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Problem: List All Mincuts

Given a weighted undirected graph G = (V, E), find all its mincuts.

A mincut (A, V\A) is a partition of V such that sum of all edge weights across 
the cut is minimum.
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Problem: List All Mincuts

Given a weighted undirected graph G = (V, E), find all its mincuts.

A mincut (A, V\A) is a partition of V such that sum of all edge weights across 
the cut is minimum.

Theorem [Dinitz et al. 1976][Karger 1993]

There are O(n2) minimum cuts on a graph.

Listing all mincuts requires Ω(n3) time/space.



Cactus Graph

A cactus is a graph where every edge 
belongs to at most one (simple) cycle.



Tree is fundamental 
and simple concept in 
computer science. 

How about Cactus?

Cactus Graph

Figure from R.E. Tarjan’s Homepage

An ancient tree of hidden power

A cute and innocent cactus



Cactus in the Theory World

Algorithms: Problems NP-hard for general 
graphs, polynomial time for cacti.

A cute and innocent cactus



More on Cactus, in the Algorithm World

In competitive programming (ICPC/OI), 
cactus problems are famous for its intricacy.

A cute and innocent cactus



Cactus in the Theory World

Algorithms: Problems NP-hard for general 
graphs, polynomial time for cacti.

Topological Graph Theory: Graphs with 
maximum genus 0 are a subfamily of cacti.

Cactus has no cellular embedding on torus

Images generated by ChatGPT 4o



Cactus in the Theory World

Algorithms: Problems NP-hard for general 
graphs, polynomial time for cacti.

Topological Graph Theory: Graphs with 
maximum genus 0 are a subfamily of cacti.

Combinatorics (Cactus Representation):
An edge sparsifier of O(n) size that exactly 
captures all global mincuts of the graph. 

This talk: Compute Cactus Representation efficiently.



A cactus is a graph where every edge 
belongs to at most one (simple) cycle.

All Mincuts: Cactus Representations

Theorem [Dinitz et al. 1976]

There exists an O(n) sized cactus graph that 
preserves all mincuts of the given graph.
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All Mincuts: Cactus Representations

A cactus is a graph where every edge 
belongs to at most one (simple) cycle.

[Dinitz et al. 1976]
There exists an O(n) sized cactus graph that 
preserves all mincuts of the given graph.

Randomized Algorithms:

Deterministic Algorithms:

[Karger & Panigrahi 2009] [He, Huang, Saranurak 2024]

[He, Huang, Saranurak 2024] + [Henzinger, Li, Rao, Wang 2024]
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Tree Packing
Definition.

A tree packing is a set of (weighted) spanning 
trees, s.t. the total weight of trees containing 
edge e is no greater than           . The value of 
the packing is the total weight of the trees.



Tree Packing
Definition.

A tree packing is a set of (weighted) spanning 
trees, s.t. the total weight of trees containing 
edge e is no greater than           . The value of 
the packing is the total weight of the trees.



Tree Packing
Definition.

A tree packing is a set of (weighted) spanning 
trees, s.t. the total weight of trees containing 
edge e is no greater than           . The value of 
the packing is the total weight of the trees.



Tree Packing

G contains a tree packing of value 2.
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Tree Packing

G contains a tree packing of value 2.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut  
contains a tree packing of value at least        .

Definition.

A tree packing is a set of (weighted) spanning 
trees, s.t. the total weight of trees containing 
edge e is no greater than           . The value of 
the packing is the total weight of the trees.



Tree Packing, 2-Respecting Mincut

Definition.

A cut is said to k-respect a spanning tree if the 
spanning tree contains at most k edges of the cut.



Tree Packing, 2-Respecting Mincut

Definition.

A cut is said to k-respect a spanning tree if the 
spanning tree contains at most k edges of the cut.

The cut 1-respects the green tree and 
2-respects the pink tree. 



Tree Packing, 2-Respecting Mincut

Lemma.

In a tree packing of value at least        , for any 
mincut, half the trees (by weight) cross the 
mincut at most twice.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut  
contains a tree packing of value at least        .



Tree Packing, 2-Respecting Mincut

The cut 1-respects the pink tree and 
3-respects the pink tree. 

Lemma.

In a tree packing of value at least        , for any 
mincut, half the trees (by weight) cross the 
mincut at most twice.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut  
contains a tree packing of value at least        .



Tree Packing, 2-Respecting Mincut

The cut 2-respects both the green tree 
and the pink tree. 

Lemma.

In a tree packing of value at least        , for any 
mincut, half the trees (by weight) cross the 
mincut at most twice.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut  
contains a tree packing of value at least        .



Tree Packing, 2-Respecting Mincut

Lemma.

In a tree packing of value at least        , for any 
mincut, half the trees (by weight) cross the 
mincut at most twice.Theorem [Karger 1998]

In near-linear time we can construct a set 
of                spanning trees such that each 
minimum cut 2-respects 1/3 of them w.h.p.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut  
contains a tree packing of value at least        .



Tree Packing, 2-Respecting Mincut

Lemma.

In a tree packing of value at least        , for any 
mincut, half the trees (by weight) cross the 
mincut at most twice.Theorem [HLRW 2024]

In near-linear time we can construct a set 
of                  spanning trees such that each 
minimum cut 2-respects 1/3 of them.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut  
contains a tree packing of value at least        .
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Minimal Mincuts

We designate an arbitrary but 
fixed root vertex r.

Let r be the vertex a.
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is then defined to be the number of 
vertices in X.

The size of this cut is 3.
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Minimal Mincuts

We designate an arbitrary but 
fixed root vertex r.

Definition.

The size of a cut                  where              
is then defined to be the number of 
vertices in X.

Definition

The minimal mincut for an edge e is the 
mincut of the least size separating e from r. 

The minimal mincut for edge        .



Uniqueness of Minimal Mincuts

We designate an arbitrary but 
fixed root vertex r.

Definition

The minimal mincut for a vertex v (resp. edge e) 
is the mincut of the least size separating v (resp. 
e) from r. 

Lemma.

If a minimal mincut for a vertex or edge exists, 
then it is unique.
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                                             is non-empty.



Uniqueness of Minimal Mincuts

We designate an arbitrary but 
fixed root vertex r.

Definition

The minimal mincut for a vertex v (resp. edge e) 
is the mincut of the least size separating v (resp. 
e) from r. 

Lemma.

If a minimal mincut for a vertex or edge exists, 
then it is unique.

Lemma

If X and Y are crossing mincuts, then each of 
                                             is also mincut.



Uniqueness of Minimal Mincuts

We designate an arbitrary but 
fixed root vertex r.

The minimal mincut for edge        .
Definition

The minimal mincut for a vertex v (resp. edge e) 
is the mincut of the least size separating v (resp. 
e) from r. 

Lemma.

If a minimal mincut for a vertex or edge exists, 
then it is unique.



Minimal Mincuts and Certificates

Definition

The minimal mincut for a vertex v (resp. edge e) 
is the mincut of the least size separating v (resp. 
e) from r. 

Definition.

We say a cut                 has a vertex certificate 
(resp. edge certificate) if it is a minimal mincut 
for some vertex v (resp. edge e).



Minimal Mincuts and Certificates

A cut                  will be simply denoted 
by X.

Definition.

We say a cut X has a vertex certificate 
(resp. edge certificate) if it is a minimal 
mincut for some vertex v (resp. edge e).

Definition

A chain certificate is a sequence of disjoint 
non-empty vertex subsets                             
where          , and recursively:

1. For each          has either a vertex/edge 
certificate, or a chain certificate.

2. For each                                has an edge 
certificate.

A set X has chain certificate                          if 
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X, which has a chain certificate, is either a 
mincut or the vertex set V.



Minimal Mincuts and Certificates

Definition
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certificate, an edge certificate, or a chain 
certificate.
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Minimal Mincuts and Certificates

Lemma

Every mincut on G has either a vertex 
certificate, an edge certificate, or a chain 
certificate.Lemma

If X and Y are crossing mincuts, then each of 
                                             is also mincut.



Minimal Mincuts and Certificates
Theorem

Given a graph G, a tree packing T and the set of  
(2-respecting) cuts representing minimal 
mincuts of each vertex v and each edge e, we 
can deterministic computes a cactus 
representation of G in                                     time.

Lemma

Every mincut on G has either a vertex 
certificate, an edge certificate, or a chain 
certificate.We build the cactus by scanning the 

minimal mincuts from size small to large, 
and reduce to containment query.



Karger’s Near-Linear Time Algorithm

1. Compute a tree packing of size               such that each mincut 2-respects  
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimum 2-respecting cut on the 
tree.

3. Take the minimum over all the trees in step 2.



Cactus Constuction Algorithm

1. Compute a tree packing of size               such that each mincut 2-respects  
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimal 2-respecting mincut for 
every vertex and edge on the tree.

3. Building the cactus representation using the minimal mincuts from step 2.



Cactus Constuction Algorithm (Deterministic)

1. Compute a tree packing of size                such that each mincut 2-respects  
⅓ of them.

2. For each tree in the packing, compute a minimal 2-respecting mincut for 
every vertex and edge on the tree.

3. Building the cactus representation using the minimal mincuts from step 2.

We make step 2&3 deterministic, faster, and more modular.
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Karger’s Near-Linear Time Algorithm

1. Compute a tree packing of size               such that each mincut 2-respects  
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimum 2-respecting cut on 
the tree.

3. Take the minimum over all the trees in step 2.

Reference: slides by Bryce Sandlund [BLS 2020].



1-Respect Algorithm

Given a spanning tree T of a 
graph G, find a smallest cut of G 
that cuts one edge of T.



1-Respect Algorithm

When is a non-tree edge uv cut?



1-Respect Algorithm

When is a non-tree edge uv cut?

Non tree-edge uv is cut iff the cut 
in G cuts an edge on the uv-path 
on T.



How to compute the set of all  
cuts that 1-respects T ?

1-Respect Algorithm



How to compute the set of all           
cuts that 1-respects T ?

Idea: Iterate an edge e through T, 
keeping track of non-tree edges that 
cross a cut at e.

1-Respect Algorithm



How to compute the set of all           
cuts that 1-respects T ?

Idea: Iterate an edge e through T, 
keeping track of non-tree edges that 
cross a cut at e.

Is there an order of edges e that results 
in non-tree edges transitioning on and 
off the current cut a small number of 
times?

1-Respect Algorithm



1. Split T into root-to-leaf paths.
2. Continue the path to the child 

with the most descendants.

Heavy-Light Decomposition



1. Split T into root-to-leaf paths.
2. Continue the path to the child 

with the most descendants.

Any root-to-leaf paths requires at 
most               color changes.

Heavy-Light Decomposition



1. Iterate edge e in heavy-light 
decomposition order

2. Keep track of non-tree edges that 
cross a cut at e.

Non tree edge uv will transition on or 
off the current cut               times.

1-Respect Algorithm



2-Respect Algorithm

When two edges of T are cut, 
when does a non-tree edge uv 
cross the cut?
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in G cuts exact one edge on the 
uv-path on T. 



2-Respect Algorithm

When two edges of T are cut, 
when does a non-tree edge uv 
cross the cut?

Non tree-edge uv is cut iff the cut 
in G cuts exact one edge on the 
uv-path on T. 



How can we leverage our 1-respect 
strategy for cuts that cut two edges of 
T ?

2-Respect Algorithm



How can we leverage our 1-respect 
strategy for cuts that cut two edges of 
T ?

We cannot spend            time checking all 
the cuts.

2-Respect Algorithm



Top Tree Data Structure

Operations over a weighted tree T.

● PathAdd(u,v,w) : Add weight w to all edges on the uv-path in T.
● NonPathAdd(u,v,w) : Add weight w to all edges not on the uv-path in T.
● QueryMinimum() : Return the minimum weight edge in T.
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All operations take              time.
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cut e and f. If we fix e, we can 
determine which f result in 
non-tree edge uv cross the cut.
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Top Tree Data Structure

Operations over a weighted tree T.

● PathAdd(u,v,w) : Add weight w to all edges on the uv-path in T.
● NonPathAdd(u,v,w) : Add weight w to all edges not on the uv-path in T.
● QueryMinimum() : Return the minimum weight edge in T.

All operations take              time.



2-Respect Algorithm

Call the two tree edges that we 
cut e and f. If we fix e, we can 
determine which f result in 
non-tree edge uv cross the cut.

● If e is on uv-path, any f off the 
uv-path cut uv.

● If e is off uv-path, any f on the 
uv-path cut uv.

Use top tree to find best f !
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Cactus Constuction Algorithm

1. Compute a tree packing of size               such that each mincut 2-respects  
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimal 2-respecting mincut for 
every vertex and edge on the tree. (very technical)

3. Building the cactus representation using the minimal mincuts from step 2.



Summary of Part I

A cactus is a graph where every edge 
belongs to at most one (simple) cycle.

[Dinitz et al. 1976]
There exists an O(n) sized cactus graph that 
preserves all mincuts of the given graph.

Randomized Algorithms:

Deterministic Algorithms:

[Karger & Panigrahi 2009] [He, Huang, Saranurak 2024]

[He, Huang, Saranurak 2024] + [Henzinger, Li, Rao, Wang 2024]



Cactus Representations in 
Polylogarithmic Max-flow via
 Maximal Isolating Mincuts

Part II



Steiner Mincuts

Social Network Road Network Computer Network

*Images generated by ChatGPT 4.0

“Find a proper subset X of T such that the cost to 
disconnecting X from T\X is minimized.”



Steiner Mincuts

A T-mincut is a “partition” of T that 
has a minimum possible valued cut 
among all non-trivial partition of T.
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Steiner Mincuts

A T-mincut is a “partition” of T that 
has a minimum possible valued cut 
among all non-trivial partition of T.

Theorem [Karger 1993][Dinitz et al. 1994]

There exists an O(|T|) sized cactus graph that 
preserves all T-mincuts of the given graph.



Steiner Mincuts: Our Result

A T-mincut is a “partition” of T that 
has a minimum possible valued cut 
among all non-trivial partition of T.

Theorem [Karger 1993][Dinitz et al. 1994]

There exists an O(|T|) sized cactus graph that 
preserves all T-mincuts of the given graph.

Computing cactus representation of Steiner mincuts: 



Hypergraph Mincuts:  Hypercactus Representation

A Hypergraph



Hypergraph Mincuts:  Hypercactus Representation

A Hypergraph Hypercactus RepresentationTheorem [Fleiner & Jordán 1999]

There exists an O(n) sized hypercactus graph that 
preserves all mincuts of the given hypergraph.



Steiner Hypergraph Mincuts: Our Result

Theorem [Fleiner & Jordán 1999]

There exists an O(|T|) sized hypercactus graph that 
preserves all T-mincuts of the given hypergraph.



Steiner Hypergraph Mincuts: Our Result

Theorem [Fleiner & Jordán 1999]

There exists an O(|T|) sized hypercactus graph that 
preserves all T-mincuts of the given hypergraph.

Algorithms:

[He, Huang, Saranurak 2024][Chekuri & Xu 2017] + [Fleiner & Jordán 1999]



Our results: Summary

This talk
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A Contraction-Based Divide and Conquer Framework

1. Find any non-trivial T-mincut 
(T-split).

2. Contract all vertices on each side 
and recurse.

3. Recover the cactus representation 
from the “sub-cacti”.

[Chekuri and Xu 2017]

Definition. T-split  [Chekuri and Xu 2017]

A T-split partitions the graph such that both side 
contain at least 2 terminal vertices.
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A Contraction-Based Divide and Conquer Framework

1. Find any non-trivial T-mincut 
(T-split).

2. Contract all vertices on each side 
and recurse.

3. Recover the cactus representation 
from the “sub-cacti”.

[Chekuri and Xu 2017]
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A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

{x} Definition. T-split  [Chekuri and Xu 2017]

A T-split partitions the graph such that both side 
contain at least 2 terminal vertices.

1. Find any non-trivial T-mincut 
(T-split).

2. Contract all vertices on each side 
and recurse.

3. Recover the cactus representation 
from the “sub-cacti”.

Base case (No T-split found): The cactus is either 
a triangle or a star.



1. Find any non-trivial T-mincut 
(T-split).

2. Contract all vertices on each side 
and recurse.

3. Recover the cactus representation 
from the “sub-cacti”.

Q1: How to find T-splits efficiently?

A:  [Chekuri and Xu 2017] find some arbitrary T-splits using max-flow.

Q2: Can we bound the depth of divide and conquer?

A: We find some “balanced” T-splits, implies                  depth!

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]



1. Find any non-trivial T-mincut 
(T-split).

2. Contract all vertices on each side 
and recurse.

3. Recover the cactus representation 
from the “sub-cacti”.

Q1: How to find T-splits efficiently?

A:  [Chekuri and Xu 2017] find some arbitrary T-splits using max-flow.

Q2: Can we bound the depth of divide and conquer?

A: We find some “balanced” T-splits, implies                  depth!

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

Inspired by 
Isolating Mincuts
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Minimal Isolating Mincuts

● This tool is simple and very powerful: 10+ papers in a few years
● It will not be useful for us though.
● We will introduce a new variant of this, but the basic definition of this part 

is useful.
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Isolating Mincuts [Li & Panigrahi 2020]

Given a set T of terminals, for each terminal
 find a minimum valued cut that separate      from             . 

 x-mincut of T



Minimal Isolating Mincuts [Li & Panigrahi 2020]

An x-mincut of T  is “minimal” if all proper subset 
containing x has a strictly larger cut boundary.

Isolating Cuts Lemma [Li & Panigrahi 2020]

Given a terminal set T, there is an algorithm 
that computes the minimal isolating mincuts 
for every x in T using                    max-flows.

{x}

Submodularity for “cut values”:
Uniqueness comes from submodularity.



Minimal Isolating Mincuts: Definitions Cont’d

An A-mincut of T  is “minimal” if all proper subset 
containing A has a strictly larger cut boundary.

Submodularity for “cut values”:

The minimal A-mincut X satisfies:

1. X contains A and X is disjoint from T\A.
2. C(X) is minimum under 1.
3. |X| is minimum under 1. and 2.



Computing Minimal Isolating Mincuts

Submodularity for “cut values”:

Suppose we arbitrarily partition T into two halves (A, B), we can compute 
minimal A-mincut of T and minimal B-mincut of T.
Again, using submodularity, we can show that

        minimal x-mincut      minimal A-mincut for all x in A.

x



Computing Minimal Isolating Mincuts

Submodularity for “cut values”:

Suppose we arbitrarily partition T into two halves (A, B), we can compute 
minimal A-mincut of T and minimal B-mincut of T.
Again, using submodularity, we can show that

        minimal x-mincut      minimal A-mincut for all x in A.

x

Contract & Recurse!



Submodularity for “cut values”:

Computing Minimal Isolating MincutsComputing Minimal Isolating Mincuts
Suppose we arbitrarily partition T into two halves (A, B), we can compute 
minimal A-mincut of T and minimal B-mincut of T.
Again, using submodularity, we can show that

        minimal x-mincut      minimal A-mincut for all x in A.

Contract & Recurse!
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Steiner Mincuts

A T-mincut is a “partition” of T that has a minimum possible valued cut among 
all non-trivial partition of T.

Problem: Find a T-mincut S.

Observe: For any fixed            , S must separate     from some            .

We can use |T| max-flows to solve the problem.



Steiner Mincuts

A T-mincut is a “partition” of T that has a minimum possible valued cut among 
all non-trivial partition of T.

Problem: Find a T-mincut S.

Observe: For any fixed            , S must separate     from some            .

We can use |T| max-flows to solve the problem.

Will show:              max-flows via isolating cuts.

For more applications, see TCS+ Talk by Thatchaphol Saranurak.
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Let        be some Steiner mincut. (Assume                             )

Easy Case: Suppose                        .



Steiner Mincuts: Easy Case

Let        be some Steiner mincut. (Assume                             )

Easy Case: Suppose                        .

Algo: Just call IsoCut(T).



Steiner Mincuts: General Case

General Case: Suppose                                     .
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  (i.e. sample each t independently with prob         )
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Steiner Mincuts: General Case

General Case: Suppose                                     .

  (i.e. sample each t independently with prob         )

   .

If happens, this is the easy case! Just call IsoCut(    ).

 

 



Maximal Isolating Mincuts [He, Huang, Saranurak 2024]

An x-mincut of T is “maximal” if all proper superset 
containing x has a strictly larger cut value.

Maximal Isolating Cuts [He, Huang, Saranurak 2024]

Given a terminal set T, there is an algorithm 
that computes the maximal isolating mincuts 
for T using                    max-flows.

Submodularity for “cut values”:



Maximal Isolating Mincuts [He, Huang, Saranurak 2024]

An x-mincut of T is “maximal” if all proper superset 
containing x has a strictly larger cut value.

Maximal Isolating Cuts [He, Huang, Saranurak 2024]

Given a terminal set T, there is an algorithm 
that computes the maximal isolating mincuts 
for T using                    max-flows.

Submodularity for “cut values”:

Not obvious if maximal isolating mincuts 
is useful and whether it can be computed 
efficiently.
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only minimal isolating mincuts 
(with sub-sampling), we cannot 
distinguish between a complete 
graph and a cycle.

Input Graph Cactus
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Indistinguishability

If we use the tools that computes 
only minimal isolating mincuts, 
(with sub-sampling), we cannot 
distinguish between a complete 
graph and a cycle.

Input Graph Cactus

We can distinguish these two cases with 
maximal isolating mincuts!

Moreover, we can find “balanced” cuts which 
makes the divide and conquer more efficient!



Maximal Isolating Mincuts + Sample Terminals ⇒ 
D&C

Is there a “balanced” edge-cut in the 
current cactus?

Yes NoBoth sides contain at 
least |T|/4 terminals.

There exists a centroid v.

Consider the underlying 
cactus representation.



Maximal Isolating Mincuts + Sample 3 Terminals
⇒ Balanced D&C

Is there a “balanced” edge-cut in the 
current cactus?

YesBoth sides contain at 
least |T|/4 terminals. The set (yellow) X corresponds to 

maximal r-mincut.

u,v are uniformly sampled. With 
constant probability V\X contains at 
least |T|/4 terminals.



Maximal Isolating Mincuts + Sample 3 Terminals
⇒ Balanced D&C

Is there a “balanced” edge-cut in the 
current cactus?

No There exists a centroid v.
Want to obtain a set of cuts, 
corresponds to each of the blue sets. 



Maximal Isolating Mincuts + Sample Terminals
⇒ Centroid D&C

Is there a “balanced” edge-cut in the 
current cactus?

No There exists a centroid v.
For each set     , sample each terminal 
with probability                    . 



Maximal Isolating Mincuts + Sample Terminals
⇒ Centroid D&C

Is there a “balanced” edge-cut in the 
current cactus?

No There exists a centroid v.
For each set     , sample each terminal 
with probability                    .              
With constant probability, exactly one 
terminal in      is sampled, together 
with at least one terminal from any 
two other subsets being sampled.



Maximal Isolating Mincuts + Sample Terminals ⇒ 
D&C

Is there a “balanced” edge-cut in the 
current cactus?

Yes NoBoth sides contain at 
least |T|/4 terminals.

There exists a centroid v.

Consider the underlying 
cactus representation.



Maximal Isolating Mincuts + Sample Terminals ⇒ 
D&C

Is there a “balanced” edge-cut in the 
current cactus?

Yes NoBoth sides contain at 
least |T|/4 terminals.

There exists a centroid v.

Consider the underlying 
cactus representation.

Q1: How do we find T-splits efficiently?

Q2: Can we bound the depth of divide and 
conquer?

Both challenges solved!
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Posi-Modularity & Pairwise Intersection Only Lemma

Posi-modularity for “cut values”:

Submodularity for “cut values”:

“3-Star Lemma”
[Dinitz and Vainshtein 1994]

A

B

C

Theorem [Dinitz and Vainshtein 1994]

Let A, B, and C be disjoint sets of terminals. Then, 
the intersection of {any A-mincut, any B-mincut, 
and any C-mincut} is empty.



Posi-Modularity & Pairwise Intersection Only Lemma

Posi-modularity for “cut values”:

Submodularity for “cut values”:

“3-Star Lemma”
[Dinitz and Vainshtein 1994]

Theorem [Dinitz and Vainshtein 1994]

Let A, B, and C be disjoint sets of terminals. Then, 
the intersection of {any A-mincut, any B-mincut, 
and any C-mincut} is empty.

Each vertex appears in at most 2 maximal isolating 
mincuts!

A

B

C



Computing Maximal Isolating Mincuts

Submodularity for “cut values”:

Suppose we arbitrarily partition T into two halves (A, B), and we can compute 
maximal A-mincut of T and maximal B-mincut of T.
Again, using submodularity, we can show that

        maximal x-mincut      maximal A-mincut for all x in A.



Submodularity for “cut values”:

Computing Maximal Isolating Mincuts

Contract & Recurse!

Suppose we arbitrarily partition T into two halves (A, B), and we can compute 
maximal A-mincut of T and maximal B-mincut of T.
Again, using submodularity, we can show that

        maximal x-mincut      maximal A-mincut for all x in A.



Posi-Modularity

Posi-modularity for “cut values”:

Submodularity for “cut values”:



Posi-Modularity & Pairwise Intersection Only Lemma

Posi-modularity for “cut values”:

Submodularity for “cut values”:

“3-Star Lemma”
[Dinitz and Vainshtein 1994]

Theorem [Dinitz and Vainshtein 1994]

Let A, B, and C be disjoint sets of terminals. Then, 
the intersection of {any A-mincut, any B-mincut, 
and any C-mincut} is empty.

Each vertex appears in at most 2 recursion paths!

A

B

C



Summary

Standard Cactus Representation 

Steiner Cactus Representation  

Hypergraph Cactus Representation

Element Cut Cactus Representation

General submodular functions

Solved!

Solved!

Solved!

Open

Open

From mincuts to near-mincuts：Polygon Representations Open

Thank you!



Thank you!


