
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 2: Negative-Weight Single-Source Shortest Paths in Near-linear
Time [BNW22]

Lecturer: Huacheng Yu Scribe: Ilya Maier

1 Overview

Last week, we started presenting the main framework of the algorithm. The setup was that
we have a graph G with weights w(e) ≥ −2 and a modified graph G+1 where w+1(e) =
w(e)+ 1 and we were trying to compute a good price function ϕ for G s.t. w(u, v)+ϕ(u)−
ϕ(v) ≥ −1. The main framework consists of computing the LDD of G+1 and partition the
edges into 3 sets:

• SCC-internal edges

• “forward” edges: if we contract the SCCs, the resulting graph is a Directed Acyclic
Graph (DAG) as we will see later, so we can indeed find a topological ordering of the
SCCs

• “backward” edges, i.e. Erem

We also add a dummy source s which has edges to all other vertices with weight 0. Then,
we compute the price functions ϕ1, ϕ2, ϕ3 for G with only the first set of edges, the first two
sets of edges and all edges respectively. We already saw how to compute ϕ1 and ϕ2 and
the plan for today is to compute ϕ3 with which we will have an Õ(m

√
n) algorithm, then

see how we can improve the runtime to Õ(m) and finally present an algorithm and a proof
sketch for computing LDDs.

2 An Õ(m
√
n) algorithm

To compute ϕ3, we want to just compute the exact shortest distances in G+1
ϕ1+ϕ2

, from which

we straightforwardly obtain ϕ3. However, G
+1
ϕ1+ϕ2

can still contain negative edges, so using
just Bellman-Ford will result in a bad runtime. Instead, we want to use a combination
of Dijkstra + Bellman-Ford s.t. computing SSSP takes only Õ(mk) time where k is the
maximum number of negative edges on a shortest path. Hence, we want to show that k is
indeed small.

The main intuition is that because Pr[e ∈ Erem] ≤ Õ(max{0,w(e)}
D + n−10), there should

be only a few “backward” edges and hence also a small number of negative edges (as we
have already resolved all other edges).

Lemma 1. The expected number of negative edges on a shortest path s → v in G+1 is
Õ(n/D + n−10).

1

2

Proof. Let P be any SP in G+1. Then,

E[#e ∈ P s.t. e ∈ Erem] =
∑
e∈P

Pr[e ∈ Erem] (1)

≤
∑
e∈P

Õ

(
max{0, w(e)}

D
+ n−10

)
(2)

≤
∑
e∈P

Õ

(
w(e) + 1

D
+ n−10

)
(3)

≤ Õ

(
w(e) + |P |

D
+ n−10

)
(4)

≤ Õ

(
0 + n

D
+ n−10

)
(5)

where in (3) we used that w+1(e) ≥ −1 and in (5) that there is always a path from s to v
for all v with weight 0 as s is a dummy source.

With that we are ready to present how to compute ϕ3. Remember that we transformed
G s.t. every vertex has a constant out-degree. This property will be needed in the following
lemma. One way to construct such graph is by replacing every vertex v with a directed
cycle on degin(v) + degout(v) vertices and edge weights set to 0, s.t. each in-/out-edge is
attached to a corresponding vertex. In this case, the number of vertices n′ becomes O(m).

Lemma 2. Let lv be the number of negative edges on the SP s → v, then SSSP can be
solved in Õ(

∑
v lv · degout(v) +m).

Proof sketch: we initialize a priority queue for Dijkstra and run it ignoring the non-
negative edges and marking every visited vertex. Then for each marked vertex, we unmark
it and update the distances of its out-neighbors using Bellman-Ford, adding vertices for
which we changed the distance estimates back to the queue. Then we repeat the process
until the queue is empty.

We can show that the following invariant holds: after k iterations, the distance estimate
for any vertex v with lv < k is correct. For runtime, notice that the initial run of Dijkstra
takes Õ(m) time and after this the only vertices we add to the queue are the ones for which
the distance estimates have changes because there is a shorter path using a negative edge.
As the distance estimate can change at most O(lv) times and each time we will only consider
the const. number of out-neighbors of v, the claim follows.

Now, we get that by setting D = Õ(
√
n), lv is expected to be Õ(

√
n), so computing ϕ3

also takes Õ(m
√
n). Finally, let’s summarize what we have achieved so far. ϕ1 ensures that

all SCC-internal edges have a non-negative weight. ϕ2 ensures that for forward edges and
ϕ3 for backward edges. Hence, ϕ1 + ϕ2 + ϕ3 achieves w(e) ≥ −1 in G as the edge weights
differ by exactly one between G and G+1, so we achieved what we were seeking.

3 Improving the runtime to Õ(m)

For improving the runtime, notice that computing ϕ2 already only takes O(m) time and
that computing ϕ3 would also only take Õ(m) time if D was Θ(n). However, raising D to

3

be Θ(n) changes the runtime for stage 1 to become Õ(mn) as an SP can now contain D
negative edges. Luckily, this can be resolved by applying the algorithm recursively on the
graph containing only the SCC-internal edges. We start by initializing D to be n. With
each step of recursion we update Dnext to be D/2, so we will only need O(log n) recursion
steps until D ∈ O(1). Once it becomes smaller than say 2, we can just run the mix of
Dijkstra + Bellman-Ford as our base case. As such, each iteration will only take Õ(m) time
and hence the total runtime is Õ(m). Here is the simplified pseudo-code for overview:

Algorithm 1 ComputePriceFunction(G+1, D)

1: Compute LDD(G+1, D)
2: Let E1 be the SCC-internal, E2 the forward and E3 the backward edges
3: ϕ1 ← recurse on (V,E1)
4: ϕ2 ← compute the topological ordering of G[E2] and set ϕ2(v) = −iW for all v that are

i-th in the order
5: ϕ3 ← run the mix of Dijkstra + Bellman-Ford on G+1

ϕ1+ϕ2

6: return ϕ1 + ϕ2 + ϕ3

With this, we obtain the main theorem:

Theorem 3 ([BNW22]). There exists a randomized algorithm which either detects a nega-
tive weight cycle or outputs the shortest-path tree from s in Õ(m logW) time.

4 Low-Diameter Decomposition

In this section we want to present the main ideas of how to compute the LDD, which is
a major component of the main algorithm. Here is a reminder of the guarantees that we
want to have:

Theorem 4. There exists an algorithm LDD(G,D) that computes a partition V1, . . . , Vk of
V (G) and a set of edges Erem s.t.

• G[Vi] is a Strongly-Connected-Component (SCC) with weak diameter of at most D

• Contracting each SCC Vi results in a DAG

• Pr[e ∈ Erem] ≤ Õ(max{0,w(e)}
D + n−10)

• Runtime of LDD(G,D) is Õ(m)

4.1 Undirected case

To introduce the concept, let’s first see how to compute LDD in undirected graphs, without
considering the runtime yet. First, WLOG assume that the weights are non-negative (we
can just set the negative weights to be 0, which will result in the following new weight
function w′(e) = max{0, w(e)}). For a set of vertices B let ∂B = {e ∈ E | e ∩ B = 1}, i.e.
the set of incident edges to B that only have one endpoint in B. Then, we will iteratively

4

Algorithm 2 LDD(G,D)

1: while G ̸= ∅ do
2: let v be any vertex
3: sample d ∼ Geo(22 lognD)
4: let B = {u ∈ V (G) | distG(v, u) ≤ d} ▷ ball around v with radius d
5: add ∂B to Erem

6: remove B from G (B becomes one of the SCCs/connected components)

pick a vertex v, sample a random radius smaller than D/2 and carve out a ball around v
from the graph.

To not violate the diameter guarantee, we will additionally check that d ≤ D/2 and if
that’s not the case, we will simply put all edges in Erem. Let’s analyze the output properties
of LDD(G,D).

Lemma 5. Each G[Vi] is a connected component of diameter at most D.

Proof. It is clear that G[Vi] is a connected component, as Vi is a ball around v and so each
vertex is connected to it. Furthermore, as we have checked that d ≤ D/2, for any u,w ∈ Vi

there is a walk u→ v → w of length at most D, so the diameter guarantee also holds.

Lemma 6. Pr[e ∈ Erem] ≤ Õ(max{0,w(e)}
D + n−10)

Proof sketch: First, note that Pr[d > D/2] ≤ (1 − 22 logn
D)D/2 ≤ e−11 logn ≤ n−11. By

union bound over all vertices, the probability that d is ever larger than D/2 (and hence
that all edges are in Erem) is at most n−10.

Otherwise d ≤ D/2 and we can view ball growing as a random process. We start with a
ball of radius 0 and at each step either increase the radius by 1 or terminate with probability
22 logn

D . Now, consider an edge e = (u, v) and the first time either u or v are in some ball
that we are about to carve out. WLOG, let it be u. For v to be in the same ball and not
get removed, the above process must not terminate w(e) many times. This happens with

probability at least (1− 22 logn
D)w(e) ≥ 1− 22 logn

D · w(e) = 1− Õ(w(e)
D) as wanted.

4.2 Directed LDD

For directed graphs, instead of a ball we can either carve out an in- or an out-ball around
v (where in an in-ball each vertex can reach v and the incident edges ∂B are all edges that
go into the ball). Because of that we will then have to recurse on the carved out ball, as we
do not immediately get an SCC. We will repeat the following:

1: sample d ∼ Geo(22 lognD)
2: find either B = Bin(v, d) or B = Bout(v, d) with |B| ≤ n/2
3: add ∂B to Erem

4: remove B from G
5: recurse on B

until every vertex left fulfills that both their in- and out-ball are of size at least n/2
(where n is the current size of the graph). We will then add these vertices to their own SCC.

5

To compute the in- or out-ball, we will originally sample O(log n) vertices and compute their
in- and out-balls using Dijkstra. We then will estimate the size of Bin/out(v) for any v by the
number of sample vertices that contain v in their in-/out-balls. Using Chernoff bounds, we
can show that this gives a good approximation. Everything else can also be done in Õ(m)
with efficient book-keeping, for more details, I recommend seeing the notes of Danupon
Nanongkai (one of the paper’s authors): link.

Let’s again analyze the output properties:

Lemma 7. G[Vi] is a Strongly-Connected-Component (SCC) with weak diameter of at most
D.

Proof. Note that the only vertices we add to an SCC are the ones that reach at least n/2
other vertices in their in- and out-ball. Hence, to find a path from any u to some v, we
just consider w ∈ (Bout(V) ∩Bin(v)) and construct the walk u→ w → v of length at most
2 ·D/2 ≤ D.

Lemma 8. Contracting each SCC Vi results in a DAG

Proof. Note that for any ball we carve out, we always remove either its in- or out-edges,
so a carved out ball can never participate in a cycle. Since each SCC is formed of vertices
that are left after we carved out all balls from the current graph, the claim follows.

Analyzing the probabilities of edges being removed is done similarly as in the undirected
case, just that the probability increases by a factor of log n because of recursion.

References

[BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-
weight single-source shortest paths in near-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 600–611. IEEE, 2022.

https://hackmd.io/@U0nm1XUhREKPYLt1eUmE6g/Sycpovkiq#2-Undirected-LDD-via-ball-growing

	Overview
	An (mn) algorithm
	Improving the runtime to (m)
	Low-Diameter Decomposition
	Undirected case
	Directed LDD

