COS 597B: Recent Advances in Graph Algorithms September 11, 2024
Lecture 3: Intro to Max Flow & Expander Decomposition

Lecturer: Huacheng Yu Scriber: Pachara Sawettamalya

In this lecture, we cover topics which will be needed later in the course. These include the problem
of max-flow via Push-Relabel Algorithm, and expander graphs and expander decomposition.

1 Max Flows

Let G = (V, E,) be a weighted directed graph with two distinct vertices called source s € V' and sink
t # s € V. Each directed edge (u,v) € F is also equipped with a positive capacity c(u, v). For simplicity,
we shall assume that s has no incoming edges, and neither does ¢ has an outgoing edges.

Definition 1 (Flows and Maximum Flows) Given a graph G = (V,E,c). We call f : E — R>¢ a
flow iff the following conditions are satisfied.

(1) capacity constraints: f(e) < c. for any e € E.

(2) flow conservation: for any v € V\ {s,t}, we must have 3=, ,ep [(u,0) =32,)ep f(v,0). |I|
The value of the flow f, denoted val(f), is defined as

val(f):= > fls,0)= D flu,b).

(s,v)EE (u,t)eE
A flow with mazimum value is called ¢ maximum flow.

The max-flow problem is now well-defined: given a graph G = (V, E, ¢), find its max flow. Perhaps the
most well-known algorithms in the literature are the Ford-Fulkerson Algorithm (O(mf) runtime where
f is the value of max-flow), and the Edmond-Karp Algorithm (O(mn?) runtime). Both algorithms rely
heavily on the idea of residual graphs.

Definition 2 (Residual Graph) Given a graph G = (V,E,c) and a flow f. We define a residual
graph of G with respect to f, denoted Gy = (V, Ef,cy), to be a directed graph with the following set of
edges:

(v, u) with capacity f(u,v)

V(u,v) € E, inserts to E¢ an edge
(wv) ! g { (u,v) with capacity c(u,v) — f(u,v).

Note that by the definition above, it is possible for an edge (u,v) to be inserted twice into G (once via
a flow through (u,v) and once via a flow through (v,u).) In this case, simply combine weights of the
two edges into one.

Residual graphs are extremely useful objects to study maximum flows. Given a flow f (not necessarily
maximum) of a graph G, we can construct a residual graph G. It turns out that if there exists a directed
path from s to ¢ in Gy, we can augment such flow into f, resulting in a larger flow. Conversely, we
can show that a flow f is maximum if there are no such paths in G¢. These simple ideas motivate the
essence of both Ford-Fulkerson and Edmond-Karp Algorithms: keep augmenting the flow until we no
longer can.

Lemma 3 Let f be a flow of a graph G. Then, f is a mazimum flow if and only if there is no directed
path from s tot in Gy. These paths, if existed, are call augmenting paths.

In the next subsection, we will study another algorithm solving max-flow called the push-relabel
algorithm.

LA natural interpretation of flow conservation is that for any non-terminal vertex, the amount inflow and the amount
of outflow must be equal.

1.1 Push-Relabel Algorithm

The Push-Relabel Algorithm is an alternative way to solve the max-flow problem. At its core, the
algorithm maintains and iteratively updates two parameters: preflow f : E — R (i.e. a relaxation of
flows where we only require inflow to be at least outflow E[), and labels ¢ : V' — Z>q (i.e. a topogical
ordering of edges in residual graphs). In particular, we want to maintain the two set of invariants.

e Preflow. It must be true of all time that

Vo e V\{st}, > fluv)> > f(v,w). (1)

(u,v)EE (vyw)eE

We shall refer to the difference between inflow and outflow an an excess denoted by

€f(’l)): Z f(u,v)— Z f(vvw)

(u,v)EE (v,w)EE
which is always non-negative.
e Label. It must be true of all that that

V(u,v) € E(Gy), €(u) < L(v)+ 1. (2)

1.1.1 The Algorithm

The algorithm consists of (1) an initialization phase where we hard-wire starting values of the preflow f
and label ¢, and (2) an iterative procedure where we constantly send flows through edges (via a push),
or change labels of vertices (via a relabel).

Initialization. We initialize of f and ¢ as follows. It is easy to verify that such values satisfy both
invariants [l and 2L

"f = "f =
flay= TR gy =
0 pifu#s 0 ;ifu#s

Iterative Procedures. The algorithm iteratively updates the preflow f and label £. At each step, we
identify a vertex u whose excess is strictly positive and attempt to either

e push(u): decrease u’s excess by sending flows to its neighbor with a smaller label (if exists).

Algorithm 1 : push(u)
Input: graph G = (V, E, ¢), preflow f, label ¢, vertex u
1: let v be a vertex such that (u,v) € Ef and £(u) > ¢(v) +1
2: send § = min{es(u), cs(u,v)} units of flow through (u,v) by
(i) update f(u,v) < f(u,v)+9
(77) update the excesses e;(u) < ey(u) — 6 and ef(v) < es(v) + 9

2Denote a value of a preflow f to be Z(w HeE f(w,t) and say a preflow f is maximum if it is a preflow of largest value.
With this definition, we can show that the value of maximum preflow and the value of maximum flow are equal. Thus, it
suffices to find a maximum preflow.

o relabel(u): if it is impossible to push, increase the label of w.

Algorithm 2 : relabel(u)
Input: graph G = (V, E, ¢), preflow f, label ¢, vertex u

1: set é(u) =1+ minv:(u,U)EEf é(v)

Putting everything together, we can describe the full Push-Relabel Algorithm as follows.

Algorithm 3 : Push-Relabel Algorithm
Input: graph G = (V, E,¢)

n ;ifv=s
0 ifu#s

c(s,v) ;ifu=s

1: initialization: set f(u,v) =)
0 sifuz#s

and fL(v) = {

2: while there exists a vertex u such that ef(u) > 0 do

3 if there exists v such that (u,v) € Ey and £(u) > £(v) + 1 then
4 push(u)

5: else

6 relabel (u)

7: output f

1.1.2 Analysis

It remains to justify the correctness and runtime of the algorithm. We first argue that throughout the
algorithm, the two inviriants hold.

e Preflow . Any calls to relabel do not alter the flow f. After calling a push(u) which sends
0 = min{es(u), cr(u,v)} units of flow through (u,v), the excesses only change at two vertices u
and v. For v, the excess increases by 0, thus remains positive. For u, the excess has becomes
ef(u) — ¢ which is still non-negative.

e Label . Any calls to push do not alter the label £. Upon calling relabel(u), it must be case that
{(v) > L(u) for all (u,v) € Ey. Then, u is relabelled to 1 + min,.(,v)em, £(v) > 1+ £(u). This
means the label of u only increases. Consider three types of an edge e € Ey.

(1) e = (w,u) for w # u. After relabeling u, the label of u only increases. Thus, still holds
for e.

1) e = (u,w) 1or w # u. ter relabeling u, we have f(u) = 1 + min,.(, e, (V) < 14+ 4(w).

i f After relabeli have £(u) = 1+ ity pcp, v) < 1+ ¢
Thus, (2)) still holds for e.

(#4¢) w is neither of the endpoints of e. In this case, the labels of e’s endpoints are unchanged.
Thus, still holds for e.

Claim 4 Suppose that Algorithm 8 terminates. Then, it outputs a maximum flow.

Proof Let f be a flow upon the termination. By Lemma @ f is a max-flow if and only if G has no
augmenting path. Therefore, it suffices to show the latter.

Assume, for the contrary, that there exists an acyclic augmenting path (s, v1, ..., vx—1,t) in Gy with
k <n — 1. Then, we have

0s) <l(v)+1<l(vg)+2< ... <l(vg—1)+(k—1) (t) + k (Label Invariant

() +(n—1) (k<n-1)

Observe further that the labels of s and ¢t are unchanged throughout the algorithm; thus we have
¢(s) =n and £(t) = 0. This yields a contradiction. |

Hence, our task remains to argue that G terminates, and does terminate with a fast runtime. It is in
fact possible to show that G terminates in time O(mn?) for a weighted-capacity graph; however, to our
interests we will show that when all edges have capacity 1, the algorithm runs in a much faster time.
We first need a helper lemma.

Lemma 5 Let f a flow at any point in the algorithm. Then, any vertex u such that ef(u) > 0 must
exists a path from u to s in the residual graph Gy. Note that we can further assume that the path is
acyclic and has length at most n — 1.

Proof Let G’ be a subgraph of G consisting of edges with strictly positive flow in f. It suffices to
show that there exists a directed path from s to u in G’ (because its reversal is a path from u to s in
Gy.) Let A be a set of all vertices not reachable from s in G’. Consider the following expression.

0 < Zef(v) Z Z flu,v) — Z fv,w)

vEA vEA \ (u,v)EE(G’) (v,w)EE(G")
= > > fww-=dY > fw (3)
vEA (u,v)EE(G’) vEA (v,w)EE(G’)
Furthermore,
YooY fwoy= D fwo)+ Y f(uv)
vEA (u,v)EE(G’) (u,v)EE(G") (u,v)EE(G")
u,vEA ug A, veA
= Z flu,v) (no edges in G’ from V' \ A to A)
(u,v)EE(G")
u,vEA
and
o> fww = > fww e+ Y fvw),
vEA (v,w)EE(G") (v,w)EE(G) (v,w)EE(G")
v, WEA vEAWwEA

Thus, inequality becomes:

0< > epw) = > —flvw) <0
vEA (v,w)EE(G")
vEA,WEA

which implies that ef(v) = 0 for all v € A. In other words, any vertex v not reachable from s in G’ must
have ef(v) = 0. However, we know that ey(v) > 0. This means v is reachable from s in G'. |

Claim 6 Suppose all of G’s edges have capacity 1. Then, Algorithm 3 terminates in time O(mn).

Proof It suffices to show that the algorithm makes O(mn) calls to push and relabel. Let f and ¢ be
the flow and label at anytime throughout the algorithm. Consider a call to relabel(u). We must have
have ey(u) > 0 (via line 2). By Lemma [5| there exists an acyclic directed path (u,v1, ..., k-1, $) in Gy
with £ < n — 1. By the label invariant 7 we then have

lu)<Ll(s)+k<n+(n-1)=2n-1

This means any vertex u is never relabeled more than O(n) times. Thus, the number of calls to relabel
is O(n?).

Now let’s bound the number of push. Consider any (u,v) that can possibly appear in G. Because
(u,v) has capacity at most two in Gy, we can push at most twice through (u,v) before it disappears
from Gy. It is also necessary that ¢(u) > £(v) + 1 for the push to happen (via line 3).

If the push(es) causes (u,v) to disappear from Gy, its reverse edge (v, u) must appear instead. For
(u,v) to reappear in Gy, we must send (at least) a push through (v,u), requiring that ¢(v) > ¢(u) + 1.
For this to happen, we must relabel the vertex v. Otherwise ¢(v) would have never changed while £(u)
might have only been increased; thus ¢(v) would have still be at most ¢(u) — 1, which is a contradiction.

To sum up, once (u,v) appears in G, we can send at most two pushes through it, and the edge will
disappear. To be able to send more pushes through (u,v), we must relabel v at least once. Thus, the
number of push through (u,v) is upper-bounded by the O(¢(v)), which is O(n). There can be at most
O(m) possible edges in Gy. Thus, the total number of pushes is O(mn). |

2 Expanders and Expander Decomposition

Before diving expanders, let us first agree on the notations. Let G = (V, E) be an unweighted undirected
graph. For any S,T C V', we denote

ES,T)={(s,t) e E;s€S,teT}

to be the set of edges between S and T'. Also, for a subgraph H of G and S C V(H), denote the volume
of S with respect to H by

volg (S) = ZdegH(s).
seS
When the context is clear, we might drop the subscript and refer to volg(S) as vol(S).
The core idea of expanders is , although sounded counter-intuitive, the it is possible for a graph to
be tightly-connected yet sparse. We first formalize one possible measure of graph connectivity via the
definition of conductance.

Definition 7 (Conductance) Let (S,V '\ S) be a non-empty cut of G. We define a conductance of S

to be
|E(S,V\ 9)]

max{vol(S),vol(V \ S)}

@G(S) =
Then, the conductance of G is defined to be

(I)G = SIpCH\} q)(;(S)
S¢{0,v}

Definition 8 (Expander Graphs) Say a graph G is ¢-expander if and only if Po > ¢.

Let’s take a step back and digest the definition of conductance. Had we ignored the denominator
max{vol(S),vol(V '\ S)} of ®5(S), the definition simply becomes that of a min-cut. Intuitively, a graph
with a large min-cut can be interpreted as being highly connected. However, it is likely that a min-cut of
G is very unbalanced (|S] < |[V'\'S|) which mean that the connectivity of the graph has been undermined
by the smallness of S. Therefore, using min-cut as a measure of graph connectivity might not be the most
accurate. Here via the notion of conductance, each cut size is normalized by max{vol(S),vol(V \ S)},
which is a proxy to the balance-ness of both sides of a cut (S,V \ S). Therefore, we can interpret a
graph with high conductance as a graph with a large and balanced min-cut.

It turns out that an arbitrary graph G might have a low conductance. Surprisingly, G can be
partitioned into multiple parts of high conductance with only a small number of edges between different
parts.

Theorem 9 (Expander Decomposition) Let G = (V, E) be a graph with n vertices and m edges.
There exists a partition of V into U = {Uy, ..., Ux} such that

(1) i lea (Ui V\U)| < O(ém) f]
(2) G|U;] is a ¢p-expander for all i € [K] E|

It is worth noting that there is a surprising connection between the expander decomposition and
the low-diameter decomposition we saw in the previous lectures. Consider setting ¢ = 1/D, and the
decomposition of V into U = {Uy, ..., Uy }. By (1), the number of removed edges is bounded by O(m/D).
By (2), each induced subgraph G[U;] is a ¢-expander. It is also known that a ¢-expander graph has
diameter O(¢~1). Thus, each induced subgraph G[U;] has diameter O(D).

2.1 Proof of Theorem

In this subsection, we proof the Expander Decomposition Theorem. We claim that the following al-
gorithm produces a decomposition satisfying both conditions. On a high-level, the algorithm can be
described as “iteratively splitting a non-¢-expander part into two smaller parts.”

Algorithm 4 : Expander Decomposition
Input: a graph G = (V, E) with |V| = n and |E| = m, an expansion rate ¢
Output: U which is a ¢-decomposition of G

1: initialize U < V

2: while there exists U € U such that G[U] is not a ¢-expander do
3: let a non-empty set S C U be such that volg(S) < volg)(U \ S) and LEGUAS)
4
5

’UOlG[U](S)
replace, in U, the set U with (S,U \ S)
: output U

Trivially, Algorithm 4 terminates because we can decompose the partition at most n times. Also
clear (by construction) is that upon termination, the condition (2) is satisfied. Therefore it remains to
bound the number of deleted edges. This is shown via the following claim.

Claim 10 The number of deleted edges is O(¢m).

Proof Consider an arbitrary round where we replace the set U with (S, U\ S). We charge each vertex
v € S with amount ¢ - volg(v). Thus, the amount being charged to S is

> - volg(v) = ¢ vola(S) > ¢ - volg (S) > |E(S,U\ S)] (4)

veS

For any vertex v, denote 1(v) to be the total amount of charge to v throughout the algorithm. By
, the number of removed edges is bounded above by > ¥(v).

Now consider arbitrary vertex v. For every time that v is charged, the volume of the partition
containing v is down by at least a half (via line 3). Such volume starts off at most n?, and ends up

80(f) = f - polylog(n)
4@[U] is an induced subgraph on U.

at least 1. Thus, v can be charged at most 2logy n times. Moreover, each charge is of the amount
¢ - volg(v). Thus, we have

(# removed edges) < Z Pv) < Z 2logy n - (¢ - volg(v))
veV veV
= 4¢mlogyn
= O(¢m)

as wished.

	Max Flows
	Push-Relabel Algorithm
	The Algorithm
	Analysis

	Expanders and Expander Decomposition
	Proof of Theorem 9

