X3

In the paper, they show that there are less than O(ϕ · |R|) edges moved to X3. Though we
will not show the actual proof itself, the idea is that by changing the new edges moved to
X2 to be edges in R, we can show that we only move O(|R|) edges to X2.

4

References

[1] Aaron Bernstein, Joakim Blikstad, Thatchaphol Saranurak, and Ta-Wei Tu. Maximum
flow by augmenting paths in n2+o(1) time, 2024.

