
Fast Algorithms for Computing
Cactus Representations of

 Minimum Cuts

Zhongtian He
(Princeton University)

Nov 25, 2024

*Joint works with Thatchaphol Saranurak and Shang-En Huang.
(University of Michigan) (Boston College)

Problem: List All Mincuts

Given a weighted undirected graph G = (V, E), find all its mincuts.

A mincut (A, V\A) is a partition of V such that sum of all edge weights across
the cut is minimum.

Problem: List All Mincuts

Given a weighted undirected graph G = (V, E), find all its mincuts.

A mincut (A, V\A) is a partition of V such that sum of all edge weights across
the cut is minimum.

Theorem [Dinitz et al. 1976][Karger 1993]

There are O(n2) minimum cuts on a graph.

Problem: List All Mincuts

Given a weighted undirected graph G = (V, E), find all its mincuts.

A mincut (A, V\A) is a partition of V such that sum of all edge weights across
the cut is minimum.

Theorem [Dinitz et al. 1976][Karger 1993]

There are O(n2) minimum cuts on a graph.

Listing all mincuts requires Ω(n3) time/space.

Cactus Graph

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

Tree is fundamental
and simple concept in
computer science.

How about Cactus?

Cactus Graph

Figure from R.E. Tarjan’s Homepage

An ancient tree of hidden power

A cute and innocent cactus

Cactus in the Theory World

Algorithms: Problems NP-hard for general
graphs, polynomial time for cacti.

A cute and innocent cactus

More on Cactus, in the Algorithm World

In competitive programming (ICPC/OI),
cactus problems are famous for its intricacy.

A cute and innocent cactus

Cactus in the Theory World

Algorithms: Problems NP-hard for general
graphs, polynomial time for cacti.

Topological Graph Theory: Graphs with
maximum genus 0 are a subfamily of cacti.

Cactus has no cellular embedding on torus

Images generated by ChatGPT 4o

Cactus in the Theory World

Algorithms: Problems NP-hard for general
graphs, polynomial time for cacti.

Topological Graph Theory: Graphs with
maximum genus 0 are a subfamily of cacti.

Combinatorics (Cactus Representation):
An edge sparsifier of O(n) size that exactly
captures all global mincuts of the graph.

This talk: Compute Cactus Representation efficiently.

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

All Mincuts: Cactus Representations

Theorem [Dinitz et al. 1976]

There exists an O(n) sized cactus graph that
preserves all mincuts of the given graph.

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

All Mincuts: Cactus Representations

Theorem [Dinitz et al. 1976]

There exists an O(n) sized cactus graph that
preserves all mincuts of the given graph.

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

All Mincuts: Cactus Representations

Theorem [Dinitz et al. 1976]

There exists an O(n) sized cactus graph that
preserves all mincuts of the given graph.

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

All Mincuts: Cactus Representations

Theorem [Dinitz et al. 1976]

There exists an O(n) sized cactus graph that
preserves all mincuts of the given graph.

All Mincuts: Cactus Representations

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

[Dinitz et al. 1976]
There exists an O(n) sized cactus graph that
preserves all mincuts of the given graph.

Randomized Algorithms:

Deterministic Algorithms:

[Karger & Panigrahi 2009] [He, Huang, Saranurak 2024]

[He, Huang, Saranurak 2024] + [Henzinger, Li, Rao, Wang 2024]

Outline

1

2

3

4

Tree Packing

Minimal Mincuts and Cactus Construction

Compute 2-Respecting Minimal Mincuts

Karger’s 2-Respecting Mincuts Algorithm

Outline

1

2

3

4

Tree Packing

Minimal Mincuts and Cactus Construction

Compute 2-Respecting Minimal Mincuts

Karger’s 2-Respecting Mincuts Algorithm

Tree Packing
Definition.

A tree packing is a set of (weighted) spanning
trees, s.t. the total weight of trees containing
edge e is no greater than . The value of
the packing is the total weight of the trees.

Tree Packing
Definition.

A tree packing is a set of (weighted) spanning
trees, s.t. the total weight of trees containing
edge e is no greater than . The value of
the packing is the total weight of the trees.

Tree Packing
Definition.

A tree packing is a set of (weighted) spanning
trees, s.t. the total weight of trees containing
edge e is no greater than . The value of
the packing is the total weight of the trees.

Tree Packing

G contains a tree packing of value 2.

Definition.

A tree packing is a set of (weighted) spanning
trees, s.t. the total weight of trees containing
edge e is no greater than . The value of
the packing is the total weight of the trees.

Tree Packing

G contains a tree packing of value 2.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut
contains a tree packing of value at least .

Definition.

A tree packing is a set of (weighted) spanning
trees, s.t. the total weight of trees containing
edge e is no greater than . The value of
the packing is the total weight of the trees.

Tree Packing, 2-Respecting Mincut

Definition.

A cut is said to k-respect a spanning tree if the
spanning tree contains at most k edges of the cut.

Tree Packing, 2-Respecting Mincut

Definition.

A cut is said to k-respect a spanning tree if the
spanning tree contains at most k edges of the cut.

The cut 1-respects the green tree and
2-respects the pink tree.

Tree Packing, 2-Respecting Mincut

Lemma.

In a tree packing of value at least , for any
mincut, half the trees (by weight) cross the
mincut at most twice.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut
contains a tree packing of value at least .

Tree Packing, 2-Respecting Mincut

The cut 1-respects the pink tree and
3-respects the pink tree.

Lemma.

In a tree packing of value at least , for any
mincut, half the trees (by weight) cross the
mincut at most twice.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut
contains a tree packing of value at least .

Tree Packing, 2-Respecting Mincut

The cut 2-respects both the green tree
and the pink tree.

Lemma.

In a tree packing of value at least , for any
mincut, half the trees (by weight) cross the
mincut at most twice.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut
contains a tree packing of value at least .

Tree Packing, 2-Respecting Mincut

Lemma.

In a tree packing of value at least , for any
mincut, half the trees (by weight) cross the
mincut at most twice.Theorem [Karger 1998]

In near-linear time we can construct a set
of spanning trees such that each
minimum cut 2-respects 1/3 of them w.h.p.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut
contains a tree packing of value at least .

Tree Packing, 2-Respecting Mincut

Lemma.

In a tree packing of value at least , for any
mincut, half the trees (by weight) cross the
mincut at most twice.Theorem [HLRW 2024]

In near-linear time we can construct a set
of spanning trees such that each
minimum cut 2-respects 1/3 of them.

Theorem [Nash-Williams 1961]

Any undirected graph with minimum cut
contains a tree packing of value at least .

Outline

1

2

3

4

Tree Packing

Minimal Mincuts and Cactus Construction

Compute 2-Respecting Minimal Mincuts

Karger’s 2-Respecting Mincuts Algorithm

Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Let r be the vertex a.

Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Definition.

The size of a cut where
is then defined to be the number of
vertices in X.

The size of this cut is 3.

Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Definition.

The size of a cut where
is then defined to be the number of
vertices in X.

Definition

The minimal mincut for a vertex v is the
mincut of the least size separating v from r.

The minimal mincut for vertex c.

Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Definition.

The size of a cut where
is then defined to be the number of
vertices in X.

Definition

The minimal mincut for an edge e is the
mincut of the least size separating e from r.

The minimal mincut for edge .

Uniqueness of Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Definition

The minimal mincut for a vertex v (resp. edge e)
is the mincut of the least size separating v (resp.
e) from r.

Lemma.

If a minimal mincut for a vertex or edge exists,
then it is unique.

Uniqueness of Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Definition

The minimal mincut for a vertex v (resp. edge e)
is the mincut of the least size separating v (resp.
e) from r.

Lemma.

If a minimal mincut for a vertex or edge exists,
then it is unique.

Definition

Two cuts X and Y are crossing if each of
 is non-empty.

Uniqueness of Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

Definition

The minimal mincut for a vertex v (resp. edge e)
is the mincut of the least size separating v (resp.
e) from r.

Lemma.

If a minimal mincut for a vertex or edge exists,
then it is unique.

Lemma

If X and Y are crossing mincuts, then each of
 is also mincut.

Uniqueness of Minimal Mincuts

We designate an arbitrary but
fixed root vertex r.

The minimal mincut for edge .
Definition

The minimal mincut for a vertex v (resp. edge e)
is the mincut of the least size separating v (resp.
e) from r.

Lemma.

If a minimal mincut for a vertex or edge exists,
then it is unique.

Minimal Mincuts and Certificates

Definition

The minimal mincut for a vertex v (resp. edge e)
is the mincut of the least size separating v (resp.
e) from r.

Definition.

We say a cut has a vertex certificate
(resp. edge certificate) if it is a minimal mincut
for some vertex v (resp. edge e).

Minimal Mincuts and Certificates

A cut will be simply denoted
by X.

Definition.

We say a cut X has a vertex certificate
(resp. edge certificate) if it is a minimal
mincut for some vertex v (resp. edge e).

Definition

A chain certificate is a sequence of disjoint
non-empty vertex subsets
where , and recursively:

1. For each has either a vertex/edge
certificate, or a chain certificate.

2. For each has an edge
certificate.

A set X has chain certificate if

Minimal Mincuts and Certificates

A cut will be simply denoted
by X.

Definition

A chain certificate is a sequence of disjoint
non-empty vertex subsets
where , and recursively:

1. For each has either a vertex/edge
certificate, or a chain certificate.

2. For each has an edge
certificate.

A set X has chain certificate if
The cut (red) has a chain certificate (purple).

Minimal Mincuts and Certificates

Definition

A chain certificate is a sequence of disjoint
non-empty vertex subsets
where , and recursively:

1. For each has either a vertex/edge
certificate, or a chain certificate.

2. For each has an edge
certificate.

A set X has chain certificate if
The cut (red) has a chain certificate (purple).

Lemma

X, which has a chain certificate, is either a
mincut or the vertex set V.

Minimal Mincuts and Certificates

Definition

A chain certificate is a sequence of disjoint
non-empty vertex subsets
where , and recursively:

1. For each has either a vertex/edge
certificate, or a chain certificate.

2. For each has an edge
certificate.

A set X has chain certificate if

Lemma

X, which has a chain certificate, is either a
mincut or the vertex set V.

Lemma

Every mincut on G has either a vertex
certificate, an edge certificate, or a chain
certificate.

Minimal Mincuts and Certificates

Definition

A chain certificate is a sequence of disjoint
non-empty vertex subsets
where , and recursively:

1. For each has either a vertex/edge
certificate, or a chain certificate.

2. For each has an edge
certificate.

A set X has chain certificate if

Lemma

X, which has a chain certificate, is either a
mincut or the vertex set V.

Minimal Mincuts and Certificates

Definition

A chain certificate is a sequence of disjoint
non-empty vertex subsets
where , and recursively:

1. For each has either a vertex/edge
certificate, or a chain certificate.

2. For each has an edge
certificate.

A set X has chain certificate if

Lemma

X, which has a chain certificate, is either a
mincut or the vertex set V.

Lemma

If X and Y are crossing mincuts, then each of
 is also mincut.

Minimal Mincuts and Certificates

Lemma

Every mincut on G has either a vertex
certificate, an edge certificate, or a chain
certificate.Lemma

If X and Y are crossing mincuts, then each of
 is also mincut.

Minimal Mincuts and Certificates
Theorem

Given a graph G, a tree packing T and the set of
(2-respecting) cuts representing minimal
mincuts of each vertex v and each edge e, we
can deterministic computes a cactus
representation of G in time.

Lemma

Every mincut on G has either a vertex
certificate, an edge certificate, or a chain
certificate.We build the cactus by scanning the

minimal mincuts from size small to large,
and reduce to containment query.

Karger’s Near-Linear Time Algorithm

1. Compute a tree packing of size such that each mincut 2-respects
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimum 2-respecting cut on the
tree.

3. Take the minimum over all the trees in step 2.

Cactus Constuction Algorithm

1. Compute a tree packing of size such that each mincut 2-respects
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimal 2-respecting mincut for
every vertex and edge on the tree.

3. Building the cactus representation using the minimal mincuts from step 2.

Cactus Constuction Algorithm (Deterministic)

1. Compute a tree packing of size such that each mincut 2-respects
⅓ of them.

2. For each tree in the packing, compute a minimal 2-respecting mincut for
every vertex and edge on the tree.

3. Building the cactus representation using the minimal mincuts from step 2.

We make step 2&3 deterministic, faster, and more modular.

Outline

1

2

3

4

Tree Packing

Minimal Mincuts and Cactus Construction

Compute 2-Respecting Minimal Mincuts

Karger’s 2-Respecting Mincuts Algorithm

Karger’s Near-Linear Time Algorithm

1. Compute a tree packing of size such that each mincut 2-respects
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimum 2-respecting cut on
the tree.

3. Take the minimum over all the trees in step 2.

Reference: slides by Bryce Sandlund [BLS 2020].

1-Respect Algorithm

Given a spanning tree T of a
graph G, find a smallest cut of G
that cuts one edge of T.

1-Respect Algorithm

When is a non-tree edge uv cut?

1-Respect Algorithm

When is a non-tree edge uv cut?

Non tree-edge uv is cut iff the cut
in G cuts an edge on the uv-path
on T.

How to compute the set of all
cuts that 1-respects T ?

1-Respect Algorithm

How to compute the set of all
cuts that 1-respects T ?

Idea: Iterate an edge e through T,
keeping track of non-tree edges that
cross a cut at e.

1-Respect Algorithm

How to compute the set of all
cuts that 1-respects T ?

Idea: Iterate an edge e through T,
keeping track of non-tree edges that
cross a cut at e.

Is there an order of edges e that results
in non-tree edges transitioning on and
off the current cut a small number of
times?

1-Respect Algorithm

1. Split T into root-to-leaf paths.
2. Continue the path to the child

with the most descendants.

Heavy-Light Decomposition

1. Split T into root-to-leaf paths.
2. Continue the path to the child

with the most descendants.

Any root-to-leaf paths requires at
most color changes.

Heavy-Light Decomposition

1. Iterate edge e in heavy-light
decomposition order

2. Keep track of non-tree edges that
cross a cut at e.

Non tree edge uv will transition on or
off the current cut times.

1-Respect Algorithm

2-Respect Algorithm

When two edges of T are cut,
when does a non-tree edge uv
cross the cut?

2-Respect Algorithm

When two edges of T are cut,
when does a non-tree edge uv
cross the cut?

Non tree-edge uv is cut iff the cut
in G cuts exact one edge on the
uv-path on T.

2-Respect Algorithm

When two edges of T are cut,
when does a non-tree edge uv
cross the cut?

Non tree-edge uv is cut iff the cut
in G cuts exact one edge on the
uv-path on T.

How can we leverage our 1-respect
strategy for cuts that cut two edges of
T ?

2-Respect Algorithm

How can we leverage our 1-respect
strategy for cuts that cut two edges of
T ?

We cannot spend time checking all
the cuts.

2-Respect Algorithm

Top Tree Data Structure

Operations over a weighted tree T.

● PathAdd(u,v,w) : Add weight w to all edges on the uv-path in T.
● NonPathAdd(u,v,w) : Add weight w to all edges not on the uv-path in T.
● QueryMinimum() : Return the minimum weight edge in T.

Top Tree Data Structure

Operations over a weighted tree T.

● PathAdd(u,v,w) : Add weight w to all edges on the uv-path in T.
● NonPathAdd(u,v,w) : Add weight w to all edges not on the uv-path in T.
● QueryMinimum() : Return the minimum weight edge in T.

All operations take time.

2-Respect Algorithm

Call the two tree edges that we
cut e and f. If we fix e, we can
determine which f result in
non-tree edge uv cross the cut.

2-Respect Algorithm

Call the two tree edges that we
cut e and f. If we fix e, we can
determine which f result in
non-tree edge uv cross the cut.

● If e is on uv-path, any f off the
uv-path cut uv.

2-Respect Algorithm

Call the two tree edges that we
cut e and f. If we fix e, we can
determine which f result in
non-tree edge uv cross the cut.

● If e is on uv-path, any f off the
uv-path cut uv.

● If e is off uv-path, any f on the
uv-path cut uv.

Top Tree Data Structure

Operations over a weighted tree T.

● PathAdd(u,v,w) : Add weight w to all edges on the uv-path in T.
● NonPathAdd(u,v,w) : Add weight w to all edges not on the uv-path in T.
● QueryMinimum() : Return the minimum weight edge in T.

All operations take time.

2-Respect Algorithm

Call the two tree edges that we
cut e and f. If we fix e, we can
determine which f result in
non-tree edge uv cross the cut.

● If e is on uv-path, any f off the
uv-path cut uv.

● If e is off uv-path, any f on the
uv-path cut uv.

Use top tree to find best f !

Outline

1

2

3

4

Tree Packing

Minimal Mincuts and Cactus Construction

Compute 2-Respecting Minimal Mincuts

Karger’s 2-Respecting Mincuts Algorithm

Cactus Constuction Algorithm

1. Compute a tree packing of size such that each mincut 2-respects
⅓ of them w.h.p.

2. For each tree in the packing, compute a minimal 2-respecting mincut for
every vertex and edge on the tree. (very technical)

3. Building the cactus representation using the minimal mincuts from step 2.

Summary of Part I

A cactus is a graph where every edge
belongs to at most one (simple) cycle.

[Dinitz et al. 1976]
There exists an O(n) sized cactus graph that
preserves all mincuts of the given graph.

Randomized Algorithms:

Deterministic Algorithms:

[Karger & Panigrahi 2009] [He, Huang, Saranurak 2024]

[He, Huang, Saranurak 2024] + [Henzinger, Li, Rao, Wang 2024]

Cactus Representations in
Polylogarithmic Max-flow via
 Maximal Isolating Mincuts

Part II

Steiner Mincuts

Social Network Road Network Computer Network

*Images generated by ChatGPT 4.0

“Find a proper subset X of T such that the cost to
disconnecting X from T\X is minimized.”

Steiner Mincuts

A T-mincut is a “partition” of T that
has a minimum possible valued cut
among all non-trivial partition of T.

Steiner Mincuts

A T-mincut is a “partition” of T that
has a minimum possible valued cut
among all non-trivial partition of T.

Theorem [Karger 1993][Dinitz et al. 1994]

There exists an O(|T|) sized cactus graph that
preserves all T-mincuts of the given graph.

Steiner Mincuts

A T-mincut is a “partition” of T that
has a minimum possible valued cut
among all non-trivial partition of T.

Theorem [Karger 1993][Dinitz et al. 1994]

There exists an O(|T|) sized cactus graph that
preserves all T-mincuts of the given graph.

Steiner Mincuts: Our Result

A T-mincut is a “partition” of T that
has a minimum possible valued cut
among all non-trivial partition of T.

Theorem [Karger 1993][Dinitz et al. 1994]

There exists an O(|T|) sized cactus graph that
preserves all T-mincuts of the given graph.

Computing cactus representation of Steiner mincuts:

Hypergraph Mincuts: Hypercactus Representation

A Hypergraph

Hypergraph Mincuts: Hypercactus Representation

A Hypergraph Hypercactus RepresentationTheorem [Fleiner & Jordán 1999]

There exists an O(n) sized hypercactus graph that
preserves all mincuts of the given hypergraph.

Steiner Hypergraph Mincuts: Our Result

Theorem [Fleiner & Jordán 1999]

There exists an O(|T|) sized hypercactus graph that
preserves all T-mincuts of the given hypergraph.

Steiner Hypergraph Mincuts: Our Result

Theorem [Fleiner & Jordán 1999]

There exists an O(|T|) sized hypercactus graph that
preserves all T-mincuts of the given hypergraph.

Algorithms:

[He, Huang, Saranurak 2024][Chekuri & Xu 2017] + [Fleiner & Jordán 1999]

Our results: Summary

This talk

Outline

1

2

3

4

Divide and Conquer Framework to
Compute the Cactus Representation

Minimal Isolating Mincuts

Compute Maximal Isolating Mincuts

Why Maximal Isolating Mincuts (Novel Variant)

Outline

1

2

3

4

Divide and Conquer Framework to
Compute the Cactus Representation

Minimal Isolating Mincuts

Compute Maximal Isolating Mincuts

Why Maximal Isolating Mincuts (Novel Variant)

A Contraction-Based Divide and Conquer Framework

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

[Chekuri and Xu 2017]

Definition. T-split [Chekuri and Xu 2017]

A T-split partitions the graph such that both side
contain at least 2 terminal vertices.

A Contraction-Based Divide and Conquer Framework

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

[Chekuri and Xu 2017]

{x}

Definition. T-split [Chekuri and Xu 2017]

A T-split partitions the graph such that both side
contain at least 2 terminal vertices.

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

Definition. T-split [Chekuri and Xu 2017]

A T-split partitions the graph such that both side
contain at least 2 terminal vertices.

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

{x}

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

Definition. T-split [Chekuri and Xu 2017]

A T-split partitions the graph such that both side
contain at least 2 terminal vertices.

A Contraction-Based Divide and Conquer Framework

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

[Chekuri and Xu 2017]

{x}
+

{x}

=

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

{x} Definition. T-split [Chekuri and Xu 2017]

A T-split partitions the graph such that both side
contain at least 2 terminal vertices.

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

Base case (No T-split found): The cactus is either
a triangle or a star.

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

Q1: How to find T-splits efficiently?

A: [Chekuri and Xu 2017] find some arbitrary T-splits using max-flow.

Q2: Can we bound the depth of divide and conquer?

A: We find some “balanced” T-splits, implies depth!

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

1. Find any non-trivial T-mincut
(T-split).

2. Contract all vertices on each side
and recurse.

3. Recover the cactus representation
from the “sub-cacti”.

Q1: How to find T-splits efficiently?

A: [Chekuri and Xu 2017] find some arbitrary T-splits using max-flow.

Q2: Can we bound the depth of divide and conquer?

A: We find some “balanced” T-splits, implies depth!

A Contraction-Based Divide and Conquer Framework
[Chekuri and Xu 2017]

Inspired by
Isolating Mincuts

Outline

1

2

3

4

Divide and Conquer Framework to Compute
the Cactus Representation

Minimal Isolating Mincuts

Compute Maximal Isolating Mincuts

Why Maximal Isolating Mincuts (Novel Variant)

Minimal Isolating Mincuts

● This tool is simple and very powerful: 10+ papers in a few years
● It will not be useful for us though.
● We will introduce a new variant of this, but the basic definition of this part

is useful.

Outline

2

2.1

Minimal Isolating Mincuts

Definition

2.2 Simple Application: Steiner Mincut

Isolating Mincuts [Li & Panigrahi 2020]

Given a set T of terminals, for each terminal
 find a minimum valued cut that separate from .

 x-mincut of T

Minimal Isolating Mincuts [Li & Panigrahi 2020]

An x-mincut of T is “minimal” if all proper subset
containing x has a strictly larger cut boundary.

Isolating Cuts Lemma [Li & Panigrahi 2020]

Given a terminal set T, there is an algorithm
that computes the minimal isolating mincuts
for every x in T using max-flows.

{x}

Submodularity for “cut values”:
Uniqueness comes from submodularity.

Minimal Isolating Mincuts: Definitions Cont’d

An A-mincut of T is “minimal” if all proper subset
containing A has a strictly larger cut boundary.

Submodularity for “cut values”:

The minimal A-mincut X satisfies:

1. X contains A and X is disjoint from T\A.
2. C(X) is minimum under 1.
3. |X| is minimum under 1. and 2.

Computing Minimal Isolating Mincuts

Submodularity for “cut values”:

Suppose we arbitrarily partition T into two halves (A, B), we can compute
minimal A-mincut of T and minimal B-mincut of T.
Again, using submodularity, we can show that

 minimal x-mincut minimal A-mincut for all x in A.

x

Computing Minimal Isolating Mincuts

Submodularity for “cut values”:

Suppose we arbitrarily partition T into two halves (A, B), we can compute
minimal A-mincut of T and minimal B-mincut of T.
Again, using submodularity, we can show that

 minimal x-mincut minimal A-mincut for all x in A.

x

Contract & Recurse!

Submodularity for “cut values”:

Computing Minimal Isolating MincutsComputing Minimal Isolating Mincuts
Suppose we arbitrarily partition T into two halves (A, B), we can compute
minimal A-mincut of T and minimal B-mincut of T.
Again, using submodularity, we can show that

 minimal x-mincut minimal A-mincut for all x in A.

Contract & Recurse!

Outline

2

2.1

Minimal Isolating Mincuts

Definition

2.2 Simple Application: Steiner Mincut

Steiner Mincuts

A T-mincut is a “partition” of T that has a minimum possible valued cut among
all non-trivial partition of T.

Problem: Find a T-mincut S.

Steiner Mincuts

A T-mincut is a “partition” of T that has a minimum possible valued cut among
all non-trivial partition of T.

Problem: Find a T-mincut S.

Observe: For any fixed , S must separate from some .

We can use |T| max-flows to solve the problem.

Steiner Mincuts

A T-mincut is a “partition” of T that has a minimum possible valued cut among
all non-trivial partition of T.

Problem: Find a T-mincut S.

Observe: For any fixed , S must separate from some .

We can use |T| max-flows to solve the problem.

Will show: max-flows via isolating cuts.

For more applications, see TCS+ Talk by Thatchaphol Saranurak.

Steiner Mincuts: Easy Case

Let be some Steiner mincut. (Assume)

Easy Case: Suppose .

Steiner Mincuts: Easy Case

Let be some Steiner mincut. (Assume)

Easy Case: Suppose .

Algo: Just call IsoCut(T).

Steiner Mincuts: General Case

General Case: Suppose .

Steiner Mincuts: General Case

General Case: Suppose .

 (i.e. sample each t independently with prob)

Steiner Mincuts: General Case

General Case: Suppose .

 (i.e. sample each t independently with prob)

 .

If happens, this is the easy case! Just call IsoCut().

Steiner Mincuts: General Case

General Case: Suppose .

 (i.e. sample each t independently with prob)

 .

If happens, this is the easy case! Just call IsoCut().

Maximal Isolating Mincuts [He, Huang, Saranurak 2024]

An x-mincut of T is “maximal” if all proper superset
containing x has a strictly larger cut value.

Maximal Isolating Cuts [He, Huang, Saranurak 2024]

Given a terminal set T, there is an algorithm
that computes the maximal isolating mincuts
for T using max-flows.

Submodularity for “cut values”:

Maximal Isolating Mincuts [He, Huang, Saranurak 2024]

An x-mincut of T is “maximal” if all proper superset
containing x has a strictly larger cut value.

Maximal Isolating Cuts [He, Huang, Saranurak 2024]

Given a terminal set T, there is an algorithm
that computes the maximal isolating mincuts
for T using max-flows.

Submodularity for “cut values”:

Not obvious if maximal isolating mincuts
is useful and whether it can be computed
efficiently.

Outline

1

2

3

4

Divide and Conquer Framework to Compute
the Cactus Representation

Minimal Isolating Mincuts

Compute Maximal Isolating Mincuts

Why Maximal Isolating Mincuts (Novel Variant)

Indistinguishability

If we use the tools that computes
only minimal isolating mincuts
(with sub-sampling), we cannot
distinguish between a complete
graph and a cycle.

Input Graph Cactus

Indistinguishability

If we use the tools that computes
only minimal isolating mincuts
(with sub-sampling), we cannot
distinguish between a complete
graph and a cycle.

Input Graph Cactus

Indistinguishability

If we use the tools that computes
only minimal isolating mincuts,
(with sub-sampling), we cannot
distinguish between a complete
graph and a cycle.

Input Graph Cactus

We can distinguish these two cases with
maximal isolating mincuts!

Indistinguishability

If we use the tools that computes
only minimal isolating mincuts,
(with sub-sampling), we cannot
distinguish between a complete
graph and a cycle.

Input Graph Cactus

We can distinguish these two cases with
maximal isolating mincuts!

Moreover, we can find “balanced” cuts which
makes the divide and conquer more efficient!

Indistinguishability

If we use the tools that computes
only minimal isolating mincuts,
(with sub-sampling), we cannot
distinguish between a complete
graph and a cycle.

Input Graph Cactus

We can distinguish these two cases with
maximal isolating mincuts!

Moreover, we can find “balanced” cuts which
makes the divide and conquer more efficient!

Maximal Isolating Mincuts + Sample Terminals ⇒
D&C

Is there a “balanced” edge-cut in the
current cactus?

Yes NoBoth sides contain at
least |T|/4 terminals.

There exists a centroid v.

Consider the underlying
cactus representation.

Maximal Isolating Mincuts + Sample 3 Terminals
⇒ Balanced D&C

Is there a “balanced” edge-cut in the
current cactus?

YesBoth sides contain at
least |T|/4 terminals. The set (yellow) X corresponds to

maximal r-mincut.

u,v are uniformly sampled. With
constant probability V\X contains at
least |T|/4 terminals.

Maximal Isolating Mincuts + Sample 3 Terminals
⇒ Balanced D&C

Is there a “balanced” edge-cut in the
current cactus?

No There exists a centroid v.
Want to obtain a set of cuts,
corresponds to each of the blue sets.

Maximal Isolating Mincuts + Sample Terminals
⇒ Centroid D&C

Is there a “balanced” edge-cut in the
current cactus?

No There exists a centroid v.
For each set , sample each terminal
with probability .

Maximal Isolating Mincuts + Sample Terminals
⇒ Centroid D&C

Is there a “balanced” edge-cut in the
current cactus?

No There exists a centroid v.
For each set , sample each terminal
with probability .
With constant probability, exactly one
terminal in is sampled, together
with at least one terminal from any
two other subsets being sampled.

Maximal Isolating Mincuts + Sample Terminals ⇒
D&C

Is there a “balanced” edge-cut in the
current cactus?

Yes NoBoth sides contain at
least |T|/4 terminals.

There exists a centroid v.

Consider the underlying
cactus representation.

Maximal Isolating Mincuts + Sample Terminals ⇒
D&C

Is there a “balanced” edge-cut in the
current cactus?

Yes NoBoth sides contain at
least |T|/4 terminals.

There exists a centroid v.

Consider the underlying
cactus representation.

Q1: How do we find T-splits efficiently?

Q2: Can we bound the depth of divide and
conquer?

Both challenges solved!

Outline

1

2

3

4

Divide and Conquer Framework to Compute
the Cactus Representation

Minimal Isolating Mincuts

Compute Maximal Isolating Mincuts

Why Maximal Isolating Mincuts (Novel Variant)

Posi-Modularity & Pairwise Intersection Only Lemma

Posi-modularity for “cut values”:

Submodularity for “cut values”:

“3-Star Lemma”
[Dinitz and Vainshtein 1994]

A

B

C

Theorem [Dinitz and Vainshtein 1994]

Let A, B, and C be disjoint sets of terminals. Then,
the intersection of {any A-mincut, any B-mincut,
and any C-mincut} is empty.

Posi-Modularity & Pairwise Intersection Only Lemma

Posi-modularity for “cut values”:

Submodularity for “cut values”:

“3-Star Lemma”
[Dinitz and Vainshtein 1994]

Theorem [Dinitz and Vainshtein 1994]

Let A, B, and C be disjoint sets of terminals. Then,
the intersection of {any A-mincut, any B-mincut,
and any C-mincut} is empty.

Each vertex appears in at most 2 maximal isolating
mincuts!

A

B

C

Computing Maximal Isolating Mincuts

Submodularity for “cut values”:

Suppose we arbitrarily partition T into two halves (A, B), and we can compute
maximal A-mincut of T and maximal B-mincut of T.
Again, using submodularity, we can show that

 maximal x-mincut maximal A-mincut for all x in A.

Submodularity for “cut values”:

Computing Maximal Isolating Mincuts

Contract & Recurse!

Suppose we arbitrarily partition T into two halves (A, B), and we can compute
maximal A-mincut of T and maximal B-mincut of T.
Again, using submodularity, we can show that

 maximal x-mincut maximal A-mincut for all x in A.

Posi-Modularity

Posi-modularity for “cut values”:

Submodularity for “cut values”:

Posi-Modularity & Pairwise Intersection Only Lemma

Posi-modularity for “cut values”:

Submodularity for “cut values”:

“3-Star Lemma”
[Dinitz and Vainshtein 1994]

Theorem [Dinitz and Vainshtein 1994]

Let A, B, and C be disjoint sets of terminals. Then,
the intersection of {any A-mincut, any B-mincut,
and any C-mincut} is empty.

Each vertex appears in at most 2 recursion paths!

A

B

C

Summary

Standard Cactus Representation

Steiner Cactus Representation

Hypergraph Cactus Representation

Element Cut Cactus Representation

General submodular functions

Solved!

Solved!

Solved!

Open

Open

From mincuts to near-mincuts：Polygon Representations Open

Thank you!

Thank you!

