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Introduction

In this lecture, we begin our study of the recent paper on maintaining the expander hierarchy of a

graph under dynamic updates [1]. Given an undirected graph G = (V,E) which may undergo arbitrary

(potentially adaptive) edge insertions or deletions, our goal is to design a data structure that maintains

the expander hierarchy of G with fast total update time. Today, we focus on defining the expander

hierarchy of a graph, as well as providing an initial overview of the algorithm in an important special

case where all updates to the graph arrive as a batch. Before we formally define “expander hierarchy,”

we recall some important background from the previous lecture.

Notation. For an undirected, unweighted graph G = (V,E) with |V | = n and |E| = m, we define the set

of edges in cut (S, T ) by E(S, T ) = {(u, v) : u ∈ S, v ∈ T}. Additionally, for any subset of vertices S ⊆ V ,

we define the volume of S by vol(S) =
∑

u∈S deg(u). As before, we denote Õ(f) = O(f · polylog(n)).
Now, we recall the following definition of a ϕ-expander:

Definition 1 (ϕ-expander). A graph G = (V,E) is a ϕ-expander if, for any set S ⊂ V such that S ̸= ∅
and S ̸= V , we have that

|E(S, V \ S)| ≥ ϕ ·min (vol(S), vol(V \ S))

We also define a generalized notion of an induced subgraph, which will be crucial to the stronger

notion of “boundary-linked” expander decomposition which we introduce in the next section.

Definition 2. Let G[S] be the subgraph induced by vertex set S ⊆ V . Then, for any integer w ≥ 1, we

let G[S]w denote the graph obtained after the following transformation is applied to G[S]: for each v ∈ S,

add w self-loops for each boundary edge (v, x) ∈ E where x ̸∈ S.

Notably, we observe that G[S]0 = G[S], and vertices in G[S]1 have the same degree as in the original

graph G.

Boundary-linked Expander Decomposition

We recall the traditional notion of a ϕ-expander decomposition of a graph G, which has found numerous

applications in the graph algorithms literature. This definition was covered in the previous lecture, but

we restate it here for comparison with our stronger notion of “boundary-linked” expander decomposition,

which we will focus on next.

Definition 3 (ϕ-expander decomposition). For any graph G = (V,E) and any ϕ > 0, there is a partition

U = {U1, ..., Uk} of V into clusters, such that
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1.
∑

i∈[k] |E(Ui, V \ Ui)| = Õ (ϕ ·m)

2. For all i ∈ [k], G[Ui] is a ϕ-expander.

Intuitively, this definition states that we can always find a partition of vertices (U1, ..., Uk) such that,

after we remove a Õ (ϕ)-fraction of the edges from G, the remaining induced subgraphs G[Ui] are all

ϕ-expanders.

A Stronger Expander Decomposition. The central contribution of this work is a stronger notion of

expander decomposition, which the authors call “boundary-linked” expander decomposition. Compared

to the previous definition, this decomposition has the property that the vertices inside each Ui are better

connected to each other than to vertices in V \ Ui. Here, we focus on the setting where α = 1
polylog(n) =

Ω̃ (1) and ϕ = 1
nO(1) << α.

Definition 4 ((α, ϕ)-boundary linked expander decomposition of G). For any G = (V,E), a (α, ϕ)-

boundary linked expander decomposition of G is a partition U = {U1, ..., Uk} of vertices with ϕ1, ..., ϕk ≥ ϕ

such that

1.
∑k

i=1 |E(Ui, V \ Ui)| ≤ Õ (ϕ ·m).

2. For all i ∈ [k], G[Ui]
α/ϕi is a ϕi-expander.

3. For all i ∈ [k], |E(Ui, V \ Ui)| ≤ Õ (ϕi · volG(Ui)).

Importantly, this notion of expander decomposition is stronger than the previous definition, as we

require the decomposition U to satisfy a strengthened expander property for each cluster Ui (property 2),

as well as requiring each cluster Ui to be more connected to itself than to other vertices (property 3). In

fact, these are actually very intuitive properties of a “good clustering” of vertices in G:

• First, we observe that by adding w = α/ϕi self-loops to boundary vertices of G[Ui], we effectively

increase the volume of each boundary vertex v, making the ϕ-expander property harder to satisfy.

Specifically, this stronger property 2 implies that for each vertex v ∈ Ui, we have that

degG[Ui](v) ≥ α · degG[V \Ui](v).

In particular, if we did not enforce this property, it could be that degG[Ui] << degG[V \Ui], which

does not align well with our intuition of a cluster.

• Secondly, property 3 ensures that for most vertices v ∈ Ui, we have that

degG[V \Ui](v) ≤ Õ (ϕi) · degG[Ui](v).

Again, this is aligned with our intuition of a cluster, in which vertices should be well-connected

with each other and have few connections with other clusters in G.
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Construction. With this definition in mind, note that we can iteratively construct a (α, ϕ)-boundary-

linked expander decomposition as follows: as long as property 2 is not satisfied for some cluster Ui, we

find the sparsest cut in Ui and separate Ui into two parts. Using a similar argument as in the construction

of ϕ-expander decomposition, it can be shown that after this iterative process terminates, the resulting

decomposition satisfies properties 1-3 of the definition above. In fact, we can show the following theorem.

Theorem 5. A (α, ϕ)-boundary-linked expander decomposition can be computed in Õ
(
mnO(1)

)
time, for

α = 1
polylog(n) and ϕ = 1

nO(1) .

Main Result: Maintaining the Expander Hierarchy

Expander Hierarchy. In this section, we formally define the expander hierarchy of a graph. For input

graph G0 = G and (α, ϕ)-boundary-lined expander decomposition U0 = (U
(0)
1 , ..., U

(0)
k ) of G, we obtain the

next graph G1 of the expander hierarchy by contracting each cluster Ui into 1 vertex (when doing

this, we remove self-loops and keep parallel edges). This step produces contracted graph G1, and we then

continue this process by finding the (α, ϕ)-boundary-linked expander decomposition U1 = (U
(1)
1 , ..., U

(1)
ℓ )

of G1 and similarly contracting each cluster U
(1)
i into just one vertex. We continue to iteratively find the

(α, ϕ)-boundary-linked expander decomposition and contract the current graph Gi as described above,

until we reach the step when Gk = (Vk, Ek) has only one vertex and |Ek| = 0.

Definition 6 (Expander Hierarchy of a Graph). The sequence of graphs {G0, ..., Gk} generated through

the process above is the expander hierarchy of G.

Note that by property 1, we have |Ei+1| ≤ Õ (ϕ · |Ei|), so it follows that k ≤ O(log1/ϕ(m)) ≤
O(log1/4(n)).

Main result. At this point, we are ready to state the main result of [1].

Theorem 7. For any graph G, the expander hierarchy of G can be maintained in time nO(1) per edge

insertion or deletion.

The dynamic algorithm for maintaining the expander hierarchy of a graph implies efficient algorithms

for many important graph problems. For instance, given the dynamic algorithm of [1], we can maintain

the connected components of each Gi in the expander hierarchy. Additionally, the expander hierarchy

can be used to answer approximate (s, t)-min-cut queries.

Update time & Recourse. Recall that the expander hierarchy of G is given by a sequence of graphs

(G0, ..., Gk), where Gi+1 is generated from Gi by contracting each cluster U
(i)
j in the (α, ϕ)-boundary-

linked expander decomposition into a single vertex. So, it suffices for us to design an algorithm to maintain

an (α, ϕ) decomposition U and GU (also known as G1). For this, there are two important measures that

we should focus on while designing the algorithm:

• Update time: the time for computing the updated U and GU .

• Recourse: the number of edges that need to be updated in GU . We denote the recourse by ρ.
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Since we will eventually want to maintain a k-level expander hierarchy, the number of edge updates

to the top level will be ≤ ρk. Thus, we would like to minimize the recourse for each Gi. With this in

mind, the authors show the following theorem.

Theorem 8. For α = 1
polylog(n) and ϕ = 2− log3/4(n), a (α, ϕ)-boundary-linked expander decomposition of

G can be maintained with

1. Update time 2
Õ
(
log

3
4 (n)

)

2. Recourse ρ ≤ 2
Õ
(√

log(n)
)

In particular, this implies that the total number of updates to the top level of the expander hierarchy

ρk ≤
(
2
O
(√

log(n)
))log1/4(n)

= 2O(log
3/4(n))

for k = O(log1/ϕ(m)) = O(log1/4(n)). Thus, the total time per update is 2O(log
3/4(n)).

Overview of the algorithm

As an introduction to the algorithm, we will discuss how the algorithm handles an important special case:

suppose that all updates to G arrive as one batch, and the task is to efficiently maintain the expander

hierarchy after processing these updates. Moreover, for now we will focus on minimizing recourse.

Consider the (α, ϕ)-boundary-linked expander decomposition U = (U1, ..., Uk) of G (denoted ED(G)

below), and let us focus on one cluster U1. Suppose there are k updates with at least 1 endpoint incident

to U1. We consider the following two possible cases:

1. If k ≥ Ω̃(volG(U1) ·ϕ1), then we will simply rebuild, or “reset,” the cluster U1 by building a (α, ϕi)-

boundary-linked expander decomposition on G[U1]
α/ϕi . In this case, note that the recourse can be

computed as follows:

ρ = #(outgoing edges from U1) + #(edges between components of ED(U1))

≤ Õ (ϕ1 · vol(U1)) + ϕ1 · vol(G[U1]
α/ϕ1) ≤ ϕ1

(
vol(G[U1]) +

α

ϕ1
· Õ (ϕ1 vol(U1))

)
≤ Õ (ϕ1 · vol(U1))

So, it follows that the recourse is Õ (1) per update.

2. Alternatively, suppose that k << volG(U1) · ϕ1. In this case, the authors show that there always

exists a subset of vertices P ⊆ U1 satisfying the following properties:

(a) vol(P ) ≤ Õ (k/ϕ1)

(b) E(P,U \ P ) ≤ Õ (k)

(c) G[U1 \ P ]α/ϕ1 is a Ω(ϕ1)-expander.
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Then, we consider the graph after pruning this set P : we replace U1 by U1 \P and build a (α, ϕ1)-

boundary-linked expander decomposition U ′ = (U ′
1, ..., U

′
k′) of G[P ]α/ϕ1 and replace U1 in U to get

a new partition (U1 \ P,U ′
1, ..., U

′
k′) of U1. By definition, this new partition is an (α, ϕ1)-boundary-

linked expander decomposition of G. To bound the recourse, we compute as follows:

ρ ≤ |E(P,U1 \ P )|+ |E(P, V \ U1)|+#(edges from expander decomposition of P )

Note that (a) = |E(P,U1\P )| ≤ Õ (k) by definition of P , and (b) = |E(P, V \P )| ≤ Õ (|E(P,U1 \ P )|) ≤
Õ (k) as well. Additionally, we have that #(edges from ED of P ) ≤ Õ

(
ϕ1 · vol(G[P ]α/ϕ1

)
≤

ϕ1 ·
(
vol(P ) + α

ϕ1
((a) + (b)

)
≤ Õ (k). Consequently, we can see that

ρ ≤ Õ (k) .

As before, this corresponds to recourse Õ (1) per update.

With these two cases in mind, the main idea of the algorithm is as follows: we apply cases 1-2 to each

cluster Ui separately, but if the total number of updates is larger than vol(G) · ϕ, then we rebuild the

entire decomposition of G.
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